
Formal Modelling and Runtime
Verification of Autonomous Grasping
for Active Debris Removal
Marie Farrell 1*, Nikos Mavrakis2, Angelo Ferrando3, Clare Dixon4 and Yang Gao5

1Department of Computer Science, Maynooth University, Maynooth, Ireland, 2Department of Electronics, University of York, York,
United Kingdom, 3Department of Computer Science, University of Genova, Genova, Italy, 4Department of Computer Science,
University of Manchester, Manchester, United Kingdom, 5STAR-Lab, Surrey Space Centre, University of Surrey, Guildford,
United Kingdom

Active debris removal in space has become a necessary activity to maintain and facilitate
orbital operations. Current approaches tend to adopt autonomous robotic systems which
are often furnished with a robotic arm to safely capture debris by identifying a suitable
grasping point. These systems are controlled by mission-critical software, where a
software failure can lead to mission failure which is difficult to recover from since the
robotic systems are not easily accessible to humans. Therefore, verifying that these
autonomous robotic systems function correctly is crucial. Formal verification methods
enable us to analyse the software that is controlling these systems and to provide a proof of
correctness that the software obeys its requirements. However, robotic systems tend not
to be developed with verification in mind from the outset, which can often complicate the
verification of the final algorithms and systems. In this paper, we describe the process that
we used to verify a pre-existing system for autonomous grasping which is to be used for
active debris removal in space. In particular, we formalise the requirements for this system
using the Formal Requirements Elicitation Tool (FRET). We formally model specific
software components of the system and formally verify that they adhere to their
corresponding requirements using the Dafny program verifier. From the original FRET
requirements, we synthesise runtime monitors using ROSMonitoring and show how these
can provide runtime assurances for the system. We also describe our experimentation and
analysis of the testbed and the associated simulation. We provide a detailed discussion of
our approach and describe how the modularity of this particular autonomous system
simplified the usually complex task of verifying a system post-development.

Keywords: autonomous grasping, formal verification, requirements elicitation, runtime verification, formal methods,
active debris removal

1 INTRODUCTION

Removing orbital debris is an important activity to maintain easy access to space and
uninterrupted orbital operations. Approximately 18% of catalogued debris consists of
launch products such as spent rocket stages [ESA (online)]. Active Debris Removal is the
field of studying methods for removing such debris from orbit, and a variety of methods have
been proposed for capturing and removal (Shan et al., 2016). Current approaches to removing
these items include the use of autonomous robotics which are equipped with an arm to capture

Edited by:
Carl Glen Henshaw,

United States Naval Research
Laboratory, United States

Reviewed by:
Ruediger Dillmann,

Karlsruhe Institute of Technology (KIT),
Germany

Dominique MERY,
Université de Lorraine, France

*Correspondence:
Marie Farrell

marie.farrell@mu.ie

Specialty section:
This article was submitted to

Space Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 08 December 2020
Accepted: 13 December 2021
Published: 27 January 2022

Citation:
Farrell M, Mavrakis N, Ferrando A,
Dixon C and Gao Y (2022) Formal

Modelling and Runtime Verification of
Autonomous Grasping for Active

Debris Removal.
Front. Robot. AI 8:639282.

doi: 10.3389/frobt.2021.639282

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392821

ORIGINAL RESEARCH
published: 27 January 2022

doi: 10.3389/frobt.2021.639282

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.639282&domain=pdf&date_stamp=2022-01-27
https://www.frontiersin.org/articles/10.3389/frobt.2021.639282/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.639282/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.639282/full
http://creativecommons.org/licenses/by/4.0/
mailto:marie.farrell@mu.ie
https://doi.org/10.3389/frobt.2021.639282
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.639282

this kind of debris (Mavrakis and Gao, 2019). A central part of
the process of removing space debris is in identifying a
suitable grasping point on the target surface and ensuring a
stable grasp.

Verifying that autonomous space robotic software behaves
correctly is crucial, particularly since such software tends to be
mission-critical where a software failure can lead to mission
failure. Formal verification is a technique that is used to
reason about the correctness of a software system with the
output providing a proof of correctness that the software
behaves correctly, according to the identified requirements
(Luckcuck et al., 2019). Robotic systems tend not to be
developed with verification in mind from the outset, which
often makes the verification of the final algorithms and
systems more difficult. In this paper, we describe the process
that we used to verify a pre-existing system for autonomous
grasping which is to be used for active debris removal in space. In
this work, the modularity of the system was particularly beneficial
when defining requirements that could subsequently be formally
modelled, verified and monitored and monitored.

In this paper, we report on our experience of using an existing
formal method, the Dafny program verifier (Leino, 2013), to
formally verify our previously developed algorithm for grasping a
spacecraft motor nozzle (Mavrakis and Gao, 2019). This takes the
usual approach of verifying a pre-existing algorithm and an initial
effort was originally presented in (Farrell et al., 2020). However,
we augment this process by returning to requirements elicitation,
using FRET, which would ideally be done prior to
implementation, to successfully define useful requirements for
verification purposes. This work extends our original paper by
incorporating runtime monitors and detailed experiments. We
have also refactored and expanded the original Dafny model in
light of the FRET requirements that we produce in this paper. We
emphasise that the scope of this paper is not to present the grasp
planning algorithm itself in great detail, but rather to discuss our
approach to verifying this pre-existing algorithm.

This work demonstrates that, although requirements are
ideally formally defined from the outset, there is value in
employing these techniques later in the project to identify the
essential properties for verification and thus to streamline the
process of verifying a pre-existing algorithm. For requirements
elicitation, we use the Formal Requirements Elicitation Tool
(FRET), as developed by NASA (Giannakopoulou et al., 2020).
We also build an AADL model of the system to explicitly identify
its components, which provided a useful point of reference when
articulating the requirements in FRET (Feiler et al., 2006).
Further, we demonstrate how the artefacts of our verification-
focused development process can be used to generate runtime
monitors for the system and we use the ROSMonitoring tool1 for
runtime verification. We evaluate our runtime monitors via fault
injection and, experimentation on the testbed and the associated
simulation of the system.

