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In this paper we present a surveillance system for early detection of escapers from a
restricted area based on a new swarming mobility model called CROMM-MS (Chaotic
Rössler Mobility Model for Multi-Swarms). CROMM-MS is designed for controlling the
trajectories of heterogeneous multi-swarms of aerial, ground and marine unmanned
vehicles with important features such as prioritising early detections and success rate.
A new Competitive Coevolutionary Genetic Algorithm (CompCGA) is proposed to optimise
the vehicles’ parameters and escapers’ evasion ability using a predator-prey approach.
Our results show that CROMM-MS is not only viable for surveillance tasks but also that its
results are competitive in regard to the state-of-the-art approaches.
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1 INTRODUCTION

The use of different types of vehicles arranged in swarms is a promising strategy (Girma et al., 2020)
which allows to take advantage of the capabilities of each member while minimising their limitations.
These heterogeneous swarms are based on collective behaviors of social insects where collaborations
emerge to achieve a common goal (Jeong et al., 2019) while avoiding no-fly zones, extending battery
life, or braving inclement weather.

Unmanned Aerial Vehicles (UAVs), also known as drones, are widely used in many applications
nowadays (McNeal, 2016). In surveillance scenarios (Brust et al., 2017), they can explore different
areas at a relatively high speed using their cameras, featuring excellent communication capabilities
(Batista da Silva et al., 2017). On the other hand, UAVs have a reduced flight time, cannot carry larger
payloads, and have big troubles to stand in a static position when there are strong winds.

Unmanned Ground Vehicles (UGVs) are able to work over a wide variety of terrains, sharing
space with humans, searching for targets while avoiding obstacles (Brust and Strimbu, 2015). UGVs
are good candidates for a joint usage with UAVs, complementing each other to act in different terrain
characteristics (Stolfi et al., 2020c). Although UGVs are slower than UAVs and have a limited
communication range (line of sight, obstacles, etc.), they have a higher autonomy and are frequently
used to support UAVs providing a moving recharging station and transportation between mission
objectives (Waslander, 2013).

Unmanned Surface Vehicles (USVs), which include Unmanned Marine Vehicles (UMVs), have
been proposed as critical components of the future naval forces (Yan et al., 2010) to performmissions
such as mine countermeasures, maritime security, and maritime interdiction operations support,
among others. They are thought to improve existing naval capabilities offering a reduction in both
operational time and cost (Costanzi et al., 2020).

Unpredictability is a essential feature when calculating trajectories for robots which have to
perform risky missions such as surveillance, patrolling, or searching for mines. Mobility models
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based on chaotic systems present such desired unpredictability
(Iba and Shimonishi, 2011), only being sensitive to the initial
conditions and the implementation which can be made via
software to be used in a simulator (Rosalie et al., 2018) or
implemented as part of the robot electronics, featuring a true
random bit generator obtained from a multi-scroll attractor, to
provide waypoints for UAVs (Volos et al., 2012).

Our proposal consists of a novel multi-swarm surveillance system
(Figure 1)whereUAVs,UGVs, andUMVs collaborate to achieve early
detection of escapers from a restricted area. To this end, we introduce
an extension of CROMM (Chaotic Rössler Mobility Model), initially
designed for homogeneous vehicles and area coverage, for now
addressing heterogeneous multi-swarms and spotting escaper in
surveillance scenarios. We aim to exploit the described best features
of each vehicle class to achieve better results than homogeneous
solutions. The main contributions of this paper are:

1. A new mobility model called CROMM-MS (Chaotic Rössler
Mobility Model for Multi-Swarms) to control UAVs
trajectories with the aim of maximising early escaper detection.

2. A predator-prey approach to train and improve this
surveillance system.

3. A Competitive Coevolutionary Genetic Algorithm (CompGA)
specially designed for optimising the vehicles parameters and
improving escapers to be valid evaluators.

The remainder of this paper is organised as follows. In the next
section, we review the state of the art related to our work. In

Section 3 our approach is presented. The experimental results are
in Section 4. And finally, Section 5 brings discussion and
future work.

