',\' frontiers

1In Robotics and Al

BRIEF RESEARCH REPORT
published: 29 April 2021
doi: 10.3389/frobt.2021.625125

OPEN ACCESS

Edited by:

Savwvas Loizou,

Cyprus University of Technology,
Cyprus

Reviewed by:

Alan Gregory Millard,

University of Lincoln, United Kingdom
Heiko Hamann,

University of Libeck, Germany

*Correspondence:
Federico Pagnozzi
federico.pagnozzi@ulb.ac.be
Mauro Birattari
mbiro@uilb.ac.be

Specialty section:

This article was submitted to
Muilti-Robot Systems,

a section of the journal
Frontiers in Robotics and Al

Received: 02 November 2020
Accepted: 17 February 2021
Published: 29 April 2021

Citation:

Pagnozzi F and Birattari M (2021) Off-
Policy Evaluation of the Performance of
a Robot Swarm: Importance Sampling
to Assess Potential Modlifications to
the Finite-State Machine That
Controls the Robots.

Front. Robot. Al 8:625125.

doi: 10.3389/frobt.2021.625125

®

Check for
updates

Off-Policy Evaluation of the
Performance of a Robot Swarm:
Importance Sampling to Assess
Potential Modifications to the
Finite-State Machine That Controls
the Robots

Federico Pagnozzi* and Mauro Birattari*

IRIDIA, Université libre de Bruxelles, Brussels, Belgium

Due to the decentralized, loosely coupled nature of a swarm and to the lack of a general
design methodology, the development of control software for robot swarms is typically an
iterative process. Control software is generally modified and refined repeatedly, either
manually or automatically, until satisfactory results are obtained. In this paper, we propose
a technique based on off-policy evaluation to estimate how the performance of an instance
of control software—implemented as a probabilistic finite-state machine—would be
impacted by modifying the structure and the value of the parameters. The proposed
technique is particularly appealing when coupled with automatic design methods
belonging to the AutoMoDe family, as it can exploit the data generated during the
design process. The technique can be used either to reduce the complexity of the
control software generated, improving therefore its readability, or to evaluate
perturbations of the parameters, which could help in prioritizing the exploration of the
neighborhood of the current solution within an iterative improvement algorithm. To evaluate
the technique, we apply it to control software generated with an AutoMoDe method,
Chocolate — 6S. In a first experiment, we use the proposed technique to estimate the
impact of removing a state from a probabilistic finite-state machine. In a second
experiment, we use it to predict the impact of changing the value of the parameters.
The results show that the technique is promising and significantly better than a naive
estimation. We discuss the limitations of the current implementation of the technique, and
we sketch possible improvements, extensions, and generalizations.

Keywords: swarm robotics, control software architecture, automatic design, reinforcement learning, importance
sampling

1 INTRODUCTION

In this paper, we investigate the use of off-policy evaluation to estimate the performance of a swarm
of robots. In swarm robotics (Dorigo et al., 2014), a group of robots act in coordination to perform a
given mission. This engineering discipline is inspired by the principles of swarm intelligence (Dorigo
and Birattari, 2007). The behavior of the swarm is determined by the local interactions of the robots

Frontiers in Robotics and Al | www.frontiersin.org 1

April 2021 | Volume 8 | Article 625125

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.625125&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/articles/10.3389/frobt.2021.625125/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.625125/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.625125/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.625125/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.625125/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.625125/full
http://creativecommons.org/licenses/by/4.0/
mailto:federico.pagnozzi@ulb.ac.be
mailto:mbiro@ulb.ac.be
https://doi.org/10.3389/frobt.2021.625125
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.625125

Pagnozzi and Birattari

Off-Policy Evaluation of a Robot Swarm

A Simplification

—> e\eg\e

Design
°~ Execution
| Sy [
I
Estimation 7 7

Calculation of Importance Performance
the state values Sampling Estimation

inverted-neighbor
~count

=1
B=18.6

invertec-neighbor
~count

=10
p=18.03

s1
Exploration
wm=57

foraging task using the control software shown in panel (C).