This paper is structured as follows. Section 2 describes the
relevant background material relating to the formal

verification of space systems. We include an AADL model
of the system in Section 3, describe the corresponding
requirements and their encoding in FRET. We use the
Dafny program verifier to verify the requirements relating
to particular software components in Section 4. Then, in
Section 5, we present the runtime monitors for the system
and show how they are used to verify a subset of the system
requirements. Section 6 describes our experimental evaluation
of these runtime monitors using fault injection. We reflect on
our approach in Section 7 and Section 8 concludes.

2 RELATED WORK

Increased autonomy is particularly desirable in the space industry
to support space missions since remote operation may be
problematic or impossible due to distance, time lags or
communication issues and manual operation may be
hazardous or impossible. In fact, autonomy can save time and
prevent failures by removing the need for human intervention.
Many space systems provide important services and so it is vital
that they are correctly and robustly verified. We discuss a number
of approaches related to the verification of space systems in this
section.

A comprehensive overview of the state-of-the-art verification
and validation for autonomous space robotics can be found in
(Cardoso et al., 2021). This includes both formal (model
checking, theorem proving and runtime verification) and non-
formal techniques (testing, simulation). Related, a recent survey
of formal specification and verification techniques for
autonomous robotic systems has revealed that, although there
are many tools and techniques available, improvements are still
required for their successful deployment in large, complex and
autonomous systems (Farrell et al., 2018; Luckcuck et al., 2019).
Given modular robot architectures composed of distinct
subsystems, different types of verification can potentially be
used for different components, as described in (Farrell et al.,
2019b; Cardoso et al., 2020a; Cardoso et al., 2020b), as some
verification techniques may be more appropriate than others for
certain subsystems. Our work also uses multiple distinct
verification techniques (Dafny and ROSMonitoring) to verify
different components/aspects of the system. Additionally, first-
order logic can be used to specify the assumptions on inputs and
guarantees on outputs for each subsystem so that we can ensure
that the system architecture satisfies these.

A related assume-guarantee framework has been proposed
for the verification of autonomous space systems (Brat et al.,
2006). They target systems that are composed of 3 layers
(planning, execution and functional layers) and they make
use of model-checking, static analysis, synthesis and testing
to demonstrate their approach. In other work, the authors
compared tools for static analysis, model-checking and
runtime verification against traditional testing of rover flight
software (Brat et al., 2004). Each of these formal techniques
outperformed testing when locating concurrency errors. Other
rover verification research includes (Bourbouh et al., 2021)
which uses FRET, CoCoSpec and Event-B to verify an1Available: https://github.com/autonomy-and-verification-uol/ROSMonitoring.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392822

Farrell et al. Formal Verification of Autonomous Grasping

https://github.com/autonomy-and-verification-uol/ROSMonitoring
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

autonomous rover use case. The verification artefacts are
subsequently collected and used to form an assurance case.
This work focuses primarily on static verification whereas here
we also include runtime monitors for more dynamic properties.

Webster et al. (2020) propose using a combination of different
types of verification (both formal and non-formal) to improve the
confidence in the overall system. They apply formal verification
via model checking, simulation based testing and experiments
with the physical robot to a collaborative manufacturing scenario,
relating to a handover task. The outcomes from the different
verification methods are used to inform, improve and update the
inputs to the other methods. We have taken a similar approach in
this paper where we combine formalised requirements in FRET,
theorem proving in Dafny and runtime verification. Section 7
explores the benefits of our approach.

This paper builds on our previous work (Farrell et al., 2020)
where we verified part of the grasping algorithm presented in
(Mavrakis and Gao, 2019). This paper expands on this by looking
at whole-system verification rather than the verification of a
specific software component. As a result, we present a
refactored Dafny model with more detailed explanations in
Section 4. As mentioned in the Introduction, we additionally
incorporate runtime monitors and experiments.

In Section 3, we use the Formal Requirements Elicitation Tool
which supports translation into CoCoSim for compositional
verification (Mavridou et al., 2019). This approach is primarily
aimed at Simulink models. Hence, we do not use CoCoSim here
because our target is a ROS-based system that has been
implemented in Python. Related to this, recent work has used
FRET requirements to generate runtime monitors in the Copilot
framework which were incorporated into the ICAROUS
architecture for autonomous operations of unmanned aircraft.
The target language for these monitors was a restricted subset of
C, whereas we focus on generating monitors for Python (Dutle
et al., 2020).

UML-based formal assertions and runtime monitoring have
been employed to verify and validate the flight software for a
Brazilian satellite launcher (Alves et al., 2011). The authors
collected the data for the runtime monitoring JUnit tests from
the associated log files. Related to this, the R2U2 tool (Responsive,
Realisable, Unobtrusive Unit) has been used in the development
of small satellites (Schumann et al., 2015; Rozier and Schumann,
2016). This work is similar to ours, however they do not formally
elicit requirements in the way that we have and we use a theorem
proving rather than a model checking approach for static
verification.

Event-B specifications have been combined with probabilistic
properties to derive reconfigurable architectures for an on-board
satellite system (Tarasyuk et al., 2012). This work uses PRISM to
check for both the derivation (via formal refinement) of the
system from its specification and the probabilistic assessment of
their reliability and performance. Our approach uses formalised
requirements to derive the properties that are to be verified which
promotes traceability of requirements.

This work uses Dafny which was chosen because it closely
resembles Python so it was relatively straightforward to translate
the autonomous grasping algorithm into Dafny. There are a

multitude of other formal methods that we could have chosen
instead of Dafny, including Spec# (Barnett et al., 2004), Spark Ada
(Carré and Garnsworthy, 1990), Frama-C (Cuoq et al., 2012), etc.
However, we found that Dafny was sufficiently expressive for the
properties that we wanted to verify and, in related work (Farrell
et al., 2019a, 2020), we have found it accessible when working
with other researchers that are not familiar with formal methods.
This second point is important because the authors of this paper
are a combination of formal methods researchers and engineers.