2 RELATED WORK

Multi-pursuer and multi-evader games have received great
attention in the literature. In (Makkapati and Tsiotras, 2019,
2020) two single navigation laws (constant bearing and pure
pursuit) are proposed using Apollonius circles and curves.
Additionally, a task allocation algorithm is proposed for the
pursuers to solve the problem in finite time for any number of
pursuers and evaders. A Graph Neural Network trained with
Reinforcement Learning was used in (Deka and Sycara, 2020) to
obtain complex strategies for two teams of agents. The authors
also proposed a mixed cooperative-competitive multi agent
environment called FortAttack to test their proposal. After the
training process, they achieved highly competitive, emergent
heterogeneous behavior between the homogeneous agents. In
(Pierson et al., 2017) an algorithm for cooperative pursuit of
multiple evaders using multiple pursuers is proposed. It uses a
global area minimisation strategy based on the Voronoi
tessellation of the environment to capture all the evaders in
finite time. Two successful experiments were conducted in a
4x3-metre real environment using four pursuers against four
autonomous evaders and also against one human-controlled
evader and three autonomous evaders.

FIGURE 1 | Inter-swarm collaborations as proposed in the HUNTED project – see https://hunted.gforge.uni.lu.
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Path planning algorithms using chaotic dynamics have been
used to get unpredictable trajectories. In (Petavratzis et al., 2019)
a modification of the well-known logistic map is used to generate
a chaotic pseudorandom bit generator (CPRBG) to produce a bit
sequence. This sequence is then used to control a robot which
moves by a grid in four or eight different directions. A simple,
memory efficient, pheromone model is also proposed to improve
the achieved coverage level. In (Moysis et al., 2020) an extension
of the previous paper is discussed to avoid the use of a CPRBG
taking into account the limited onboard memory and
microcontrollers. This new approach is based on getting
chaotic tactics by applying a logistic map and a modulo
operator. In this article, pheromones are also proposed to
increase coverage level and reduce the number of revisits in
previous cells.

Coevolutionary algorithms are a good choice to solve
problems involving cooperation or competition between
different population of individuals. In (Tiguercha et al., 2014)
a competitive coevolutionary algorithm is presented to model the
interactions of several agents to find the optimal binding
strategies in a deregulated electricity market. Each agent is
modeled as an adaptive evolutionary agent that acts
strategically in order to maximise their profits. A competitive
coevolutionary search to the code-smells detection problem is
proposed in Boussaa et al. (2013). The authors present two
populations that compete one against the other. The first one
generates a set of detection rules to maximise the coverage of
code-smell examples, while the second population focuses on
maximising the number of code smells that cannot be detected. In
(Wiegand et al., 2001) an empirical study about cooperative
coevolutionary algorithms is presented. Three methods for

assigning fitness values based on its collaborations are
proposed as well as different collaboration mechanisms using
collaborator pools of different sizes.

Several recent research works address cooperative
heterogeneous multi-robot systems to perform a variety of
tasks (Huang et al., 2019; Rizk et al., 2019). In (Vu et al.,
2018) several UAV-UGV cooperation tasks for applications in
the field of architecture are presented. Focusing on each vehicle
characteristics, UGVs are thought to exploit their working
autonomy and high level of interaction with the user while
UAVs are more appropriate for communications and tracking
support. A probabilistic and scalable new strategy to solve the
multi-robot patrol problem is proposed in (Portugal and Rocha,
2016). It uses Bayesian decision-making combined with adaptive
learning to achieve intelligent patrolling routes which are tested
in a simulation environment as well as in the real world. In
(Jayavelu et al., 2018) UGVs are proposed as mobile refuelling
and maintenance stations for UAVs. The authors present a
framework to calculate the optimal number of UGVs and their
location according to the density and position of the moving
UAVs. A three-layer surveillance system is proposed in Lee et al.,
(2019) where UGVs are used as ground-level proximity sensors,
UAVs in the second layer use vision sensors, and in the upper
layer aerostats (hot-air balloons) provide a broader view of the
surveillance area. The authors use an extended DDDAMS
(Dynamic-data-driven Adaptive Multi-scale Simulation) using
a real-time detection and classification algorithm to predict the
target’s location based on a human behavior model. A cooperative
exploration solution for search and rescue application in a
damaged building is presented in (Hood et al., 2017). It
consists of a UGV which navigates through the free indoor

