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Combined Task and Motion Planning (TAMP) is an area where no one-fits-all solution can
exist. Many aspects of the domain, as well as operational requirements, have an effect on
how algorithms and representations are designed. Frequently, trade-offs have to be made
to build a system that is effective. We propose five research questions that we believe need
to be answered to solve real-world problems that involve combined TAMP. We show
which decisions and trade-offs should be made with respect to these research questions,
and illustrate these on examples of existing application domains. By doing so, this article
aims to provide a guideline for designing combined TAMP solutions that are adequate and
effective in the target scenario.
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1 INTRODUCTION

This paper addresses a known problem in planning for robots, namely, that of combining Task And
Motion Planning (TAMP). As robots have been increasingly deployed in challenging, unstructured
object- and interaction-rich environments, combined TAMP has received extensive attention from
the robotics community. Examples include TAMP solutions for autonomous excavators pushing
gravel in construction sites, or autonomousmining robots drilling the ground to extract materials. To
make a robot operate competently in such environments, researchers have combined methods from
different sub-fields of Artificial Intelligence, including task planning to compute appropriate actions,
motion planning to generate motions using geometric models, and control to compute feasible
trajectories. The numerous efforts dedicated to combining task and motion planning highlight a
common scientific challenge, namely, that the level of abstraction varies across planning models:
discrete domain representations for task planning and continuous models for motion planning and
control. Figure 1 illustrates several challenges that commonly occur in combining TAMP: finding
solutions in discrete search spaces that are infeasible in continuous space, abstraction of continuous
space, and uncertainty (e.g., due to obstructed view). Currently, solutions to combined TAMP vary in
the way in which they explore the (joint) continuous-discrete search space.

When designing a TAMP method, the application requirements pose scientific questions beyond
how we explore the search space. This paper attempts to lay down relevant challenges and research
questions that can be used as guidelines for solving real-world TAMP problems. We consider
relevance with respect to two criteria: 1) addressing the challenge is technically difficult and requires
significant research and innovation; 2) advances in addressing the challenge have a large impact in
current industrial applications. These research questions are the following:
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• Q1: How can a domain be divided into multiple levels of
abstraction, and what are effective methods for finding a
globally feasible solution that obeys all constraints in all
abstraction levels?

• Q2: How should symbolic and continuous knowledge
representations be reasoned upon jointly?

• Q3: What classes of methods exist for learning models,
specifying models, and performing the two together? In
particular what are the options for combining existing task
and motion planning methods with machine learning?

• Q4: How to enable online decision making in combined task
an motion planning? How can we guarantee the consistency
of decision-making in such settings?

• Q5: Which methods should be used to deal with uncertain
perception in combined task and motion planning? Should
uncertainty be considered in one of the decision making
processes or both?

We will show how these five aspects reflect the major gaps/
open questions in the current state of advancement in planning
for robots. We will also show that these questions include the key
choices that need to be made when combining task and motion
planning in real applications. As our analysis makes evident,
alternative solutions are proposed to similar questions. This often
depends on aspects of the application context, and on the
different assumptions and trade-offs that can be made. This
paper serves as a guideline for navigating the landscape of
existing solutions and their caveats when designing combined
task and motion planning methods. As opposed to the latest
survey on this topic (Garrett et al., 2020), we here analyze a wider
scope of concerns within TAMP and their combination; in
particular, we discuss several orthogonal aspects, including

uncertainty handling and online planning. Also, the discussion
is centered on five open research questions and how answering
them matters in a selection of industrially-relevant application
contexts.

2 DISCUSSION OVER FIVE RESEARCH
QUESTIONS

Task and motion planning methods are categorised based on the
different class of algorithms used in planning tasks and motions,
as well as the way in which these two types of methods are
combined. In their widely referenced textbook on Task Planning,
Ghallab et al. (2016) organised their discussion based on available
representation and reasoning choices in task planning for the
purpose of acting. Similarly, for the motion planning reference
book, LaValle (2006) centered his discussion around how a robot
world (via a geometric and configuration space) can be
represented and the efficient algorithms to explore those spaces
(reasoning about motion). Our Q1 concerns the representational
choices that need to be made combining these two types of
representations, each belonging to a different level of abstraction.
Q2 follows the logical next step of addressing issues related to
reasoning about these representations in combination. Q3
discusses using learning algorithms in lieu or in support of
both representation and reasoning. Q4 concerns applications
where TAMP techniques should be integrated online with
acting, and Q5 addresses the all-important question in
robotics of planning with uncertain knowledge. There are, of
course, other open issues in combined TAMP — however, we
believe that these are either subsumed by these questions (e.g.,
how to discretize the environment for task planning), or are of

FIGURE 1 | Example of combining TAMP using an abstract and a motion representation with uncertainty (question marks) and two abstract solutions of which one
is infeasible due to a tight spot.
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lesser general interest because they are relevant to very specific
application settings.We also claim that it is not possible to answer
any of the four questions above in isolation. The issues around
representation, reasoning, how we obtain a joint model, online
reasoning, and uncertain or incomplete knowledge of an
environment, are all interdependent. For example, consider an
application where we have a TAMP problem that should be
solved in an online manner. For the TAMP solution to be
appropriate for this purpose (addressing Q4), the chosen
representation for the task and motion (addressing Q1) should
be computationally adequate for enabling fast joint reasoning
(addressing Q2). In Section 4, we provide four applications
requiring combined TAMP and discuss a possible order in
which these questions can be addressed.