3 SYSTEM OVERVIEW AND
REQUIREMENTS ELICITATION

In this section, we provide an overview of the system architecture
and describe the associated requirements which were formalised
using FRET. From a verification perspective, it is important to
first understand the organisation and structure of the system at
hand before assigning requirements to specific components. For
this step, we employ the widely-used Architecture Analysis and
Design Language (AADL).

3.1 Architecture Analysis and Design
Language Model
We have used the AADL to devise a model of the system which
incorporates both hardware and software components (Feiler
et al., 2006). We use this model, as illustrated in Figure 1, as a
point of reference when developing the requirements for this
system in the next subsection. The task of producing this model
allowed us to analyse the system in question and to decompose its
functionality. This functional decomposition resulted in some
small refactoring of the original Python implementation to
facilitate more detailed software verification and to easily
include runtime monitors.

In particular, this model contains both the Service Vehicle
(SV) and Target (TGT). We also include details about the
individual hardware (rectangle) and software (parallelogram)
components of these vehicles. Specifically, the SV is
equipped with a camera, service vehicle arm (SVA) and
service vehicle gripper (SVG) hardware components. Its
software components consist of components for image
processing, finding the optimal grasp and a hardware
controller. The TGT is less sophisticated and its only
hardware component is an apogee kick motor (AKM), it
does not have any on-board software.

The lines and arrows in Figure 1 represent communication
between the various components and we have indicated the data
that is to be communicated on each arrow. Specifically, the
camera sends an image to the imagepreprocessing
component which produces a filteredimage. This
filteredimage is sent to the findoptimalgrasp
component which returns the BGP (best grasp pose) to the
controller. Finally, the controller communicates the
appropriate commands to the SVA and SVG.

In our system, we assume a non-cooperative target, TGT and
this is reflected in the AADL model. Thus, the TGT is not

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392823

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 1 | AADL model of the system comprising both the hardware and software components of the service vehicle (SV) and the target (TGT). The SV contains a
camera, arm (SVA) and gripper (SVG) as hardware components. Its software components are used to pre-process the input image (imagepreprocessing), calculate
the optimal grasp (findoptimalgrasp) and control the arm and gripper (controller). Arrows indicate data flow and variable names are given.

TABLE 1 | Natural language requirements and their corresponding formalisation in FRET based on the components illustrated in our AADL model (Figure 1). We encourage
the reader to use this table as a point of reference for specific requirements that are mentioned in the text.

ID English-Language Description FRET formalisation

R1 The SV shall grasp the TGT at the BGP and draw it closer. SV shall satisfy (grasp(TGT, BGP) & closer(SV, TGT))

R1.1 The Camera of the SV shall be positioned at least 0.5 m from the TGT. Camera shall satisfy distance(Camera, TGT) ≥ 0.5

R1.2 The TGT shall be motionless before contact with the SVA. TGT shall satisfy if !contact(SVA, TGT) then motionless(TGT)

R1.3 The Camera shall return a valid point cloud. Camera shall satisfy valid(p)

R1.3.1 The point cloud shall be structured with maximum resolution of 1,280 × 720. Camera shall satisfy maxRes(p) � 1,280*720

R1.3.2 The point cloud shall not be empty. Camera shall satisfy length(p) > 0

R1.4 The imagepreprocessing shall return a filtered point cloud. Imagepreprocessing shall satisfy length(filteredimage) ≤ length(p) &
length(filteredimage) > 0

R1.5 findoptimalgrasp shall return the optimal grasp point (BGP) if one exists. Findoptimalgrasp shall satisfy if exists(BGP) then return(BGP)

R.1.5.1 The BGP shall be optimal according to the criteria: minimum offset from the TGT
nozzle edge of 1 cm and finger-surface yaw angle between −20 and 20°.

Findoptimalgrasp shall satisfy offset(BGP, TGT) � 1 & -20 ≤
fingersurfaceyaw & fingersurfaceyaw ≤20

R1.5.2 findoptimalgrasp shall generate several candidate grasping points. findoptimallgrasp shall satisfy length(grasps) ≥ 0

R1.6 If no BGP exists then findoptimalgrasp shall output an error message. Findoptimalgrasp shall satisfy if !(exists(BGP)) then printerror

R1.7 Controller shall execute a joint trajectory to reach the BGP. Controller shall satisfy executeJointTrajectory(SVA, BGP)

R1.8 The SVA shall capture the TGT at the BGP. SVA shall satisfy captured(TGT) 0 contactpoint(SVA, TGT) � BGP

R1.9 The total pulling distance shall be between 0.3 and 0.5 m. SV shall satisfy totalpullingdistance ≥0.3 & totalpullingdistance ≤0.5

R2 The SV shall not collide with the TGT. SV shall always satisfy !collide(SV, TGT)

R2.1 The position of the SV shall not be equal to the position of the TGT. SV shall always satisfy !(position(SV) � position(TGT))

R2.2 The SV shall only make contact with the TGT at the BGP using the SVG. SV shall always satisfy contactpoint(SVG, TGT) � BGP.

R2.2.1 No part of the SV, other than the SVG shall make contact with the TGT. SV shall satisfy if !grasped then contactpoint(SV, TGT) � null

R2.2.2 The SVG shall only make contact with the TGT at the BGP (within some margin of
error).

SV shall satisfy if grasped then contactpoint(SVG,TGT) �BGP + errormargin

R2.3 The SVG shall apply a force of 180 N once contact has been made with the TGT. SVG shall satisfy captured(TGT) 0 force � 180

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392824

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

equipped with any software or hardware components other than
an apogee kick motor (AKM) shown in this diagram.