FIGURE 2 | Chaotic Rössler Mobility Model for Multi-Swarms (CROMM-MS). Vehicles have a different proximity radius r to control the swarm movement.
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space and a UAV providing enhanced situational awareness. In
(Arbanas et al., 2018) a decentralised task planning and
coordination framework is proposed. It includes a symbiotic
aerial vehicle-ground vehicle robotic team where UAVs are
used for aerial manipulation tasks, while UGVs assist them by
providing safe landing areas and transport. Additionally, UAVs
also helps UGVs to negotiate obstacles from their vantage point.

Our proposal does not involve two but three different types of
vehicles arranged in nine swarms where each group supports its
counterparts performing surveillance tasks. Predators do not have
any information about preys and preys are aware of predators only
when they are in their vision range. We use a competitive predator-
prey approach and optimise not only the autonomous vehicles but
also escapers from a restricted area in order to present smarter
opponents to be spotted as soon as possible.

3 MATERIALS AND METHODS

We present in this paper an autonomous intelligent surveillance
system for detection of escapers breaking out of a restricted area.

It is composed by swarms of unmanned autonomous vehicles of
different types which patrol the surveillance area in order to spot
individuals before they reach the map borders. We follow a
predator-prey approach optimising all the entities involved in
each escape scenario using an evolutionary bio-inspired
technique as described in the following sections.

3.1 Swarms of Autonomous Vehicles
(Predators)
Our surveillance system is composed of three types of
autonomous vehicles each equipped with different detection
capabilities:

• UGVs: medium speed, short detection range, 90-degree
vision.

• UAVs: high speed, medium detection range, zenithal
camera.

• UMVs: low speed, high detection range, 360-degree
detection.

We propose CROMM-MS (Chaotic Rössler Mobility Model
for Multi-Swarms) an extension of the CROMM (Rosalie et al.,
2018) mobility model adapted to heterogeneous multi-swarms of
unmanned vehicles moving throughout large scenarios. CROMM
is a pure chaotic mobility model where the mobility decisions are
taken according to the first return map of a Rössler system
(Rössler, 1976). The first return map provides an
unpredictable sequence of values ρ ∈ [0 − 1], that are used to
decide the next moving direction of a vehicle following a
probability partition. Consequently, if ρ< 1/3, the vehicle turns

TABLE 1 | Parameters of each escaper (prey).

Parameter Symbol Units Values Type

Border ϵb N,S,E,W (0 − 3) Integer
Coordinate ϵc Coordinate (0 − 399) Integer
Speed ϵs Simulation ticks (2 − 6) Integer
Time ϵt Simulation ticks (300 − 1200) Integer
Avoidance ϵa — (0.00 − 2.00) Real

FIGURE 3 | Escaper’s parameters to be optimised for evading patrolling vehicles.
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right (−π/4); if 1/3≤ ρ< 2/3, the vehicle turns left (π/4); and if
ρ≥ 2/3, it keeps moving ahead.

Unlike CROMM, when there are other vehicles in the
neighborhood given by the proximity radius r, our approach
uses a repelling vector calculated taking into account the other
vehicles, to decide the next moving direction as shown in
Figure 2. If there are no other vehicles in the neighborhood,
CROMM-MS works as a pure chaotic mobility model (like
CROMM) where the mobility decisions are taken according to
the first return map ρ. CROMM-MS runs in each vehicle i using a
different proximity radius ri to be optimised taking into account
each vehicle’s characteristics, with the aim of better spreading the
swarms’ members throughout the surveillance scenario,
improving coverage and detection rates, without creating big
gaps that could be exploited by escapers.