3 ANALYSIS OF THE STATE-OF-THE-ART

We categorise the existing TAMP methods around our five
research questions. Note that the categorisation is not crisp,
i.e., one paper can belong to more than one category.

3.1 Abstraction
In this section, we mainly discuss how different levels of
abstractions interact by means of a shared abstraction
(partially addressing Q1), and leave the discussion about
choice of knowledge representations at each level to the next
section. A shared abstraction must have the capacity to represent
knowledge at different levels. Shared abstractions can be realized
by the mechanism of an already existing logic [e.g., Satisfiability
Modulo Theories (SMT) (Nieuwenhuis et al., 2006)], various
forms of constraint-based approaches (e.g., meta-constraint
reasoning), or a novel formalism designed specifically for
enabling interaction between these levels.

SMT is built upon the notion of augmenting the Boolean
Satisfiability Problem (SAT) with the ability to reason about
several diverse background theories. For instance, Nedunuri
et al. (2014) encode high-level robot requirements in a SAT
formulation, and the background theories are linear arithmetic
and functions which relate to the physical configuration of the
robot and objects in the environment. Another example of
reasoning with a shared abstraction is meta constraint
reasoning. In this problem formulation, task and motion
planning problems are modeled as different instances of
Constraint Satisfaction Problems (CSPs) at different levels of
abstraction. So-called meta-constraints capture the dependencies
between task and motion CSPs (Mansouri, 2016). Instead of
adapting known knowledge representation like SMT or CSP,
Dantam et al. (2018) propose a flexible framework that employs a
uniform interface (called scene graph) as a shared abstraction to
connect motion and environment models with task states.
Similarly, Gaschler et al. (2013) treats volumes as a shared
abstraction.

In addition to shared representations, formal methods are
used to provide behavioral guarantees at all levels of abstraction.
In these methods, formal synthesis provides a framework for
specifying tasks in a mathematically precise language, and

automatically transforming these specifications into correct-by-
construction robot controllers (Kress-Gazit et al., 2018). Linear
Temporal Logic (LTL) is a formal language that is commonly
used in TAMP formulations (e.g., Plaku, 2012). Also, Signal
Temporal Logic (STL) also exist to relate logic predicates to
continuous-time signals (e.g., Maler and Nickovic, 2004).

The TAMP domains in the instances described above were
divided based on the capacity of the shared knowledge
representations which ensure to find global feasible solutions
for all levels of abstraction. Choosing a shared representation
capable of maintaining such global consistency is an effective
method to divide an overall TAMP problem to a set of sub-
problems embedded in a shared representation. In the following
section, we discuss other ways to enable interactions between
levels of abstraction.

3.2 Symbolic Versus Continuous Models
In TAMP, symbolic knowledge representations are often relevant
in most variants of task planning; by contrast, most models that
are relevant for motion planning are expressed in terms of
variables with continuous domains. Furthermore, different
types of models (and, hence, different forms of automated
planning) may be relevant in a given application, e.g.,
continuous time and events, metric maps and qualitative
spatial relations, kinodynamic motion models and symbolic
preconditions for acting. In the following, we analyze various
approaches for combining symbolic and continuous models.

To enable joint reasoning across symbolic and continuous
domains (addressing Q2), Procedural Attachment is a common
approach. In procedural attachment, feasibility of actions in
terms of kinematics, dynamics, and geometric constraints is
assessed through a procedure, e.g., an external motion planner,
that is attached to the symbol(s) representing that action at a high
level of abstraction. The approaches differ in the reasoning
techniques used for high level action and task planning, e.g.,
Boolean satisfiability (Havur et al., 2013), PDDL planning
(Srivastava et al., 2014), Hierarchical Task Network (HTN)
planning (Kaelbling and Lozano-Pérez, 2011), or Answer Set
Programming (ASP) (Erdem et al., 2016); as well as the attached
procedures, e.g., simulation-based verification (Mosenlechner
and Beetz, 2011), geometric reasoning (Lagriffoul et al., 2012)
or motion planning (Havur et al., 2013). Another common
approach to enable joint reasoning is to use sampling-based
methods, where both task and motion solutions are combined
in one common space for a probabilistic search to navigate in.
Such methods can use conditional samplers that are provided as
part of a domain specification, hence domain knowledge
improves sampling in the (usually large) solution spaces
(Garrett et al., 2018).

Sampling-based methods incorporate discrete sampling for
task planning into the (usually non-discrete) sampling process
used in many approaches to motion planning. Procedural
attachment is exactly the opposite strategy: motion planning is
attached to certain logical predicates that are processed by the
algorithm of the task planner. A notable difference is that motion
planning methods are directly used as sub-procedures in
procedural attachment, while sampling-based methods do not
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use a task planner; they recast task planning as sampling.
Therefore, procedural attachment and sampling-based
methods are two extremes in a potential continuum of
integrating task and motion planning along the aspect of ‘what
is the leading formalism’ of the integration— the task level or the
motion planning level.