FIGURE 1 | In panel (A), we show the workflow of the experiments. During the design process, AutoMoDe produces several finite-state machines—such as the

one composed of four states shown in panel (C)—as well as the execution traces of each experiment executed during the design process. The finite-state machine is
then modified by a designer—either a human or an automatic procedure—producing a modified finite-state machine —such as the one produced by removing a state
shown in panel (D) where the state and the relative transitions that have been removed are shown in light gray—or by modifying the parameters. First, the state

values of the original finite-state machine are calculated from the execution logs using the first-visit MC method. Importance sampling uses the state values, the modified
finite-state machine, and the execution traces to calculate the estimated state values of the modified finite-state machine that are then used to produce an estimation of
the performance of the modified finite-state machine. Finally, in panel (B), we show a screenshot from the ARGoS simulator where a swarm of 20 robots is performing the

with each other and with the environment. In a robot swarm,
there is no single point of failure and additional robots can be
added to the swarm without changing the control software.
Unfortunately, these same features make designing the control
software of the individual robots comprised in a swarm a complex
endeavor. In fact, with the exception of some specific cases
(Brambilla et al., 2015; Reina et al., 2015; Lopes et al., 2016), a
general design methodology has yet to be proposed (Francesca
and Birattari, 2016). Typically, the design of the control software
of the individual robots comprised in a swarm is an iterative
improvement process based on trial and error and heavily relies
on the experience and intuition of the designer (Francesca et al.,
2014). Automatic design has shown to be a valid alternative to
manual design (Francesca and Birattari, 2016; Birattari et al,
2019). Automatic design methods work by formulating the design
problem as an optimization problem, which is then solved using
generally available heuristic methods. The solution of the
optimization problem is an instance of control software and
the solution quality is a measure of its performance. In other
words, the optimal solution of such optimization problem is the
control software that maximizes an appropriate mission-
dependent performance metric. Reviews of the swarm robotics
literature can be found in Garattoni and Birattari (2016) and
Brambilla et al. (2013), while in depth reviews of automatic design

in swarm robotics can be found in Francesca and Birattari (2016);
Bredeche et al. (2018); Birattari et al. (2020).

In this study, we focus on control software implemented as a
probabilistic finite-state machine (PFSM): a graph where each
node represents a low-level behavior of the robot and each edge
represents a transition from a low-level behavior to another.
When the condition associated to a transition is verified, the
transition is performed and the current state changes. In a
probabilistic finite-state machine, each transition whose
associated condition is verified may take place with a certain
probability. This control software architecture is human readable
and modular—states and transitions can be defined once and
easily reused or changed. Due to these characteristics, finite-state
machines have been commonly used in manual design as well as
in automatic design methods such as the ones belonging to the
AutoMoDe family (Francesca et al., 2014).

In AutoMoDe, the control software is generated by combining
pre-existing parametric software modules in a modular
architecture, such as a probabilistic finite-state machine or a
behavior tree. When considering finite-state machines, the
software modules are either state modules and transition
modules. The optimization algorithm designs control software
by optimizing the structure of the PESM—the number of states
and how they are connected to each other—the behaviors, the

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pagnozzi and Birattari

transitions, and their parameters. In Figure 1C, we show an
example of a finite-state machine generated using AutoMoDe.

Regardless of the design method and control software
architecture, once generated, the control software is improved
through an iterative process where changes are evaluated and
applied if considered promising. For instance, a human designer
applies this process when fine-tuning the configuration of the
control software. The optimization algorithms used in automatic
design methods, and in particular iterative optimization methods,
also work in this way. For instance, iterative optimization
methods start from one or multiple solutions and explore the
solution space in an iterative fashion. At each iteration, the
optimization process generates new solutions by considering
modifications of the previous solution(s). Having an estimate
of the performance of such modifications can save valuable
resources—access to appropriate computational resources can
be expensive—and significantly speed up the design process.
Furthermore, in the context of automatic design, such an
estimate could be used to reduce the complexity of the
generated control software. Indeed, the automatic design
process often introduces artifacts in the generated control
software, that is, there may be parts of the control software
that do not contribute to the performance because they either
do not influence the behavior of the robots or are never executed.
These artifacts are generally ignored, but they add unnecessary
complexity and hinder readability.

Our proposal is to use off-policy evaluation to estimate the
impact of a modification from data collected during the execution
of the control software. Off-policy evaluation, is a technique
developed in the context of reinforcement learning (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 2018), to estimate the
performance of a target policy from the observation of the one of
a behavior policy. In a policy, the world is represented as a set of
states—possible configurations of the environment, including the
robot itself—connected by actions—the possible interactions with
the world. Each state is associated with a set of possible actions
that can be taken to transition from one state to the other. The
target policy may be deterministic—given a state it always
executes the same action—or stochastic—the action to be
performed is chosen with a certain probability; while the
behavior policy must be stochastic (Sutton and Barto, 2018).