Algorithm 1 shows the pseudocode of CROMM-MS. First, the
current angle for each vehicle in the swarm respect to the others is
obtained, and its proximity radius r is checked against the rest of
vehicles of the same type. If some vehicles are closer than r, i.e.
V ≠∅, the new moving direction (angle) is calculated according to
the respective repelling forces (Δ→). Otherwise, pure chaotic is used,
based on the value of ρ and the aforementioned probability partition.

Algorithm 1 Pseudocode of CROMM-MS.
procedure CROMM-MS

for all u ∈ U do 8For each vehicle in the swarm
angle←CurrentAngle(u)
V←v ∈ U : v ≠ u∧Distance(v, u)< r
if V ≠∅ then 8If there are vehicles closer than r

Δ→← ∑
v ∈ V

( u→− v→)
angle← a tan(Δy/Δx)

else 8CROMM
ρ←next value in first returnmap
if ρ< 1/3 then

turn← −π/4 8Turn right

else if ρ< 2/3 then
turn←π/4 8Turn left

else
turn←0 8Go straight on

end if
angle←angle + turn

end if
Move(u, angle) 8The predator moves

end for
end procedure

3.2 Escapers (Preys)
We have also designed an escaper (prey) mobility model as a
complementary component of our system. It consists of a series
of parameters to be optimised simultaneously with the vehicles
(predators). Each escaper has an escape time (ϵt) which defines
when it breaks out from the facilities in the center of the map
and tries to reach one of the borders (ϵb) at a predefined coordinate
(ϵc). Finally, the running speed (ϵs) and the intensity of the avoidance
(ϵa) manoeuvrers (repulsive force) are also parameterised aiming to
present difficult adversaries to our surveillance solution.

Table 1 shows the parameter list of each escaper and in Figure 3
the forces involved in the escaper’s mobility decision are illustrated.
These degrees of freedom provide escapers the ability of deciding
when attempting to run away, the less populated region of the map
for that escape attempt, and how to react more efficiently to the
predators’ menace. All these parameters are optimised by our
competitive algorithm as described in the following section.

3.3 Competitive Coevolutionary Genetic
Algorithm (CompCGA)
We propose a Competitive Coevolutionary Genetic Algorithm
(CompCGA) for optimising the proximity radius (r) of each

FIGURE 4 | Diagram of the competitive coevolutionary genetic algorithm (CompCGA).
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autonomous vehicle and the intruders’ parameters in a competitive
way following a predator-prey approach.We have taken some initial
steps developing our CompCGA in (Stolfi et al., 2020b) optimising a
homogeneous swarm of UAVs and a number of intruders in a
surveillance scenario. We have now adapted our algorithm and
improved it, using two Hall of Fame tables to be sure that the best
specimens are used to evaluate their counterparts as well as keeping
a memory of the former good candidates. This new version of
CompCGA needs more simulations to evaluate an individual but
ensures that each fitness value represents how good is a given
configuration at defeating several competitors, instead of just using
the last best competitor from the other population.

We have used a Genetic Algorithm (GA) to address each
parameter set individually as depicted in Figure 4. Genetic
Algorithms (Goldberg, 1989; Holland, 1992) are efficient
methods for solving combinatorial optimisation problems.
They simulate processes present in evolution such as natural
selection, gene recombination after reproduction, gene mutation,
and the dominance of the fittest individuals over the weaker ones.
In this work we consider generational GAs where an offspring of
λ individuals is obtained from the population μ, so that the

auxiliary population Q contains the same number of individuals
(20 in our case) as the population P. Two identical GAs (GAU for
vehicles and GAE for escapers) are used in the CompCGA to
perform the coevolution of their populations. The pseudocode of
one of these GAs is presented in Algorithm 2.