Historically, combining task and motion planning via
procedural attachment has been very successful in promoting
the role of Symbolic AI reasoning in robotics. However,
procedural attachment fails to provide a scalable, general
technique for integrating very diverse forms of reasoning.
There are reasons behind this shortcoming. One is that
procedural attachments often do not capture inter-
dependencies among sub-problems, i.e., each sub-problem
solver is not aware of requirements of the domain that pertain
to other sub-problems. These approaches lack a clear and
transparent means to specify inter-dependencies between sub-
problems; this is due to the fact that such a specification would
have to combine notions/concepts that are expressed in different
KR formalisms. Finally, note that some flavors of procedural
attachment permit limited inter-dependencies between low-level
sub-problems, e.g., HEX-programs (Erdem et al., 2016).

Regarding integration of symbolic and continuous reasoning,
several properties of the application area need to be considered. if
it is sufficient to find solutions that are close to the optimal,
sampling-based methods are a better choice. However,
procedural attachment or more powerful symbolic task-level
methods are preferable for cases when the task level search is
highly complex so that only few solutions exist, and sampling
would potentially yield no solution. Procedural attachment can
also be used when low-level reasoning itself is required to be split
into many small sub-problems so that can be solved
independently.

3.3 Specifying Versus Learning
Q1 and Q2 discussed so far concerned the choices TAMP
methods make regarding the representation of planning
models. Q3, on the other hand, has to do with how to obtain
these models, and is particularly in focus today thanks to the rise
in popularity of machine learning techniques, in particular deep
(reinforcement) learning.

The recent AlphaGo breakthrough has had a great impact in
many areas of AI, including TAMP. Kim et al. (2019a) propose an
actor-critic algorithm that learns from planning experience to
guide a planner. They have also investigated how to predict global
constraints on the solution for generic TAMP problems using a
scoring function to represent planning problem instances (Kim
et al., 2019b), and have developed an algorithm that learns a
stochastic policy from past search trees using generative
adversarial nets, for problems with fixed numbers of objects
(Kim et al., 2018).

Using a learning method for planning does not originate form
AlphaGo. In a review paper from 2012 (Jiménez et al., 2012),
learning for planning is described on the task level and with
respect to discrete planning actions and states; the purpose of
learning is to acquire knowledge about 1) action conditions and
effects, i.e., the domain; or 2) heuristic knowledge for guiding the

search process faster to a goal state. A later review from 2018
(Arora et al., 2018) focuses only on 1) and refers to the integration
of task-level and motion planning as part of a list of “guidelines
that a robotic system can follow in order to be proclaimed
autonomous”. This review also mentions Surprise Based
Learning (SBL) (Ranasinghe and Shen, 2008), which learns a
domain description from execution monitoring and interleaves
prediction of future states and monitoring of actually reached
states to improve that domain theory. SBL is the main work that
embraces the idea of an incorrect domain theory. We argue that
Motion Planning also embraces that idea but in an orthogonal
way: TAMP is based on the use of a domain description which is
correct on its level of abstraction and coarse enough to permit
efficient planning; however, due to its coarseness, planning with
this domain description requires an integration with motion
planning to ensure that the task plan can be realized in the
concrete domain. Contrary to SBL, TAMP does not attempt to
repair the task-level domain description, because any repair that
would ensure full correctness would at the same time make the
domain description useless for efficient planning algorithms.

Balac et al. (2000) employs regression tree learning to predict
the influence of terrain on the efficiency of high-level actions to be
used in the task planner. In other words, their system performs
learning of low-level action cost to be used as a parameter in the
high-level domain for task andmotion planning. In a similar vein,
imitation learning has been used to learn motion primitives
corresponding to a manually specified high-level task structure
from one-shot demonstrations of a human (kinesthetic teaching)
who also gives verbal cues about the task at hand (Caccavale et al.,
2019). An attention mechanism automatically segments motion
tracking data from the human and assigns recorded motion
primitives to sub-tasks. In general, learning is a better choice
for designing levels of abstraction within TAMP such that the
specification is difficult to achieve or imprecise due to the
complexity of the domain or lack of knowledge on the
environment. We will see concrete examples of learning parts
of domains in our illustrated use cases in Section 4.

3.4 Online Planning
In real-world applications, automated planning systems are often
required to make decisions online, while previous plans are
already under execution. When planning for motions, this is
known as Receding Horizon Control, or Model Predictive
Control. In task planning, methods ensuring the ability to
update plans online is often referred to as continuous
planning. Moreover, incomplete knowledge about the domain
requires assumptions to be made for planning, and in online
planning these assumptions may be revised multiple times during
physical execution of the plan. This concern can be summarised
as in Q4, around which we analyze the current methods.

Many approaches to online task and motion planning can also
be relevant to plan-based robot control (see the next subsection).
Online planning is about radical changes of plans due to
contingencies, whereas control is more about small
disturbances that the controller can compensate in its local
environment without affecting the overall plan. Also, we
assume that a plan obtained by an online planner is only

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6378884

Mansouri et al. Combining Task and Motion Planning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


preliminary until it has been executed. This is because the
environment is highly non-deterministic, described
probabilistically, partially unknown, or a considerable fraction
of actions is bound to fail. As a case in point, a human-robot
collaborative manipulation system has to adapt its cooperative
behavior during execution due to the continuous human
intervention (Cacace et al., 2018).

Contingency planning methods do not compute plans in an
online fashion, rather prepare them for dealing with foreseeable
failures. The way these planners work is to put in sensing and
repair actions in an original plan, sometimes conditionally,
where certain action failures are likely to happen. In this way,
contingency planners ‘program’ replanning already into the
initial plan. An example is the HCP-ASP hybrid conditional
planner, where conditional actuation and sensing actions are
modeled in ASP (Yalciner et al., 2017). An ASP solver computes
feasible branches of a conditional plan using external atoms
that account for continuous feasibility checks (e.g., collision
checks).