3.2 Requirements Elicitation
We use the AADL model that was outlined above (Figure 1) as a
point of reference for defining both system-level and component-
level requirements. In particular, we define the following system-
level requirements:

R1: The SV shall grasp the TGT at the BGP and draw it closer.
R2: The SV shall not collide with the TGT.
Here, R1 is focused on the correct/intended functionality of

the system, whereas, R2 is a safety requirement. From these
system-level parent requirements (R1 and R2), we derive the
full list of detailed requirements as shown in Table 1. We have
given an ID to each requirement in the table (first column) and
the second column contains the natural language description of
each requirement. The last column contains the FRET
formalisation of these requirements (in FRETISH).

The Formal Requirements Elicitation Tool (FRET)
(Giannakopoulou et al., 2020) supports the formalisation,
understanding and analysis of requirements through a user-friendly
interface with intuitive diagrammatic explanations of requirement
semantics. Users specify their requirements in restricted natural
language, called FRETISH,which embodies a temporal logic semantics.

As an example, we include a screenshot from the FRET tool in
Figure 2 corresponding toR1.5.2 fromTable 1. Here, we have defined a
parent-child relationship between R1.5 and R1.5.2 which allows us to
maintain the hierarchy of requirements as indicated by the IDs in
Table 1. On the right hand side, the FRET tool displays a formal
semantics for this requirement in both future time and past time linear
temporal logic (LTL). For userswho are not familiarwith this semantics/
notation, FRET also includes a diagrammatic representation ofwhat this
requirement means. Users can enter natural-language descriptions in
the “Rationale and Comments” section shown in Figure 1.

FRET is particularly useful as an intermediate step between the
development of natural language requirements and the
formalisation of these requirements in a formal verification
tool. This is because FRET provides a template:

SCOPE CONDITION COMPONENT SHALL TIMING
RESPONSES

which enforces a logical structure relating the pre-conditions for a
specific component (on the left of SHALL) to the associated post-
conditions (on the right ofSHALL). Although not all formalmethods
support the temporal semantics used by FRET, FRET requirements
can still be useful and more straightforward to formalise than natural
language requirements. Note that the FRETISH editor dynamically
colours the entered text corresponding to the designated fields in
“Requirement Description”.

FIGURE 2 | Screenshot from FRET corresponding to R1.5.2 which describes how the best grasp pose (BGP) is chosen. Each FRET requirement is given an ID (top
left), there is an option to include Rationale and Comments which can be useful to promote traceability. Requirements are described in FRETISH with automatic syntax
highlighting. Then, FRET generates both diagrammatic and LTL semantics (right hand side) corresponding to the requirment.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392825

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

In the above template, the COMPONENT field is mandatory to
indicate which system component a specific requirement applies
to. The SHALL keyword is also mandatory and specifies that the
identified component must conform to the requirement. The last
mandatory field is RESPONSE which is currently of the form
satisfy R where R is a non-temporal boolean valued formula.

With respect to the optional fields, SCOPE indicates that a
requirement is only relevant for particular scopes of the system
behaviour. CONDITION describes a point after which the
requirement must hold and TIMING defines the point at which
the response should occur.

Although FRET can export CoCoSpec verification code
(Mavridou et al., 2019), this exported code was not used for
this case study since it required Simulink-based tools and our
system was implemented using ROS in Python. Instead, we used
the FRETISH representation of the requirement and the
associated LTL semantics that is generated by FRET to guide
our Dafny verification and runtime monitor generation.

In the subsequent sections, we describe how we verify these
requirements.

4 FORMAL MODELLING AND
VERIFICATION WITH DAFNY

The work presented in this section was originally described in
(Farrell et al., 2020). However, this section provides more detailed
models and discussion in relation to the requirements identified in
Table 1. In our prior work (Farrell et al., 2020), we focused our
Dafny verification effort on three key requirements. These
correspond to R1.5, R1.5.1, R1.5.2 and R1.6 as listed in Table 1.
Our Dafny model was primarily concerned with functional
correctness to demonstrate that the algorithm for choosing the
BGP behaves correctly. We have modified the Dafny model from
(Farrell et al., 2020), so that it more accurately reflects the
architecture presented in the AADL model in Figure 1 and
provided more detailed implementations of the helper functions.

Dafny is a formal verification system that is used in the static
verification of functional program correctness. Users provide
specification constructs e.g. pre-/post-conditions, loop
invariants and variants (Leino, 2010). Programs are translated
into the Boogie intermediate verification language (Barnett et al.,

FIGURE 3 | The basic structure of a method with specification constructs in Dafny.

FIGURE 4 | Execution of the grasping algorithm on a robotic testbed, for a 3D printed nozzle, as presented by Mavrakis and Gao (2019). The intermediate steps for
point cloud processing and grasp synthesis are shown.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392826

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

2005) and then the Z3 automated theorem prover discharges the
associated proof obligations (De Moura and Bjørner, 2008).

The basic structure of amethod inDafny is outlined in Figure 3.
Here, the requires keyword on line 2 is used to indicate the pre-
condition for the method, themodifies keyword on line 3 specifies
which of the input variables the method is allowed to modify and
the ensures keyword on line 4 accounts for the method’s post-
condition. The user specifies the loop invariant on line 7 which is
used by the underlying SMT solver to reason about the correctness
of the loop and to prove that the post-condition is preserved and
the decreases clause on line 8 corresponds to a loop variant for
proving loop termination.

We devised a formal model of our grasp planning algorithm in
Dafny including the definition of two particular methods. One
which captures the functionality of Algorithm 1 and another
which specifically focuses on how the optimal grasp is selected.
We also had tomodel a series of helper functions since the Python
implementation of the grasping algorithm uses library functions
which are not available in Dafny. For the purposes of verification,
we specify pre-/post-conditions for each of these methods. We
specifically focus on verifying that the chosen grasp is valid,
correct, and optimal with respect to the defined criteria (Mavrakis
and Gao, 2019). We also verify that the helper functions behave as
expected, as well as the usual suite of standard program correctness
properties (e.g. loop termination, etc.). To accurately correspond to
Figure 1, we also refactored our Dafny model and created a separate
method corresponding to the imagepreprocessing component
shown in Figure 1. This separation was not present in our original
model (Farrell et al., 2020).