Algorithm 2 Pseudocode of each Genetic Algorithm (GA).
procedure GA Ni, Pc, Pm, k
t←∅
Q(0)←∅ 8Q � auxiliary population
P(0)←Initialisation(Ni) 8P � population
while not TerminationCondition() do
Q(t)←Selection(P(t))
Q(t)←Crossover(Q(t), Pc)
Q(t)←Mutation(Q(t), Pm, k)
Evaluation(Q(t))
P(t + 1)←Replacement(Q(t), P(t))
t←t + 1

end while
end procedure

After initialising t and Q(0), the GA generates the initial
population P(0) by using the Initialisation function. The main
loop is executed while the TerminationCondition is not
fulfilled (we stop after 20,000 evaluations). Into the main
loop, the Selection operator is applied to populate Q(t)
using Binary Tournament (Goldberg and Deb, 1991). In the
following lines, our Crossover and Mutation operators (Stolfi
et al., 2020a, Stolfi et al., 2020d) are applied. The former with
the aim of widely exploring the search space and the latter to
make small modifications to each individual (solution vector)

TABLE 2 | Parameters of the proposed CompCGA. L is the length of the
configuration vector.

Parameter Value

Population (μ) 20
Offspring (λ) 20
# Evaluations 20,000
Crossover probability (Pc ) 1.0
Mutation probability (Pm ) 1/L

FIGURE 5 | case study. Left: the surveillance geographic area. Right: the different vehicle swarms and their assigned area in the surveillance scenario. Vehicles’
shared areas are rayed.
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of the offspring. Finally, after the Evaluation of Q(t), the new
population P(t + 1) is obtained by applying the Replacement
operator. In order to avoid population stagnation and preserve
its diversity and entropy, we have selected the best individual
in Q(t) to replace the worst one in P(t) (Stolfi et al., 2020a,
Stolfi et al., 2020d) if it has a better fitness value.

Each individual is evaluated against a number of best
opponents (up to 30 in our study) which are taken randomly

from its adversary’s Hall of Fame. The Hall of Fame of predators
is populated with the best individual of GAU after each
generation avoiding repetitions. The Hall of Fame of preys
follows the same policy using the best escaper from GAE.

When the maximum number of evaluations is reached, a
master tournament is conducted in which predators and preys
from their respective Hall of Fames are faced each other in order
to obtain the best specimens of each side, becoming in this way

FIGURE 6 | Snapshot of the Hunted Sim where each swarm is spread by the surveillance map. Vehicles trajectories can be seen as well as their detection area.
Near to the central area, two escapers are starting their run away.

TABLE 3 | Optimisation results for CROMM-MS after performing master tournament between the best prey and predators obtained from the 30 independent runs of
CompCGA. Additionally, results of CROMM are also provided.

Fitness values Wilcoxon

CROMM CROMM-MS Improvement

# Escapers Average Best Average Best Average Best p-value

2 289.343 118.292 233.603 58.292 19.3% 50.7% 0.047
4 354.785 134.773 267.587 81.715 24.6% 39.4% 0.006
8 598.123 171.215 354.673 98.463 40.7% 42.5% 0.000
16 703.281 145.598 341.886 96.854 51.4% 33.5% 0.001
Average 486.383 142.470 299.437 83.831 38.4% 41.2% —

Best results are in bold.
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the solutions (predator and prey configurations) calculated by
each CompCGA’s run. As this is a stochastic algorithm we
perform 30 independent run for each case study (described in
the next Section). Table 2 summarises the parameters of the
proposed CompCGA.

3.4 Case Studies
Four case studies are analyzed in this article comprising 2, 4, 8,
and 16 escapers which try to run away from a restricted area. The
surveillance system is made of four swarms of 4 UMVs, four
swarms of 4 UAVs, and one swarm of 2 UGVs, i.e. 34
autonomous vehicles in total.

The analyzed scenario is set up in a fictional island having a
restricted area in its center (Figure 5). Three patrolling areas
were defined, the innermost for UGVs where flying devices are
not allowed for safety reasons. The central area is assigned to
UAVs, which are faster and have cameras pointing toward the
ground, and finally, the outer patrolling area comprises water
surface so that UMVs are the last detection barrier to be
defeated by escapers. There are shared borders between
patrolling areas, i.e. 1-m wide regions where both type of
vehicles can coexist, to easy the transition between different
type of swarms. Since those vehicles are moving at different
altitudes (UMV/UAV and UAV/UGV) there is no risk of
collision in such shared areas.