Almost all off-policy methods use a technique called
importance sampling (Hammersley and Handscomb, 1964;
Rubinstein and Kroese, 1981; Sutton and Barto, 2018). This
technique is used to compute a statistic of a distribution based
on a sample extracted from another. In this way, data generated
by one policy can be used—after being appropriately weighted
through importance sampling—to evaluate a different policy. For
instance, one may execute a policy that performs actions
randomly and use the observed policy performance to estimate
the performance of a deterministic policy that always chooses the
action with the highest expected reward. Given a set of actions
executed by the behavior policy, this technique estimates the
performance of the target policy from the one observed by
performing the behavior policy by weighting the latter with
the ratio between the probability of executing each action
under the target policy and the one of executing them under

Off-Policy Evaluation of a Robot Swarm

the behavior policy. As a consequence, the behavior policy must
contain all the states and actions of the target policy. Moreover,
under the behavior policy, the probabilities of executing each
action under each state must be strictly positive.

Off-policy methods based on importance sampling have been
studied in reinforcement learning for a long time (Hammersley
and Handscomb, 1964; Powell and Swann, 1966; Rubinstein and
Kroese, 1981; Sutton and Barto, 2018). Recent works focused on
combining importance sampling with temporal difference
learning and approximation methods (Precup et al, 2000,
Precup et al, 2001), as well as reducing the variance of the
estimation (Jiang and Li, 2016) and improving the bias-
variance trade-off (Thomas and Brunskill, 2016).

The control software of a robot is indeed the implementation
of a policy. In fact, a robot uses information acquired through its
sensors to acquire information on the world and execute an
action by properly operating its actuators and motors. Depending
on the control software architecture, the state might be explicitly
reconstructed or not, and the set of actions available in each state
might be defined in a more or less explicit way. In the case of
probabilistic finite-state machines, the similarities of this control
software architecture with policies makes it ideal for this study. By
considering additional information from the sensors of the robot,
the states and transitions of a PFSM are directly translated in
states and actions of a policy. In the technique we propose in this
paper, the relevant data is the execution traces—that is, the
sequence of internal states traversed by the controller and the
sequence of sensor readings—from each robot in the swarm
during multiple experimental runs.

To evaluate the technique we propose, we use control software
generated with a variant of Chocolate (Francesca et al., 2015) that
we modified to allow the generation of more complex finite-state
machines composed of up to six states. In order to avoid
confusion, we call this variant Chocolate —6S. A further
advantage of using AutoMoDe is that collecting the execution
data needed for the estimation does not require additional
experimental runs because the technique we propose can
operate on the data produced within the design process. In the
experiments, we consider two kind of modifications, one
concerning the structure and one the parameters of the
control software. In the first, we estimate the performance
after removing one of the states of the control software. In the
second, we evaluate the impact of modifying the values of two
parameters of the two most executed transitions. In both
experiments, we compared the estimation provided by the
proposed technique with a naive estimation made assuming
that the applied modification would not change the
performance. The results show that the proposed technique is
better than the naive estimation and that the difference between
the two is statistically significant.

The structure of the paper is the following. In Section 2, we
present off-policy evaluation and how it can be applied to finite-
state machines. The experiments, their setup, and results are
presented in Section 3. Finally in Section 4, we discuss the
limitations of the proposed technique, possible ways to
improve the estimation and how it can be extended to other
control software architectures.

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pagnozzi and Birattari

2 METHOD
2.1 Background: Off-Policy Evaluation

The main challenge in reinforcement learning is estimating how
desirable it is for an agent to be in a state. The value v, (s) of a state
s under a policy m is the expected reward obtainable by starting in
state s and then following the policy n. The reward is calculated
over an episode e that can be defined as an entire interaction
between an agent and the environment, from an initial to a final
step. The reward obtained after step f can be calculated as

G (s;e) =Ry +YGrar. (1)

In Eq. 1, R4, is the reward obtained at stept + 1 and y € [0,1] isa
parameter called discount rate, which allows us to model the fact that
rewards may depend less and less on states visited earlier in the episode.

Using Monte Carlo (MC) methods, the value function can be
estimated from a sample of episodes. In these methods, the value
v, (s) of a state s is calculated as the average of the returns following
the visit to state s. In the first-visit MC method only the reward
following the first visit is considered while in every-visit all the visits
contribute to the average. As the two methods are similar and both
converge to v, (s) when the number of visits tends to infinity, to
simplify calculations in this work we use the first-visit MC method.