4.1 Overview: Autonomous Grasping
Algorithm
This paper focuses on an autonomous grasping use case where a
robotic arm shall grasp a piece of space debris. The algorithm
which captures the autonomous behaviour of the system
(Mavrakis and Gao, 2019), implemented in Python, extracts a
point cloud of the nozzle removing outlier points (via depth
removal, downsampling and filtering) and calculates the Zero
Moment Shift (ZMS) of every point, which describes the surface
smoothness. A 4D feature vector is formed for every point,
including its 3D coordinates and its ZMS norm. The vectors
are fed to a clustering algorithm that extracts graspable patches,
and Principal Component Analysis (PCA) is applied on each
patch to extract a 3D coordinate frame that constitutes a grasping
pose (finger positions on the nozzle surface). The best grasping
pose is selected according to pre-defined reachability criteria.

The grasping algorithm to be verified has been presented
analytically by Mavrakis and Gao (2019). In this paper, we briefly
describe the grasp synthesis process. The reader is encouraged to study
the original paper for additional information about the detailed
functionality of the grasping algorithm that we verify in this paper.
The algorithm has been developed for the capturing of spacecraft
engine nozzles, be it spent rocket stages or satellites. The unique
curvature of nozzles, their presence in most spacecraft and rocket
bodies, as well as their structural robustness make them ideal contact

points for capturing of both cooperative satellites and uncooperative
space debris. An execution of the algorithm steps is shown inFigure 4.

In order to verify the algorithm, we first translate these intermediate
steps into pseudocode description. The pseudocode decomposes the
functionality of the algorithm into modules with pre-defined inputs
and outputs. This helps us to design pre- and post-conditions both for
each module and the algorithm as a whole, enabling the verification of
numerous properties. The pseudocode is given in Algorithm 1.

Algorithm 1: An outline of the steps used in the grasping
algorithm (Mavrakis and Gao, 2019).

As outlined in our AADL model (Figure 1), there are two
distinct software components that correspond to Algorithm 1.
These are the imagepreprocessing and
findoptimalgrasp components.

4.1.1 Pre-Processing the Image
The algorithm is based on a point-cloud representation of a
nozzle. Such a point cloud can be extracted by a depth sensor,
stereo camera, or LIDAR sensor. It is assumed that the sensor
faces the point cloud so as to make the nozzle stick out of the
background body of the target. First, the nozzle cloud is
segmented from the background by applying depth
thresholding to the point cloud (line 2 of Algorithm 1). Every
point with depth greater than the threshold value d is omitted,
and the remaining cloud corresponds only to the target’s nozzle.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392827

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

The cloud then gets downsampled to enable faster processing
(line 3 of Algorithm 1). Square voxel downsampling is used, with
voxel size of v. The resulting point cloud retains the overall
geometric structure but has a reduced number of points. Finally,
the downsampled cloud is then filtered to eliminate noise and
isolated points (line 4 of Algorithm 1). Each point is checked
against a ball neighbourhood of radius rf. If the neighbourhood of
the point contains less than nb points, then the point is discarded.

4.1.2 Finding the Optimal Grasp
After the point cloud has been processed, the algorithm generates
grasping points based on the nozzle’s surface characteristics. For
each point, the Zero Moment Shift (ZMS) is calculated (line 5 of
Algorithm 1). The ZMS is the distance 3D vector of a point from
the mean within a ball neighbourhood of radius rb, and its norm
represents a measure of surface smoothness. After the ZMS is
calculated, we create a 4D vector for each point that consists of the
3D coordinate and the ZMS norm scaled by a constant s. The 4D
vectors are used as input to a clustering algorithm, and so the
nozzle surface is divided into graspable patches according to
smoothness and vicinity (lines 6 and 7 ofAlgorithm 1). We apply
Principal Component Analysis to each patch (line 8 of Algorithm
1), resulting in a 3D coordinate frame that corresponds to a
robotic grasp, i.e. a pose for the robotic end-effector. The final
grasp is selected from the grasp set according to reachability
criteria (line 9 of Algorithm 1).

4.2 Encoding the Basic Data Types
We encoded our basic types using tuples in Dafny as shown in
Figure 5. In particular, a Point is a tuple with three real number
elements (line 1). A Grasp (line 2) has seven real number
elements. Finally, a Score (line 3) has three real number
elements. The first is an area score (this will be 1 if the
calculated area is above the area threshold), the second is an
angle score which is the score for the cluster and finally the index
stores the index in the sequence of calculated grasps which
corresponds to this score.

4.3 Image Pre-Processing
Our Dafny model specifically focuses on the
imagepreprocessing and findoptimalgrasp components
that are illustrated in the AADLmodel in Figure 1. Since we focus on
these components, our verification task shall demonstrate that
requirements R1.4, R1.5 (including R1.5.1 and R1.5.2) and R1.6
are met by our model of these software components. To ensure
accuracy, we also encode assumptions relating to other requirements
as necessary, particularly R1.3.2 as will be discussed later.

We begin by describing the imagepreprocessing phase.
In our Python implementation, this involves employing three

library functions for removing depth, down sampling and
filtering the point cloud which is received from the camera.
These calls are illustrated on lines seven to nine of Figure 6. We use
the requires clause on line 2 to capture the assumption for this
component that the input point cloud, p, shall not be empty,
corresponding to R1.3.2 fromTable 1. Here, we implement a point
cloud as a Point array and so we specify that 0< p.Length. This
directly corresponds to the FRETISH for this requirement as
shown in Table 1. We also require that the value of the voxel
size, v, be positive. Note that this was not listed as an official
requirement inTable 1, but that it is necessary in order to verify the
correct functionality of the system at implementation-level.