The map dimensions are 400 × 400 m, the simulation
time was set to 10 min and the escapes can take place
during the time slot going from 100 to 400 s. The bottom
limit is for allowing the initial spread of the swarms and the top
limit is to give enough time to escapers to reach the border of
the map.

3.5 Evaluation
In order to evaluate each individual representing the
configuration of predators and preys we use the Hunted Sim
(Stolfi et al., 2020b, Stolfi et al., 2020d). Hunted sim is a
simulation environment dedicated to simulate diverse
unmanned vehicles in different scenarios involving not only
escapers but also intruders. It considers a map divided in 1 ×
1-m cells by which vehicles move following a mobility model
(Figure 6).

Each individual is represented by a vector x→ (Eq. 1)
containing the configuration of the N � 34 predators and the
M preys (M ∈ {2, 4, 8, 16}, depending on the case study). The
evaluation of x→ using the simulator and the fitness function
(Eq. 2) provides the fitness value of each individual. The fitness
function averages the detection distance (δ) of each escaper
spotted and adds a penalisation constant ω for each missing
escaper (η). The value of ω is the maximum distance from the
map center to its corners. It is calculated according to Eq. 3where

FIGURE 7 | Average convergence of Predators and Preys of the 30 runs of CompCGA for each case study.

TABLE 4 | Results for CROMM-MS after testing each best configuration obtained
in the four case studies (2, 4, 8, and 16 escapers).

CROMM-MS

# Escapers 2 4 8 16

2 233.6 291.2 324.5 286.9
4 294.5 267.6 285.4 318.8
8 430.7 367.7 354.7 405.6
16 605.8 588.7 637.0 341.9
Average 391.1 378.8 400.4 338.3

Best individual results and the best average value are in bold.
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Dx and Dy are the width and height of the map. Predators (GAU)
focus on minimising the detection distance and detecting a
maximum number of escapers, consequently, the lower the
value of F( x→), the better. On the opposite side (GAE), the
preys’ objective is to maximise its fitness value by being
detected as far as possible from the restricted area or even
reaching the border of the map if possible.

x→ � {r1, . . . , rN , εb1, ε c1, εs1, εt1, εa1, . . . , εbM , εcM , εsM , εtM , εaM}, (1)

F( x→) � δ + ω × η, (2)

ω � 1
2

�������
D2

x + D2
y

√
. (3)

4 RESULTS

The experimentation done consisted of the optimisation of
CROMM-MS using the CompCGA followed by the analysis of
the results obtained including surveillance metrics for each case
study, and the comparison with CROMM. Note that CROMM
was not optimised since it does not present any parameter.

Thirty runs of CompGGAwere performed where the parameters
of each vehicle in the swarm were optimised to maximise the
escaper’s detection rate using the evaluation function discussed in
Section 3.5. Table 3 shows the fitness of the best individual
(predator specimen) after performing the master tournament
between the configurations stored in both Hall of Fames
(predators vs. preys). Additionally, the fitness values for CROMM
were obtained to test this mobility model and know how it performs
against the best escapers (preys). All in all, CROMM-MS has
achieved lower (better) fitness values on average and best values
than CROMM in the four case studies analyzed. CROMM-MS has
achieved an average improvement of 38.4% over CROMM, and the
best fitness value is 41.2% better when using our proposal in the four
case studies. These results has a statistical significance greater that
95% (greater that 99% for 4, 8, and 16 escapers) which has been
calculated using the Wilcoxon test.

Figure 7 shows the average evolution of fitness values for the
120 runs (30 per case study) of CompCGA. It can be seen that
initially both populations have approximately the same average
fitness value which is evolving to lower values (minimisation) for
predators and higher values (maximisation) for preys. In the case
study with 16 escapers a sharp change in this tendency is observed

in generation 31 where the GAU (predators) have found a new
good configuration for vehicles hard to beat by the preys. Note
that all the best individuals collected from each generation are
stored in their respective Hall of Fame to be used in the final
master tournament.