In summary, with respect to online planning we have to first
identify which classes of possible action failures or modified
environment situations we want the robot to be robust
against. It is important to determine in the beginning whether
the goal of the plan is subject to change. Also, it is important to
know how fast new knowledge needs to be integrated into the
plan, in other words, how long can we afford to execute the ‘old’
plan before knowing and switching to the ‘new’ plan.

3.5 Planning With Uncertainty
Robots epitomize the need for automated planning methods,
which provide them with the means to achieve goals. Yet the
physical nature of robot systems, as well as the uncertainty
connected to robot behaviors and perception, destroy many of
the assumptions made by current methods for planning. Q5
focuses on this aspect of TAMP.

Many pioneers in using automated task planning for deriving
robot behaviors use the term plan-based robot control to
distinguish planning for robots from planning for other
systems. The focus here has been on aligning the belief-state
of the robot with the symbolic planning process. The latter can
employ one of the many approaches to task planning, from
Hierarchical Task Networks for TAMPs in partially observable
environments (e.g., Weser et al., 2010) to inferring the most
appropriate plan from a pre-defined plan library using
probabilistic representations (e.g., Beetz et al., 2001). Decision-
theoretic task planning methods, and specifically Markov
Decision Processes (MDPs) and Partially Observable Markov
Decision Processes (POMDPs) are the most prevalent approaches
for tackling various types of uncertainty in TAMP formulations
(e.g., Şucan and Kavraki, 2012; Kaelbling and Lozano-Pérez,
2013; Hadfield-Menell et al., 2015). A recent work includes an
anytime algorithm of TAMP generating policies for handling
multiple execution-time contingencies using MDP-based
modeling of actions which corresponds to an infinite set of
motion planning problems (Shah et al., 2020).

A reactive type of formal methods has also been used to
provide behavioral guarantees in typically uncertain or

adversarial environments [e.g., within a receding horizon
paradigm (Raman et al., 2015)]. LTL-based abstractions can be
used to account for delays and measurement errors as a form of
uncertainty modeling in TAMP (Liu and Ozay, 2016). Also,
recent theoretical advancement in synthesis methods for
uncertain MDPs that provide better noise modeling than
classical MDPs, have shown promise for uncertainty handling
in TAMP (e.g., Lahijanian et al., 2015).

With respect to uncertainty, it is essential to identify whether
uncertainties on the task level can be foreseen so that we can
create robust plans regarding the uncertainty models. For
uncertainties on the motion-planning level, we have to validate
whether it is sufficient to use local control methods to tackle
uncertainties, or there is a need for deferring to the task level. In
general, the more uncertainty we have to deal with, the more
likely it is that some type of Online Planning (see previous
section) is to be necessary.

4 APPLICATIONS

Now that we have outlined the key questions underlying the
realization of combined TAMP, we illustrate how some of these
aspects have been considered in concrete industrial applications.
There are many industries where combined TAMP is required for
long-term autonomy. These range from automation of heavy-
duty machines operating in unstructured environments such as
mines or construction sites, to that of robots in controlled and
unobstructed environments such as factories. The challenges
these domains bring about differ in nature, but fall in the
range of the questions we have outlined above. Specifically, we
identify three broad issues posed by such industrial applications.

First, in some domains, tasks carried out by the robot(s) in the
environment affect the motions that can be carried out in
realizing other tasks. This is true in mining, for instance,
where operations like drilling have a permanent effect on
navigability. In general, decisions over the order of the tasks
not only affect the subsequent motions but also the environment.
We illustrate an example of such applications in Section 4.1.

Second, an industrial application has crucial qualitative
requirements to guarantee safe operation, e.g., there should
always be a machine in a certain station whenever one is in
another station. These seemingly simple constraints have
ramifications beyond the task level, as they affect all levels of
abstraction including the low-level control. For instance, a
machine may need to accelerate to fill the place of another
machine leaving an active station. We will examine such an
instance of TAMP in an application of electric haulers in a quarry
in Section 4.2.

Third, peculiarities of industrial applications and their
consequences in their TAMP formulations are not limited to
those that derive from unstructured, outdoor environments. Even
in more structured environments, like factories, a relevant issue is
how to design the environment for efficient task and motion
planning. In manufacturing, for instance, motion planning can
often be greatly simplified at the cost of limiting the flexibility of
the robotic solution. We address the relation between
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specifications for task planning and their implication on the
resulting TAMP formulation in Section 4.3.

Fourth, qualitative specifications may be relevant to ensure
task achievement under extreme uncertainty. This is case in
mission planning for Autonomous Underwater Vehicles,
where task plans and motions are affected by currents and
other complex environmental phenomena that are difficult to
model. We discuss the use of learning predictive models for use in
combined TAMP in Section 4.4.

Although these problems are relevant in many more
applications than those cited below, we have made a selection
of few concrete examples in each of these three categories in order
to underscore the impact that innovation in task and motion
planning can have in the real world. We conclude the section by
indicating some good practices derived from these examples.

4.1 Drill Planning for Open-Pit Mines
In this section we analyze the drill planning problem within an
application involving a fleet of surface drill rigs operating in a
common area of an open-pit mine, called a bench.