R1.4 is the only requirement that is specific to the
imagepreprocessing component of the system and this is
verified using the ensures clauses on lines 4 and 5 of Figure 6. In
particular, we verify that the filtered image is non-empty and is no
larger than the unfiltered point cloud, p. This is echoed in our
Dafny encoding of each of these helper functions.

Crucially, Dafny was not equipped with these library functions
that were used in our Python implementation. Therefore, we
provided simplified encodings of these in our Dafny model. As an
example, we include the corresponding Dafny method for
removeDepth in Figure 7.

This method takes a point cloud, p, and a real number
threshold, t, as input. It then outputs a point cloud, pr, which
is the filtered version of the input point cloud with all points whose
z-value is above the threshold removed.We verified the correctness
of this method and specified that it behaves correctly using the
post-conditions on lines three to six and, via the associated loop
invariants on lines 12–16, 29–30 and 43–46. In Dafny, loop
invariants must hold before and after each loop iteration, and
they are used by the prover to support the verification of the post-
condition(s). We note the addition of the if statement on line 24 to
our prior work (Farrell et al., 2020) to prove that the point cloud is
never empty. In this case, if the removeDepth method would
result in an empty point cloud then we return a copy of the input
point cloud in its place. This ensures that R1.3.2 is not violated. A
detailed description of this method follows:
Lines 1–6: This method takes as input a point cloud, p, and a real
number threshold, t. It then outputs a point cloud, pr, which is a
filtered version of the input point cloud with all points whose
z-value is above the input threshold removed. The pre-condition
on line 2 requires that a non-empty point cloud be input, this
corresponds to R1.3.2 from Table 1. This is supported by the
post-condition on line 3 which ensures that the output point
cloud also be non-empty. Further, the post-condition on line 4
specifies that if the input and output point clouds are the same size
then they are equal and (line 5) that the output point cloud is at
most as large as the one that was input. Finally, our use of fresh

FIGURE 5 | The basic datatypes for storing points, grasps and scores in our Dafny model.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392828

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 6 |Dafnymodel of the imagepreprocessing component shown in Figure 1. This was originally part of a larger Dafny model in (Farrell et al., 2020) but it
has since been refactored to conform to the system architecture described by the AADL model shown in Figure 1.

FIGURE 7 | Dafny encoding of the removeDepth method.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 6392829

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 8 | Dafny encoding of the findoptimalgrasp method.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928210

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

in the post-condition on line 6 ensures that all of the elements of
pr were all freshly allocated in the current method invocation.
This was needed to verify the properties in
imagepreprocessing because the outputs of one filtering
step are input to the next. The inclusion of fresh is a
modification of our original Dafny model from (Farrell et al.,
2020) due to its more accurate encoding.

Lines 8–10: Here we declare and initialise a loop variable, k, and a
variable to correspond to the size of the output array, prsize.

Lines 11–23: We cannot create an array of unspecified size in
Dafny and, since we do not know the final size of the output
array, pr, until we examine the elements of p, this loop counts
up the number of elements in p that meet the condition to be
included in pr. Namely, that their z-value is below the
threshold, t, so they should not be filtered out. The
invariant on line 13 specifies that if prsize is equal to 0
then none of the elements considered so far meet the criteria.
On line 14, if prsize is greater than 0 then there are some
elements that meet this criteria. We also verify that prsize
remains within the allowed bounds on line 15. On line 16, we
check that if prsize is less than the number of elements
considered so far then there are some elements in p that do not
meet the desired criteria. These invariants are used to verify
that the loop functions correctly.

Lines 24–37: If the value of prsize is either equal to 0 or the
length of p then we initialise pr to be the same size as p (line
25). Then the while loop on lines 28–35 makes pr an exact copy
of p. This is verified by the invariant on line 30 which supports
the post-condition on line 4. It is common practice in Dafny to
have an invariant (e.g., line 30) which is a rephrasing of a related
post-condition (e.g., line 4) in terms of a loop variable.

Lines 38–57: Otherwise, if prsize is a value other than 0 or is
less than p.Length then we initialise pr to be of size prsize
on line 39. The while loop on lines 42–54 then populates prwith
those elements of p whose z-value is below the threshold, t.
Again, there are associated loop invariants here that are used to
prove that the loop functions correctly.

4.4 Find Optimal Grasp
Themethod presented inFigure 8 accounts for themain functionality
of the findoptimalgrasp component shown in Figure 1. This
corresponds to Algorithm 1 as outlined earlier. In particular:
Line 1: This method takes a point cloud, p, as input, it outputs the
generated sequence of grasps, the optimalgrasp and a
boolean flag which is used to alert the user if no suitable grasp
was calculated.

Lines 2–4: The pre-condition on line 2 specifies that the input point
cloud must not be empty, in agreement with R1.3.2. The post-
condition on line 3 ensures that the optimal grasp is indeed a
grasp that was calculated in accordance with R1.5. Then the post-
condition on line 4 specifies that if there are no valid grasps returned
then thenograsp boolean is set totrue, as stipulated by R1.6.We
note that in our previous version, a modifies clause was included
here but, after more detailed analysis, we discovered that this was not
necessary here since we no longer directly copy or modify p due to
the inclusion of the imagepreprocessing component in
Figure 1. This is a specific difference between this Dafny model
and our original that was presented in (Farrell et al., 2020).

Lines 6–23: These variables correspond to those that were
outlined in Algorithm 1. We have tried to maintain the
nomenclature where possible but for implementation
purposes we had to include additional variables. We

FIGURE 9 | Dafny encoding of the selectOptimalGrasp method.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928211

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

decomposed θ as used in Algorithm 1 into thetamin and
thetamax for implementation purposes on line 16 of Figure 8.

Lines 24–31: This while loop captures the functionality of lines
five to seven ofAlgorithm 1 by calculating the ZMS, forming the
correct input to the clustering method and then executing
clustering with the appropriate inputs. Note that the
decreases clause on line 25 is used to prove loop
termination2 which is a basic program correctness property
that Dafny requires us to preserve.