As the number of escapers in a real world scenario is a priori
unknown, we have taken the best predators from the optimisation
process (of each case study) and tested them in all our case studies
as shown in Table 4. By doing so, we have chosen the
configuration for the vehicles which is the most successful not
in one but in the four different case studies proposed in our
approach. The results show that although each configuration
achieved the best results for its own case study, the configuration
for 16 escapers turned out to be the best on average.

Based on these results we analyze the other metrics of the system
using the configuration for 16 escapers. Table 5 shows these metrics
where the surveillance results of CROMM-MS are compared with
CROMM. It can be seen that not only the former achieved a better
detection rate (88.8% vs. 84.3% on average), but also detections
occurred closer to the restricted area (171 vs. 180m on average).
Furthermore, the area covered by the autonomous vehicles using
CROMM-MS was greater (89.2%) than when using CROMM

TABLE 5 |Metrics obtained from the surveillance results of CROMM-MS compared with CROMM. CROMM-MS was configured with the best configuration achieved for the
case study with 16 escapers.

Coverage (%) Detections (%) Avg. Distance (m)

# Escapers CROMM CROMM-MS CROMM CROMM-MS CROMM CROMM-MS

2 82.0 89.2 83.3 83.3 195.1 192.6
4 82.0 89.2 84.2 86.7 175.7 168.0
8 82.0 89.2 81.3 89.2 173.9 160.5
16 82.0 89.2 88.3 96.0 175.3 162.8
Average 82.0 89.2 84.3 88.8 180.0 171.0

Best results are in bold.

FIGURE 8 | Escaper detections grouped by case study and vehicle type.
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(82%). All these results plus the statistical tests provided (in terms of
fitness values), confirm that our approach using a fine
parameterisation effectively improves the performance of a
heterogeneous multi-swarm surveillance system.

Finally, a last study regarding the number of detections
arranged by vehicle type was done. It can be seen in Figure 8
that UGVs are spotting the majority of escapers as they are the
first obstacle to be overcome and our evaluation function
prioritises early detections. In the midfield UAVs are doing
almost the rest of detections and the last barrier, i.e. UMVs,
make the rest of detections. This last study supports the idea of
using multi-swarms of vehicles and several patrolling areas as a
viable surveillance system in which each vehicle’s characteristics
are exploited to improve the system efficiency as a whole.

5 DISCUSSION

In this paper we presented a surveillance system based on a new
mobility model called CROMM-MS (Chaotic Rössler Mobility
Model forMulti-Swarms) with the aim of patrolling and detecting
individuals escaping from a restricted area.

We have proposed the parameterisation of CROMM (Chaotic
Rössler Mobility Model) in order to address heterogeneous multi-
swarms (UAVs, UGVs and UMVs) where early detection has
priority over coverage. A new Competitive Coevolutionary
Genetic Algorithm (CompCGA) was designed to optimise
vehicles trajectories as well as escapers’ evasion ability using a
predator-prey approach.

The results obtained after 30 independent runs of CompCGA
for four case studies (34 autonomous vehicles vs. 2, 4, 8, and 16
escapers) show that CROMM-MS has successfully detected 89%
of escapers, performing better than CROMM (84%), not only in
terms on early detection of escapers, but also in area coverage
(89% vs. 82%).

As a matter of future work, we would like to improve our
system even more using other techniques for spreading the
swarm such as virtual pheromones or ghost vehicles,
increasing the detection rates as well as area coverage.
Moreover, we believe that CROMM-MS could be also adapted
to detect intruders trespassing a restricted area. Consequently, we

would like to try our approach in this kind of scenarios as well as
different map sizes, geographical characteristics as well as using
different swarm members. Despite the competitive results
achieved by CompCGA, we would like to test different
optimisation approaches for our surveillance system, e.g.
Differential Evolution (DE) and Particle Swarm
Optimisation (PSO).
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