4.1.1 Problem and requirements.
A set of drill targets in a bench is given; at each target, a blast hole
is to be drilled and filled with explosive material, which will then
be detonated to produce rubble that will be processed into ore.
The drill planning problem consists of computing a plan that
involves machines reaching each drill target in a bench and
performing the necessary operations to drill the blast hole.
Drilling produces piles of excess material around the hole.
These piles constitute obstacles for the machine itself and
other machines, hence no machine can drive over them. A
solution to the drill planning problem should take into
account the emerging obstacles as well as all other common
TAMP requirements (e.g., avoiding machine-machine collisions)
to be executable by the drill rigs.

4.1.2 Integration Challenges
The drill planning problem can be seen as a combination of
several sub-problems: task planning (consisting of deciding the
sequencing of the targets to be drilled), motion planning, and
coordination. These problems cannot be treated separately, as the
solutions of each problem depend on each other. For instance,
task planning must lead to a sequence of drill targets that
accounts for the piles generated after drilling (which become
obstacles that must be taken into account in motion planning). In
other words, the order in which the targets are drilled will affect
the ability of the machine itself and other machines to traverse on
the bench. Hence, it is necessary to subject the possible choices
made to solve one problem to the choices made in resolving the
other problems, e.g., verifying through motion planning that a
chosen sequence of targets to drill will be kinematically feasible
and will avoid the piles of material produced by drilling. There are
two approaches in the literature addressing the drill planning
problem. One approach is based on meta constraint reasoning
(Mansouri et al., 2016) in which the task planning, motion
planning and coordination problems are modeled as CSPs at
different levels of abstraction, and the meta-constraints capture

inter-dependencies between the tasks and motions as a shared
abstraction. The second approach implements a multi-
abstraction search where an abstract solution is refined
incrementally with different types of search at different levels
of abstraction (Mansouri et al., 2017).

4.1.3 Considerations
This application allows us to make several statements pertaining
to questions Q1– Q3.

Q1: One common way to deal with multiple levels of
abstraction is to abstract away the continuous (geometric)
representation – the motions and the piles in this problem –
in order to obtain a fully discrete (graph) representation. The
graph representation of the drill planning problem forms a
variant of the Traveling Salesperson Problem (TSP) where
nodes are the drill targets, and edges represent abstracted
motion between the nodes. Then, the problem is to find a
shortest closed path (tour) in the graph such that every node
is visited only once. In a TSP, regions to be visited are associated
to nodes in a graph, and each node should be traversed exactly
once. Roughly speaking, each region along a tour acts as an
“obstacle” that appears dynamically once the node is visited, and
which must be avoided while visiting other nodes. However, the
TSP employs the abstract notion of a graph to represent locations
and their connectivity, thus ignoring the geometrical extent of the
locations. Ignoring the geometric reality of the nodes in the TSP,
and the fact that paths between them are affected by this spatial
extent, leads to solutions that may not be feasible in practice, as
they ignore the further constraints to the motion space that derive
from the drilling tasks. This points to a rather general
observation: abstracting away certain aspects of the problem
representation preserves correctness only if we do not lose
information regarding the dependencies between different
aspects of the problem (in this application, the geometrical
extent of the drill targets). An alternative way is to keep each
representation at its own level of abstraction, and to leverage a
common language to combine relevant knowledge among
different levels of abstraction. To enable the use of a common
language, we should first identify sub-problems of the overall
problem. Furthermore, we need to identify dedicated solvers,
each of which focuses on a subset of aspects of the overall
problem, e.g., a motion planner verifies kinematic feasibility
and absence of collisions, while a scheduler verifies that
coordination choices are temporally and spatially feasible.
Validated solutions for each sub-problem can be see as
constraints that account for particular aspects of the overall
problem. As remarked below, constraints can play the role of
a common language to facilitate joint reasoning.

Q2: Where we discard the continuous (geometric)
representation of motion and piles under a fully discrete
(graph) representation, we effectively disable joint reasoning
for the drill planning problem. Nevertheless, one might solve a
TSP over the graph representation as a proxy to solve the drill
planning problem, and use a post-processing step to filter out TSP
solutions that are infeasible with respect to motion and pile
constraints. To enable joint reasoning in the second alternative
of dealing with multiple levels of abstractions, we can use the
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common language, in this case constraints, in a common
constraint network (Dechter, 2003) to model the search space
of all problems jointly. In this way, each dedicated solver only
operates in the relevant level of abstraction, and validating
solutions to sub-problems is reduced to posting constraints in
the common constraint network and verifying its consistency.
This approach is realized in several different applications,
including drill planning (Mansouri et al., 2016) and integrated
task and motion planning for warehouse management (Mansouri
et al., 2015).

Q3: Machine learning can be useful not only for generating
planning models, but also to generate heuristics for efficiently
exploring search spaces. In the drill planning problem, we can
learn patterns from examples provided by human experts for
sequencing decisions in regions where machines have limited
space to manoeuvre (Mansouri et al., 2016). In general, learning
from humans is important for uptake by the industry, as end
users want machines to adhere to the best practices of humans
while expending little effort in specification/knowledge
engineering. We can also use clustering methods for analyzing
the topology of a bench, which will allow to cluster targets into
groups for which there are only few reasonable sequencing
possibilities and that are easy to navigate in sequence. This
again will alleviate the computational burden of finding
sequences in a joint search space, which is strongly affected by
constraints on motion (Mansouri et al., 2016; Mansouri et al.,
2017).