Oft-policy evaluation estimates the value function of a policy n
from episodes generated by another policy b. To be able to use
episodes from b to estimate values for 7, b must cover m, that is, it must
be possible—under b—to take every action that can be taken under m.
Formally, if 7 (als) >0 then b(als) >0, where 7 (als) indicates the
probability under policy n of taking action a when in state s.
Assuming that b covers m, importance sampling can be used to
weight the returns of b considering that—between the policies—each
action may be taken with a different probability. Defining 7 (s) as the
sequence of states and actions Sy, A¢, St115 Atr15 - - . » ST—where S; is
the first visit to state s, A; is the action taken when in S; and Sy is the
final state—the ratio between the different probabilities—called
importance sampling ratio—can be expressed as

T (AdS)
P =y asy @

In Eq. 2, m(Ag|Sk) and b(Ak|Sx) indicate the probability of
taking action Ay when in state Sx under the target policy and the
behavior policy, respectively. Given a set of episodes E generated
with policy b, there are two main ways of using p,, to estimate
vz (s): ordinary importance sampling and weighted importance
sampling (WIS). Ordinary importance sampling is defined as

Ze €E pr(s) (E)G[(S; e)

v (s) = 3)
|E|
Weighted importance sampling instead is defined as
e)G; (s;e
V”(S)ZZEEEPT(S)() t() (4)

Ze €E PT(S) (e)

The main difference between Eqs. 3, 4 is that, in the latter
equation, p,) is in the denominator. Both ordinary importance
sampling and weighted importance sampling tend to the exact

Off-Policy Evaluation of a Robot Swarm

state value when increasing the number of episodes considered
but the two methods show a different variance and bias trade-off.
Ordinary importance sampling is unbiased but shows a very high
variance, weighted importance sampling introduces some bias
resulting in a far lower variance (Sutton and Barto, 2018). We
selected WIS for our implementation because during some
preliminary experiments the variance of the estimation was
found to impact significantly the results.

2.2 Our Technique: Applying Off-Policy

Evaluation to Finite-State Machines
Applying off-policy evaluation to finite-state machines requires
establishing what are states and actions in a PFSM, what is an
episode and how to calculate the final reward, Gr, from the score
attained by the whole swarm at the end of an experimental run. In
finite-state machines, each state represents a behavior that is
executed until an event triggers a transition to another state.
Considering that the robot does not change its behavior until a
transition is triggered, our working hypothesis is that a state of a
PFSM-together with the information from the robot sensors
saved in the execution traces—can be simplified in a single
state of a policy and, consequently, transitions acquire the
same function as actions in a policy. With these
assumptions—considering a PFSM n— (als) can be defined as
the probability that transition a is triggered when in state s.
Naturally, an episode should correspond to an experimental run
with the reward being the final score, but in swarm robotics there are
several robots—typically all running the same control software. For
this reason, we divide an experimental run involving a swarm of n
robots in a set of n parallel episodes. Similarly, assuming F is the
final score of the experimental run, the reward awarded to each
robot corresponds to F/n. In calculating Gy using Eq. 1, because
assigning a per-time-step reward is not always possible, we set
Ryy1 = 0—that is, the reward is given only at the end of the
episode—and we do not consider any discount—that is,
y = 1—resulting in Gr = F/n. Using the first-visit method, a
state will get a reward of Gy if it is executed at least once during
the episode. In this case, a state that is executed once—for instance,
the initial state—will have the same reward as a state that is executed
for almost the entirety of the episode. We also considered another
way of calculating Gy that consists in weighting the reward by the
relative execution time of each state. This proportional Gr is
calculated per state so that a state s that has been executed for k
time steps gets a reward GPr (s) = (F/n) - (k/steps) where steps is
the total number of time steps in the episode. The pseudo code
showing how to estimate the state values is shown in Algorithm 1.
Algorithm 1 Pseudo code showing how the state values are
calculated. The inputs are the finite-state machine and its execution
traces generated during the design process. Each execution trace
contains the recording of all the robots in the swarm as well as the
final score awarded to the swarm at the end of the experiment. The
procedure iterates over each execution trace and for each execution
trace considers each robot separately. For each robot, the value of
each state is calculated using the first-visit MC method and
considering two ways of calculating the reward. In the first, the
reward is equal for each state and is equal to the reward per robot.

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pagnozzi and Birattari

Off-Policy Evaluation of a Robot Swarm

TABLE 1 | Description of Chocolate — 6S. This method targets the e-puck robot and specifically the reference model RM1.1 of which we report the key features at the end of the
table. The finite-state machines are generated by choosing from six behaviors—for which we provide a brief description—and six conditions—for which we report how the
activation probability p is calculated with a and p being parameters. Chocolate — 6S can generate finite-state machines of maximum six states, while Chocolate allows a maximum
of four and each state can have a maximum of four transitions. The optimization algorithm is iterated F-Race which uses the ARGoS simulator to perform evaluations.