Lines 32–44: This part of the method calculates the potential
grasps and assigns a score for each one using the criteria
devised in (Mavrakis and Gao, 2019). We capture line 8 of
Algorithm 1, which invokes PCA, here on line 44. The loop
invariants shown here on lines 38–41 ensure that the loop
variable remains within appropriate bounds (line 38), the
correct number of scores are placed into the sequence of
scores (line 39), that each score is matched to the
corresponding grasp (line 40), and that only scores with an
appropriate area component are stored (line 41), partially
fulfilling R1.5.1 (offset of 1 cm). As above, line 42 is used to
prove loop termination.

Lines 45–70: This part of the method corresponds to the function
called on line 9 of Algorithm 1. In particular, lines 45–58
implement the score calculation. Once the scores and grasps
have been calculated, we then call the
selectOptimalGrasp method which chooses the
optimal grasp based on the criteria in (Mavrakis and Gao,
2019) (lines 59–62). In case no grasp meets the ideal score,
we simply return the first one in the sequence (lines 63–65) and
if no grasps could be calculated then we toggle the nograsp
boolean flag (lines 66–68).
The findoptimalgrasp method above calls the

selectOptimalGrasp method, illustrated in Figure 9,
which models how the optimal grasp is selected from those
that were computed based on the calculated scores. We
describe its functionality as follows:
Line 1: Since it is important to ensure that the chosen grasp is
optimal, this method takes the sequence of computed grasps
and the associated scores as input and outputs the index of
the optimal score (optimalscoreindex) along with the
corresponding optimalgrasp.

Lines 2–4: These are the pre-conditions for this method. The first
pre-condition (line 2) states that every index in the sequence of
scores must be a valid index in the sequence of grasps. This is
necessary so that we do not allow for the scores sequence to refer
to a grasp that is not present in the sequence of grasps. The pre-
conditions on lines 3 and 4 require that neither of the inputs are
empty sequences and that there are at least as many scores as
there are grasps in the input. Since this method is called by the
findoptimalgrasp method (Figure 8), we must verify that
these pre-conditions are met. This is achieved via the loop
invariants on lines 38–41 of Figure 8 in support of R1.5.2.

Lines 5–7: These post-conditions ensure that the selected optimal
grasp is indeed present in the input sequence of grasps (line 5) and
that the optimalgrasp is indeed optimal because it is the one
with the smallest angle score (line 7). Thus, we verify that R1.5.1 is
met. We also ensure that the corresponding index is a valid index
in the scores sequence (line 6).

Lines 9–11: Declare and initialise the necessary variables. We use
minscore to keep track of the best score found so far.

Lines 12–29: The while loop on lines 19–28 is used to step through
the scores sequence and keep track of the best score so far. Then
we return the optimalgrasp as the one in the sequence of
grasps at the identified index (line 28). The invariants on lines
13–18 ensure that the loop behaves correctly and are used by the
prover to verify the earlier post-conditions (on lines 5–7). The
loop variant on line 19 is used to prove that the loop terminates.

4.5 Verification Results and Discussion
Overall we were able to discharge all proof obligations
automatically using version 2.3 of Dafny in version 1.48 of
Visual Studio Code on Ubuntu 18.04.

A large variety of methods are typically used for verification in
robotics (Luckcuck et al., 2019). In our case, we selected the use of
the Dafny language, as its similarity to general coding paradigms
and its syntax enable easier translation of the actual code used in
the grasping algorithm to a Dafny program (Leino, 2017).
Crucially, Dafny’s specification constructs and executable code
are both written using the same syntax making it easy to
communicate to non-expert users as remarked in our previous
work (Farrell et al., 2020).

We found that Dafny was sufficiently expressive for the
requirements that we needed to verify, although there are
likely other tools or approaches that could have also been
applied to this problem. Defining appropriate invariants can
be difficult and often requires the skill of an experienced
Dafny user. Approaches to automatically generate invariants is
an active area of research and out of the scope of this paper. Such
approaches include techniques that use abstract interpretation,
which is actually used by the Boogie intermediate verification
language that Dafny programs are automatically translated to for
proof support (Barnett et al., 2004).

We used real numbers in our Dafny model which are supported
natively. Interestingly, real numbers in Dafny are not treated as
floating point numbers. They are the mathematical reals which are
reasoned about using Z3 (Ford and Leino, 2017).

We note that, the Dafny tool support available in Visual Studio
Code (Krucker and Schaden, 2017) and on the rise4fun website3

was useful, although the error messages could sometimes be
unclear.

5 RUNTIME VERIFICATION

Runtime Verification (RV) is a lightweight formal verification
technique which consists of checking the behaviour of a system

2Each iteration of the loop decreases the value of filteredimage.Length-j
until it reaches zero. 3https://rise4fun.com/dafny/.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928212

Farrell et al. Formal Verification of Autonomous Grasping

https://rise4fun.com/dafny/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

while it is running (Leucker and Schallhart, 2009).With respect to
other formal verification techniques, such as model checking
(Clarke et al., 2001), RV has the advantage of being performant,
and of not suffering from the state space explosion problem
(typical in static verification). These two aspects make RV a
suitable candidate in robotic applications where the system may
have limited resources and can be too complex to be fully
abstracted. Abstraction is usually required in static verification,
as evidenced by our use of Dafny in the previous section which
focused on two of the components in our AADL model in
Figure 1, namely the imagepreprocessing and
findoptimalgrasp components.

From a theoretical perspective, RV addresses the word inclusion
problem (NLOGSPACE-complete for non-deterministic
automaton (Hopcroft and Ullman, 1979)), where the objective
is to identify whether a given trace of events belongs to the set of
traces denoted by a given formal property (commonly referred to
as the language of the property). The resulting verification process
can be obtained in polynomial time considering the length of the
trace to be analysed. This differs enormously from the problem
tackled by other verification techniques such as model checking,
where the objective is to exhaustively check whether the system
under analysis satisfies (resp. violates) a given formal property.
For example, model checking needs to analyse each possible
system execution and to address the resulting language
inclusion problem (PSPACE-complete for non-deterministic
finite-automata (Sistla and Clarke, 1985)), by identifying
whether the set of all possible traces which can be generated
by the system execution is included in the set of traces denoted
by a given formal property.