4.2 Multi-Hauler Planning for Quarrying
In this section, we focus on an instance of TAMP for multiple
electric haulers operating in a quarry. The important challenge in
this application is to provide team-level guarantees over team
behaviors in the presence of high uncertainty over the durations
of navigation actions. The problem requirements presented in
this application can be found in other real-world robotics
applications, such as mining, construction, and warehouse
automation.

4.2.1 Problem and Requirements
A team of autonomous electric haulers transport material
between stations in a quarry. At the unloading station, a
hauler can unload gravel obtained from two crushers. The
primary crusher (PC) constantly produces gravel, which is
continuously output via a conveyor belt. The production of
gravel at the PC cannot be stopped under normal
circumstances, hence, there should always be a robot under the
PC so that gravel does not accumulate on the ground, obstructing
access to the PC and halting the entire process. The secondary
crusher (SC) does not have this constraint, as the gravel produced
there is loaded onto haulers manually. Also, robots are required to
leave the PC when full. The aim is to maximize the throughput of
the overall system, i.e., the amount of gravel dumped at the
unloading point. The important constraint of this application is
to guarantee that there is always a hauler under the PC. In this
instance of TAMP, we require to solve task planning for the team-
wide decisions of which robot visits which station in what order,
and motion planning and coordination for the decisions of how,

when and where the robots move. Henceforth, we refer to this
instance as a multi-hauler planning problem.

4.2.2 Integration Challenges
In order to respect the constraint of “there should always be a
robot under the PC”, we have to able to compute exactly how long
it takes for a hauler to go from one station to another station to
make sure that we dispatch the robot in an appropriate time.
Being too conservative and sending as many robots as available to
the PC, makes the SC useless, and negatively affects the
throughput by wasting robots being in a queue to reach the
PC. However, the durations of navigation actions of the haulers in
the quarry is very uncertain. This uncertainty stems from many
sources, e.g., the dynamics of individual robots are typically only
partially known; robots may navigate differently in different parts
of the environment (e.g., skidding over a sandy patch of terrain,
proceeding more slowly in the vicinity of pedestrians); task-
dependent factors may affect how robots navigate (e.g., slow
movement due to a heavy load); and interactions between robots
jointly navigating in a shared space introduce further unmodelled
dynamics (e.g., robots yielding to, or avoiding, each other). The
multi-hauler planning problem was addressed in the literature by
a hierarchical approach based on Generalised Stochastic Petri
nets (GSPN) for modeling team behavior, where accurate
probabilistic models of path durations are obtained via
integration with a lower-level team controller (Mansouri et al.,
2019). The GSPN is then interpreted as a MDP for which policies
can be generated so that team performance is optimized whilst
avoiding the exponential blow-up associated with the
construction of a full joint model.

4.2.3 Considerations
This application is most relevant to two of our original questions.

Q3: Today’s commercial solutions for multi-robot path
planning remove many source of uncertainty by engineering
the environment. Such assumptions are not applicable in
many real-world applications including multi-hauler planning.
For this reason, current industrial practice relies on fixed, hand-
crafted policies for selecting tasks for robots and dispatching
them to their destinations. We should instead replace the current
practice with an automated planning system that does not make
assumptions on the map, the robot geometries, the paths followed
by robots, or their kinematics and dynamics. The system should
provide a means to easily specify high-level requirements on team
behavior, including safety constraints, and it should scale to
realistically-sized teams. In order to robustly maintain the
safety specification for the PC, models of navigation task
duration can be learned. In the absence of real data due to the
difficulties of deploying real experiments, we can learn from
simulations of the team navigating in the target environment
in this case a quarry (Mansouri et al., 2019). To explore the range
of multi-robot navigation experiences relevant for the target
environment, the robot team must operate in a way that is as
similar to the desired behavior as possible. To achieve this, the
team should be controlled in simulation using a controller which
integrates coordination, motion planning and robot control (e.g.,
Pecora et al., 2018), and supports the injection of external
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navigation choices for robots. Given these choices, the controller
generates multi-robot paths that take into account the kino-
dynamic constraints of individual robots. These paths are
jointly executed and supervised by the controller. When
generating data for learning, a randomised policy can be used
to provide navigation choices.

Q5: The main source of uncertainty in this problem is the
duration of navigation actions. We require a method for multi-
hauler planning that accounts for this uncertainty. A popular
approach to planning with uncertainly is to use MDPs, where
uncertainly is modeled in the outcomes of actions. However, it is
not accurate to directly model the learned probabilistic model of
duration as an action outcome in an MDP. Instead, we can use a
stochastic extension to Petri nets to model team behaviors with
probabilistic models of path durations. This can then yields an
MDP which can be solved to generate policies that optimise team
behavior against the team requirements and performance
objective.

4.3 Assembly Planning for Industrial
Manipulators
In this section, we analyze an application of dual-arm
manipulators in assembly tasks.