Modules

Behaviors

Conditions

Constraints

Number of states
Transitions per state

Tools

Optimization algorithm Simulator

Robot platform

Input

Output

Chocolate - 6S

Exploration
Stop
Phototaxis
Anti-phototaxis
Attraction
Repulsion

Black-floor

White-floor

Gray-floor
Neighbor-count
Inverted-neighbor-count
Fixed-probability

Move randomly

Stop moving

Move toward the light

Move away from the light
Move toward other robots
Move away from other robots

If the floor is black, P = «; O otherwise
If the floor is white, P = «; O otherwise

If the floor is gray, P = «; O otherwise
With n neighbors P = 1/(1 + ef(@m)
With n neighbors P = 1 - 1/(1 + ef (=)
P=a

iterated F-Race implemented in the irace package (Balaprakash et al. (2007); Lopez-lbanez et al. (2016))
ARG0oS3 (Pinciroli et al. (2012))

e-puck reference model RM1.1 (Hasselmann et al. (2020))

8 proximity sensors
8 light sensors
3 ground sensors

Number of neighboring robots perceived
Attraction vector for each perceived robot

Left and right wheel target linear velocity

In the second, each state has a reward calculated as a fraction of the
reward per robot proportional to the total time the state was active.

Input A PFSM composed of S states and T transitions.
Input A set of execution traces
Output V (s) state values using the full reward
Output V), (s) state values using the proportional reward
for each s € S 4,
Initialize Rewards (s) as an empty list
Initialize Rewards, (s) as an empty list
loop over each execution trace
F = final score of the swarm
n =number of robots in the swarm
Gr = F/n reward per robot
steps = number of time steps in the execution trace
for each robot in the swarm do
for each state s € S do
if s has been executed in the episode then
k = number of time steps s has been executed
Append Gy to Rewards(s)
Append Gr - k/steps to Rewards, (s)

V (s) = average (Rewards (s))
V} (s) = average (Rewards, (s))

Given these definitions, we can use weighted importance
sampling to estimate the state values of a target finite-state
machine from the execution traces of a behavior finite-state
machine, provided that the states of the behavior finite-state
machine are a superset of those of the target one and are
connected by transitions in the same way. To calculate a
performance estimation for the whole swarm when executing
the target control software, F/n has to be derived from the state
values estimated using weighted importance sampling. Let v, (s),
with s € S be the state values of the behavior finite-state machine
and v; (j), with j €] and JES, be the state values of the target
finite-state machine estimated using weighted importance
sampling. When considering the reward calculated as
Gr = F/n, the performance F, of the target finite-state
machine is

5, G)/m)

F,
|/l

- Gr. (5)

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pagnozzi and Birattari

In Eq. 5, the estimation is calculated as the per-robot reward
multiplied by a factor that combines the estimated state values of
the target finite-state machine weighted by the state values of the
behavior finite-state machine. The proportional reward already
considers the relative contribution of each state so the calculation
of F, is defined as follows:

F, =Y v (j)GPr. (6)
J

F, represents the estimation of the average performance of a
single robot in the swarm. The estimated performance of the
swarm, considering the assumption that all the robots contribute
equally, is calculate as F, - n.

The experiments presented in this paper are based on finite-
state machines generated with Chocolate — 6S, which builds PESM
composed of a maximum of six states and four transitions per state.
Each state can assume one of six behaviors and each transition can
have one of six conditions. The key characteristics of
Chocolate — 6S, as well as a brief description of the behaviors
and the conditions, are given in Table 1. To produce execution
traces for each experimental run, we modified AutoMoDe so that
the control software of each robot logs an execution trace
containing, for each time step, the current state, the active
transition(s) and the information needed to calculate the
activation probability of each condition—that is, the ground
color and the number of neighboring robots perceived.

3 RESULTS

In the experiments presented here, the execution traces are
collected during the generation of the control software from
the executions performed by the optimization algorithm used
in Chocolate — 6S, Iterated F-Race implemented in the irace
package (Birattari, 2009; Lopez-Ibdez et al, 2016). In a
nutshell, I/F-race works in an iterated fashion by generating,
testing and discarding solutions—i.e., finite-state machines. In
each iteration, I/F-race keeps a set of solutions that are executed
and compared with each other. A solution is discarded when
proved worse than the others by means of a statistical test. The
algorithm ends when the maximum amount of executions is
reached, returning the set of surviving solutions. Figure 1A shows
a description of how a finite-state machine is generated and
modified as well as how the performance of the modified control
software is estimated.