4.3.1 Problem and Requirements
A modern lightweight dual-arm robot, e.g., the ABB Yumi, is
deployed to assemble pieces of wiper motors. The workstation is
depicted in Figure 2C, where the rotors are already inserted into
workpiece holders (A) on a conveyor system, arriving in groups of
five. The stators with the brushes and the electric interfaces are
supplied in transport containers (B). Mounting a stator on a rotor
requires to place a cone-shaped tool on the motor shaft
temporarily. (C) marks the position the robot picks up of a
tool. Such flexible production requires fast methods to specify
new tasks for these robots, and classical teach-in bymeans of fixed
poses and paths is not appropriate. Flexible assembly planning
involves three aspects: task planning of the necessary steps and
actions to achieve the overall goal/task; scheduling of these steps
and actions; and motion planning for each step and action. Dual-
arm manipulation further requires to decide about the allocation

of task steps and actions to the individual arms. Moreover, the
complexity of scheduling and motion planning is increased
heavily, due to the necessity to closely coordinate the
manipulators to prevent self-collisions of the robot. All four
aspects – task planning, scheduling, allocation and motion
planning – are closely interrelated and must be combined to
achieve optimal plans with regard to some objective e.g.,
makespan. Henceforth, we refer to this instance of combined
planning as an assembly planning problem.

4.3.2 Integration Challenges
Obtaining an optimal solution to the assembly planning problem
depends not only on the motion of the manipulators but also on
the orders in which a workpiece is assembled, the components are
taken from boxes or conveyor belts, processed by other machines,
etc. These dependencies are all the more complex if connected
systems or machines impose further temporal constraints. In
addition, different assignments of sub-tasks to arms, while taking
the individual working ranges into account as well as task steps in
which the arms have to cooperate, lead to a further combinatorial
complexity. The assembly planning problem was addressed in the
literature via different methods, including prioritized TAMP
(Kurosu et al., 2017), fixed-path planning (O’Donnell and
Lozano-Pérez, 1989), and fixed-roadmap planning. For this
paper, we analyze the latter approach, which uses a flexible
model and solver for simultaneous task allocation and motion
scheduling that is based on constraint programming (CP) and
constraint optimization (Behrens et al., 2019a). The core
modeling concepts was Ordered Visiting Constraints, which
describe routine sequences of actions in production and time-
scalable motion series. These are linked by so-called Connection
Variables that act as the shared abstraction between the task and
the motion models.

4.3.3 Considerations
Four of our original questions are relevant in this application.

Q1: Similarly to the drill planning problem, we can keep each
representation at its own level of abstraction, and employ a
common language to pass relevant knowledge among those
levels. Assembly planning for a large scale of items can
possibly lead to a massive search space of mutually feasible

FIGURE 2 | Drilling machines and the resulting holes in an open-pit mine (a, b), autonomous construction machines in a quarry (c); a dual-arm robot assembling
wiper motors (d).
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solutions. However, industrial workplaces often have several
characteristic properties that we can leverage to simplify the
problem. For example in task modeling, it is safe to assume
that many production routines can be described concisely by
sequences of actions (e.g., drilling, picking, welding or joining) to
perform with one of the robot arms at given locations, with
temporal constraints and dependencies between them. This can
be easily specified using Constraint Processing (CP) languages
(Behrens et al., 2019a). Also, many industrial workplaces provide
a controlled and unobstructed environment in which motions
can be pre-computed in the form of time-scalable roadmaps. The
obtained representation of motion is then discrete and ready to be
connected to the high-level CP-based task model by some
auxiliary variables so that it can be directly used by a
constraint optimisation solver.

Q2: When we flatten out all levels of abstractions into one
uniform level, or use an interface representation to manage
interactions among abstraction levels, it then becomes
straightforward to employ a dedicated solver that can read the
uniform or the interface representation. In assembly planning, we
can follow this logic, and employ a dedicated constraint
optimisation solver for CP languages, e.g., Google Operation
Research tools, to obtain an executable optimal assembly plan.
The resulting plan is effectively a mutually feasible solution for all
sub-problems: task planning, scheduling, allocation and motion
planning.

Q3: Instead of directly specifying a sequence of production
routines into a planning domain languages (e.g., a constraint
problem), a multi-model learning method can be used for robot
programming. In particular, a combination of learning from
demonstration and requirements specification through natural
language has been shown to be effective in preparing robot
assembly planning domains for flexible manufacturing
(Behrens et al., 2019b).

Q5: Industrial workplaces provide by design a controlled and
unobstructed environment. Therefore, it can be assumed that all
object locations and possible placements are known in advance,
which allows for offline pre-calculation of motion roadmaps and
a profile of potential collisions of the arms in motions.
Furthermore, depending on the industrial setting, we may able
to assume the absence of external interference, e.g., from humans.

4.4 Navigation Planning for Autonomous
Underwater Vehicles
In this section, we focus on an instance of TAMP for Autonomous
Underwater Vehicles (AUV) operating in spatially and temporally
complex environments such as oceans. The problem analyzed in
this sectionwill be referred to as theAUVmission planning problem.

4.4.1 Problem and Requirements.
AUVs are required to autonomously accomplish missions such as
coverage or inspection of a sequence of regions in the ocean or sea.
To perform such missions, an AUVmust employ a mission planner
that can reason about both high-level sequencing of the regions to be
visited and low-levelmotions for navigating through them.While an
AUV executes a series of tasks that can span over a period of several

hours, the environment could change drastically due to the presence
of tide and currents. An AUV mission planner should generate a
combined task and motion plan that take into account not only the
nonlinear dynamics of AUVs, natural obstacles in water, kinematic
constraints, but also drift caused by the time-varying ocean currents.
If these requirements, especially those imposed by dynamically
changing environment, are not met, AUVs would attempt to
carry out highly costly missions that are no longer feasible.

4.4.2 Integration Challenges
In order to generate a feasible motion plan for an AUV, the
intertwined dependencies between the tasks and dynamics of the
AUVs and the environment should be considered in the initial
planning phases. If the interactions with the environment are
overlooked, it may be difficult or impossible to reach the regions
of interest that the high-level task planner prescribes. Also, drift is
usually modeled via a function whose inputs are position, depth,
and time. Therefore, a particular ordering of visitation and
position, for instance, could push the UAV further away from
its goal because of drift. The AUV mission planning problem has
been addressed in the literature by several different approaches.
The one we analyze here builds a high-level navigation roadmap
by sampling waypoints over the operational area and connecting
neighboring waypoints to construct a network of navigation
routes. This network avoids known obstacles, areas that are
deemed too dangerous for the AUV, or other forbidden
regions (McMahon and Plaku, 2016). The navigation roadmap
is then combined with a Deterministic Finite Automaton (DFA)
representing a regular language to compute sequences of
waypoints that are compatible with the mission specification.
This combined representation is then used to effectively guide a
sampling-based motion planner that takes into account a model
of the time-varying ocean currents in each its edge expansion.

4.4.3 Considerations
For this application, we analyze two of our original questions.

Q1: As explained earlier, one way to deal with multiple levels of
abstraction is to abstract away the continuous representation. In
AUV mission planning, this particular choice would lead to
discretising the relevant portion of the ocean in order to be able
to impose high-level specifications for task and motion planning. It
is problematic, however, to account for the nonlinear dynamics of
the AUV and of the ocean currents in this discretisation. A
complementary approach is to use a roadmap type of
discretisation (i.e., a graph) which does not represent knowledge
regarding the dynamics of the vehicle/environment, but contains
knowledge about feasible states that satisfy the high-level task
specification. An example of such a representation is roadmap
coupled with a DFA (McMahon and Plaku, 2016). This is used
as a guide to sample the continuous domain for obtaining a motion
tree that is aware of constraints normally imposed on a continuous
motion representation e.g., kinodynamic constraints or current drift.

Q3: The obvious candidate to leverage learning methods in
this problem is to learn a drift model. In absence of reliable data to
build predictive models of ocean currents, a simulator can take
advantage of synthetic data derived from what is known of the
physics of oceans.
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4.5 Good Practices
One of the first questions that should be addressed when designing
a TAMP solution for an application is to elicit the level of
uncertainty inherent in the domain. Uncertainty manifests itself
in many different ways: it may be relate to knowledge of goals,
requiring them to be posted online, or it may relate to partial
observability of the environment, the sudden appearance of
obstacles, or uncertainty in the duration of motions.
Understanding the nature of uncertainty at hand corresponds to
answering questions Q4 andQ5. Analysing the types of uncertainty
will narrow the range of task and motion planning algorithms that
cater to that specific domain, and help in determining strategies to
tackle the consequent challenges. For example, certain
uncertainties can be completely hidden from the TAMP method
and instead be dealt with during plan execution using existing
control methods. Others, like the uncertain travel times in the
multi-hauler planning application, should be considered explicitly
in the design of a TAMP method, as disregarding them would
violate important safety constraints. Sometimes, we can afford to
totally ignore the presence of uncertainty, as in the case of the
industrial manipulators operating in a controlled environment.

The next step in designing an appropriate TAMP method is to
determine the levels of abstraction, and an effective method for their
incorporation. This concerns the problem of finding one or more
knowledge representation formalisms that are appropriate for
expressing the requirements of the domain in question while
affording efficient reasoning (addressing questions Q1 and Q2).
Effectively dividing knowledge into different levels of abstraction is
very challenging. In the drill planning application, for instance, a graph
representation for the sequencing problem enables efficient high-level
TSP computation while dedicating the geometric information to the
motion planner. The TSP passes the knowledge of emerging obstacles
to themotion planner, and themotion planner in response verifies the
sequencing choice made by the TSP solver. Although this seems a
reasonable distribution of knowledge between the two planners, the
frequency of knowledge sharing between the two can be exponentially
high. As this application shows, the question of how to interface
several levels of abstraction is most crucial when there is high
interdependency between the levels. On the contrary, in the multi-
hauler planning, the interdependency is weak, and we can learn the
low-level information and explicitly incorporate the learned model in
the high-level task planner. In the latter, the question of how to
interface efficiently is less crucial.

Another important issue that must be addressed in the early
stages of designing an approach for combines TAMP is how to
discretize the problem space. The right choice of discretization
has a massive impact on the final solution. This directly relates to
the size of the state space at the task level as well as the required
calls to motion planning in loosely-coupled approaches like
semantic attachments.

5 SUMMARY AND OUTLOOK

The research questions we discussed above do not have simple
answers. Depending on the domain at hand and the constraints of
the application scenario, different answers may suit better for
achieving an effective combined TAMP method. To aid the
researcher or engineer in building a TAMP system, we have
outlined an order in which questions can be approached, with the
intention of reducing the amount of required backtracking in the
decision making process.

As witnessed by the number of questions and the complexity
of the overall topic, future research has the potential to simplify
certain questions and maybe even eliminate certain trade-offs by
providing more general solutions than we currently have at our
disposal. Nevertheless, we conjecture that a one-fits-all method
for solving combined TAMP will never exist, therefore the
questions we have discussed in this article, as well as the
proposed guidelines, will remain relevant in the future.
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