We applied off-policy evaluation to 20 finite-state machines
generated with Chocolate — 6S to perform a foraging mission as
defined by Francesca et al. (2014). In this mission, a swarm of 20
robots, confined in an dodecagonal arena, must retrieve as many
objects as possible from two sources and transport them to the
nest. A screenshot of an experimental run is shown in Figure 1B.
The e-puck robot is not able to manipulate objects so the
interaction with objects is abstracted. We consider that a robot
collects an object by entering a source and deposits it by entering
the nest. The sources are two black circles roughly in the middle
of the arena while the nest is a white area placed at the edge of the

Off-Policy Evaluation of a Robot Swarm

arena. Additionally, a light source is placed behind the nest. The
performance metric is defined as the number of objects retrieved.
A video of an experimental run showcasing the mission as well as
the source code and the experimental data are available in the
supplementary page (Supplementary Material).

All the experiments were conducted in a simulated
environment using ARGoS3 Pinciroli et al. (2012). We
executed Chocolate — 6S ten times with a budget of 10,000
evaluations, generating 93 finite-state machines. From this
group, we removed the finite-state machines that had less than
three active states according to the execution traces. From the
remaining ones, we formed the final group of 20 finite-state
machines by selecting the ones showing the greatest number of
active states. During the execution of Chocolate — 68, these finite-
state machines were executed between seven and ten times.
Considering that each experimental run involves twenty robots,
we collected from 140 to 200 episodes for each finite-state machine.

We devised two experiments: one, called “state pruning,” in
which we consider changes to the structure of the finite-state
machines and one, called “parameter variation,” where we
consider variations in its configuration. In state pruning, for
each finite-state machine, we use the proposed technique to
estimate the performance of all the finite-state machines that
can be generated by removing one state—for instance, three
finite-state machines composed of two states can be generated
from one composed of three states. Figure 1D shows a finite-state
machine composed of three states generated by removing state S2
from the finite-state machine in Figure 1C. In parameter
variation, for each finite-state machine, we generate four
variations by changing two parameters of the two most active
transitions. For each parameter, we considered two different
values generating four combinations per finite-state machine.
For instance, we can generate four finite-state machines by
considering two new values for the o parameters of the two
transitions connecting the states SO and S3 in the finite-state
machine in Figure 1C. From these 80 combinations, we discarded
the ones unable to change significantly the performance of the
control software after five experimental runs, resulting in a total
of 20 parameter variations. In both experiments, we compared the
performance estimations calculated with weighted importance
sampling—Dboth with and without the proportional reward—with
a naive estimation implemented as the average performance of
the unmodified finite-state machine as reported in the execution
traces. In other words, the naive estimation always assumes that
the changes done to the control software will not influence its
performance. We measured the accuracy of each estimation using
the normalized squared error (SE):

(7;(E) - Py (E))’

7 (E) @)

normalized SE =

In the equation, 71; (E) is the measured average performance of

the finite-state machine i over the set of executions E and P;; (E)

is the estimated performance calculated from the traces generated

by the finite-state machine b within the set of executions E.

Moreover, we tested the results for significance using the
Friedman rank sum test.

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pagnozzi and Birattari Off-Policy Evaluation of a Robot Swarm

A State pruning B Parameter variation
g 2 |
N
7 @
O
0 o O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIITE
N &
E ~— [R T s Lo
Eos |
. 1 e
R @ ——————— ©
Z
o n
o ~ 4.
L? o T T T . . T
Naive WIS PWIS Naive WIS PWIS
FIGURE 2 | Results of the experiments measured as normalized mean squared error. In (A), we report the results of estimating the impact of removing a state; in
(B), we report those of estimating the impact of changing the probabilities of the two most active transitions. Naive indicates the naive estimation, while WIS and PWIS
indicate the results obtained with the weighted importance sampling using, respectively, the full and the proportional per state reward.

The results for the two experiments are shown in Figure 2 where,
we indicate with WIS the result obtained using weighted importance
sampling and with PWIS the result obtained using weighted
importance sampling and the proportional reward. In both cases,
PWIS and WIS have better results than the naive estimation with
PWIS having significantly better results in the state pruning
experiment—shown in Figure 2A—and WIS being significantly
better in the parameter variation experiment—shown in
Figure 2B. When comparing the results, the larger estimation
error shown by all methods in the state pruning experiment can
be explained by the fact that, in this experiment, the finite-state
machines undergo substantial modifications which may invalidate
the execution traces leading to performance estimation of 0. This is
the case, for instance, when removing a state generates a finite-state
machine with no transitions.

Overall, the results indicate that PWIS gives a better
estimation when changing the structure of a finite-state
machine while WIS is better suited to estimate the effect of
variations to the parameters. In the first experiment, the
proportional reward used in PWIS—that includes a measure
of the relative execution time of each state—makes it better
suited to estimate how the performance would change when
removing a state. On the contrary, in the parameter variation
experiment, the changes to the parameters influence directly the
execution time of the states, making PWIS less accurate
than WIS.

4 DISCUSSION

In this paper, we applied off-policy evaluation to estimate the
performance of a robot swarm where the control software is
represented as a finite-state machine. Although the experiments
deliver promising results, further experimentation is needed,
considering different missions as well as different sets of
software modules. However, the results indicate that this line
of research is promising with several developments that could be
explored such as different reward calculations, different

estimators. The execution traces can be modified to also trace
the performance metric of the swarm so that more complex
reward calculations can be implemented. The estimation can be
improved by employing importance sampling methods such as
the ones proposed by Jiang and Li (2016); Thomas and Brunskill
(2016).

Moreover, this technique is not necessarily limited to finite-
state machines and it could be extended with some
modifications to other modular control software architecture
such as, for instance, behavior trees (Kuckling et al., 2018).
Another interesting application of this technique would be in
automatic design methods using iterative optimization
algorithms. The execution time of these methods might be
reduced by running simulations only if newly generated
solutions have an estimated performance that is better than
the current best one.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number (s) can be found as follows: http://iridia.ulb.
ac.be/supp/IridiaSupp2020-012/index.html.

AUTHOR CONTRIBUTIONS

MB and FP discussed and developed the concept together. FP
implemented the idea and conducted the experiments. Both
authors contributed to the writing of the paper. The research
was directed by MB.

FUNDING

The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

http://iridia.ulb.ac.be/supp/IridiaSupp2020-012/index.html
http://iridia.ulb.ac.be/supp/IridiaSupp2020-012/index.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pagnozzi and Birattari

research and innovation programme (DEMIURGE Project,
grant agreement no. 681872) and from Belgium’s Wallonia-
Brussels Federation through the ARC Advanced Project

REFERENCES

Balaprakash, P., Birattari, M., and Stiitzle, T. (2007). “Improvement strategies for
the F-Race algorithm: sampling design and iterative refinement,” in Hybrid
metaheuristics, 4th international workshop, HM 2007. Editors T. Bartz-
Beielstein, M. J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, et al.
(Berlin, Germany: Springer), 4771. 108-122. doi:10.1007/978-3-540-75514-2-9

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Nashua
NH: Athena Scientific.

Birattari, M., Ligot, A., Bozhinoski, D., Brambilla, M., Francesca, G., Garattoni, L.,
et al. (2019). Automatic off-line design of robot swarms: a manifesto. Front.
Robot. Al 6, 59. doi:10.3389/frobt.2019.00059

Birattari, M., Ligot, A., and Hasselmann, K. (2020). Disentangling automatic and
semi-automatic approaches to the optimization-based design of control
software for robot swarms. Nat. Mach Intell. 2, 494-499. do0i:10.1038/
$42256-020-0215-0

Birattari, M. (2009). Tuning metaheuristics: a machine learning perspective. Berlin,
Germany: Springer. doi:10.1007/978-3-642-00483-4

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2015). Property-driven
design for robot swarms. ACM Trans. Auton. Adapt. Syst. 9 (4), 1-28. doi:10.
1145/2700318

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: a
review from the swarm engineering perspective. Swarm Intell. 7, 1-41. doi:10.
1007/s11721-012-0075-2

Bredeche, N., Haasdijk, E., and Prieto, A. (2018). Embodied evolution in collective
robotics: a review. Front. Robot. AL 5, 12. doi:10.3389/frobt.2018.00012

Dorigo, M., Birattari, M., and Brambilla, M. (2014). Swarm robotics. Scholarpedia
9, 1463. doi:10.4249/scholarpedia.1463

Dorigo, M., and Birattari, M. (2007). Swarm intelligence. Scholarpedia 2, 1462.
doi:10.4249/scholarpedia.1462

Francesca, G., and Birattari, M. (2016). Automatic design of robot swarms:
achievements and challenges. Front. Robot. Al 3, 1-9. doi:10.3389/frobt.
2016.00029

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R,
Podevijn, G., et al. (2015). AutoMoDe-Chocolate: automatic design of
control software for robot swarms. Swarm Intell. 9, 125-152. doi:10.
1007/s11721-015-0107-9

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014).
AutoMoDe: a novel approach to the automatic design of control software for
robot swarms. Swarm Intell. 8, 89-112. doi:10.1007/s11721-014-0092-4

Garattoni, L., and Birattari, M. (2016). “Swarm robotics,” in Wiley encyclopedia of
electrical and electronics engineering. Editor J. G. Webster (Hoboken, NJ,
United States: John Wiley & Sons), 1-19. doi:10.1002/047134608X.W8312

Hammersley, J. M., and Handscomb, D. C. (1964). Monte Carlo methods. North
Yorkshire, United Kingdom: Methuen.

Hasselmann, K., Ligot, A., Francesca, G., Garzén Ramos, D., Salman, M., Kuckling,
J., et al. (2020). Reference models for AutoMoDe. Tech. Rep. TR/IRIDIA/2018-
002, IRIDIA. Belgium: Université Libre de Bruxelles.

Jiang, N., and Li, L. (2016). “Doubly robust off-policy value evaluation for
reinforcement learning,” in International conference on machine learning.

Off-Policy Evaluation of a Robot Swarm

acknowledges
Recherche

GbO-Guaranteed by Optimization. MB
support from the Belgian Fonds de Ila
Scientifique-FNRS.

New York, NY, June 19-24, 2016 (Burlington, Massachusetts: Morgan
Kaufmann), 652-661.

Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari, M. (2018). “Behavior trees as a
control architecture in the automatic modular design of robot swarms,” in
Swarm intelligence - ants. Editors M. Dorigo, M. Birattari, C. Blum,
A. L. Christensen, A. Reina, and V. Trianni (Cham, Switzerland: Springer),
Vol. 11172. 30-43. doi:10.1007/978-3-030-00533-7-3

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Grof3, R. (2016).
Supervisory control theory applied to swarm robotics. Swarm Intell. 10, 65-97.
doi:10.1007/s11721-016-0119-0

Lopez-Ibaiez, M., Dubois-Lacoste, J., Pérez Caceres, L., Birattari, M., and Stiitzle,
T. (2016). The irace package: iterated racing for automatic algorithm
configuration. Operations Res. Perspect. 3, 43-58. doi:10.1016/j.0rp.2016.09.002

Pagnozzi, F., and Birattari, M. (2020). Supplementary material for the paper: Off-
policy evaluation of the performance of a robot swarm: importance sampling to
assess potential modifications to the finite-state machine that controls the robots.
IRIDIA - Supplementary Information. ISSN: 2684-2041. Brussels, Belgium

Pinciroli, C., Trianni, V., O’Grady, R,, Pini, G., Brutschy, A., Brambilla, M., et al.
(2012). ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intell. 6, 271-295. doi:10.1007/s11721-012-0072-5

Powell, M. J., and Swann, J. (1966). Weighted uniform sampling - a Monte Carlo
technique for reducing variance. IMA J. Appl. Math. 2, 228-236. doi:10.1093/
imamat/2.3.228

Precup, D., Sutton, R. S, and Dasgupta, S. (2001). “Off-policy temporal-difference learning
with function approximation,” in International conference on machine learning. New
York, NY, June 2, 2001 (Burlington, Massachusetts: Morgan Kaufmann), 417-424.

Precup, D., Sutton, R. S., and Singh, S. (2000). “Eligibility traces for off-policy policy
evaluation,” in International conference on machine learning. New York, NY,
June 13, 2000 (Burlington, MA: Morgan Kaufmann). 759-766.

Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., and Trianni, V. (2015). A
design pattern for decentralised decision making. PLOS ONE. 10, e0140950.
doi:10.1371/journal.pone.0140950

Rubinstein, R. Y., and Kroese, D. P. (1981). Simulation and the Monte Carlo
method. Hoboken, New Jersey: John Wiley & Sons.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction.
Cambridge, MA: MIT Press.

Thomas, P., and Brunskill, E. (2016). “Data-efficient off-policy policy evaluation
for reinforcement learning,” in International conference on machine learning.
New York, NY, United States, June 19-24, 2016 (Burlington, MA: Morgan
Kaufmann), 2139-2148.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Pagnozzi and Birattari. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and Al | www.frontiersin.org

April 2021 | Volume 8 | Article 625125

https://doi.org/10.1007/978-3-540-75514-2-9
https://doi.org/10.3389/frobt.2019.00059
https://doi.org/10.1038/s42256-020-0215-0
https://doi.org/10.1038/s42256-020-0215-0
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1145/2700318
https://doi.org/10.1145/2700318
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.3389/frobt.2018.00012
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.4249/scholarpedia.1462
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1002/047134608X.W8312
https://doi.org/10.1007/978-3-030-00533-7-3
https://doi.org/10.1007/s11721-016-0119-0
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1093/imamat/2.3.228
https://doi.org/10.1093/imamat/2.3.228
https://doi.org/10.1371/journal.pone.0140950
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Off-Policy Evaluation of the Performance of a Robot Swarm: Importance Sampling to Assess Potential Modifications to the Fin ...
	1 Introduction
	2 Method
	2.1 Background: Off-Policy Evaluation
	2.2 Our Technique: Applying Off-Policy Evaluation to Finite-State Machines

	3 Results
	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