One of the most common ways to implement RV is through
the use of runtime monitors. A monitor is a software component
which can be automatically synthesised from a formal property,
usually a temporal property which might be expressed using
Linear-time Temporal Logic (LTL) (Pnueli, 1977). For example,
(Bauer et al., 2006) presents an algorithm to synthesise a monitor
as a Moore machine from an LTL property. The monitor’s job is
dual: it gathers information from the system execution (the trace),

and it checks such a trace to conclude whether the system
execution satisfies (resp. violates) the property under analysis.

Given a trace of events and a property to verify, a monitor
returns 1) ⊤, if the trace has enough information to conclude that
the system satisfies the property, 2) ⊥, if the trace has enough
information to conclude that the system violates the property, 3) ?
otherwise. Depending on the formalism used to denote the
properties, the third outcome can be split into: (iiia) ?⊤, if the
trace has not enough information to conclude neither that the
system satisfies nor violates the property, but the current trace is
currently satisfying the property, (iiib) ?⊥, if the trace has not
enough information to conclude neither that the system satisfies
nor violates the property, but the current trace violates the
property.

Consider the following example. If we have the Past LTL
property ■ a (past always), which means “a was always true in the
past”. Given the trace aaa, the monitor returns ?⊤, since currently
the trace is satisfying the property by having always a true in the
past, but we do not have enough information to conclude ⊤ yet,
because there is no guarantee that the system will continue to
satisfy the property. Indeed, a possible continuation of the trace
could be aaab, which would violate the property and ao the
monitor would return ⊥. Considering another example, given the
Past LTL property ◆ a (past eventually), which means “a was
once true in the past”. Given the trace bb, the monitor would
return ?⊥, since currently the trace does not satisfy the property,
in fact a was never true in the past. But, if we continue to analyse
the system, we might find a continuation such as bba that satisfies
this property and the monitor would then return ⊤. These two
simple examples demonstrate that ⊤ and ⊥ are final verdicts
(trace continuations do not change the outcome), while ?⊤ and ?⊥
are temporary verdicts that can change depending on how the
trace evolves.

5.1 ROSMonitoring
RV is a useful candidate for verifying formal properties in
robotic scenarios. The de facto standard for deploying robotic
applications is the Robot Operating System (ROS) (Quigley

FIGURE 10 | High-level overview of ROSMonitoring (Ferrando et al., 2020). Everything starts with a configuration file that guides the instrumentation process, in
which the ROS nodes are modified (if necessary) and the monitor code is synthesised. Then, depending on the user’s choice, RV is carried out offline, where a log file is
generated for future analysis, or online, where the intercepted ROS messages are propagated to an oracle component for incremental analysis.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928213

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

et al., 2009). ROS provides libraries and tools to help software
developers to create robotic applications. It provides hardware
abstraction, device drivers, libraries, visualisers, message-
passing, package management, etc.4. ROSMonitoring is a
framework for performing RV of ROS applications.
ROSMonitoring allows the user to add monitors to ROS
applications. These monitors intercept the messages that are
exchanged between components, called “ROS nodes”5, and
check whether the relevant messages conform to a given formal
property.

Figure 10 describes the ROSMonitoring pipeline.
ROSMonitoring automatically generates monitors following
an input configuration file. These monitors intercept messages
and report to the external oracle (the entity that has access to
the formal property to verify). In the following we describe
these three different aspects more in detail.

5.1.1 Instrumentation
ROSMonitoring starts with a YAML configuration file to guide
the instrumentation process required to generate the monitors.
Within this file, the user can specify the communication channels,
called “ROS topics”, that are to be intercepted by each monitor. In
particular, the user indicates the name of the topic, the ROS
message type that is expected in that topic, and the type of action
that the monitor should perform. After preferences have been
configured in config. yaml, the last step is to run the generator
script to automatically generate the monitors and instrument the
required ROS launch files.

5.1.2 Oracle
ROSMonitoring decouples the message interception (monitor)
and the formal verification aspects (oracle) and it is highly
customisable. Different formalisms can be used to represent
the properties to verify, including Past MTL, Past STL, and
Past LTL (MTL, STL, and LTL with past operators
respectively); the latter is one of the formalisms used by FRET
to formally denote requirements (as shown on the right hand side
of Figure 2). Given a requirement in FRET, we generate a Past
LTL property and synthesise the corresponding monitor in
ROSMonitoring to perform RV. Using the formalism of

FIGURE 11 | Monitors synthesised from the requirements listed in Table 1 are represented as automaton.

4http://wiki.ros.org/.
5ROS is node-based, each robot can be composed of multiple nodes. For example,
each of the components in the AADL model in Figure 1 correspond to a node or a
group of nodes in our ROS-based system.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928214

Farrell et al. Formal Verification of Autonomous Grasping

http://wiki.ros.org/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

choice, an external entity can be created to handle the trace of
events reported by the monitors in ROS (generated through
instrumentation). ROSMonitoring requires very few
constraints for adding a new oracle. It uses JSON as a data-
interchange format for serialising the messages that are observed
by the ROS monitor. Thus, an oracle will parse the JSON
messages, check whether they satisfy or violate the formal
property, and report back to the ROS monitor.

5.1.3 ROS Monitor
The instrumentation process generates monitors to intercept the
messages of interest. Each monitor is automatically generated as a
ROS node in Python, which is a native language supported in
ROS. If the monitor finds a violation of the property under
analysis, it publishes a warning message containing as much
information as possible about the violated property. This warning
message can be used by the system to handle the violation and to
react appropriately.

In our experiments, we focused on offline RV. Rather than
checking the messages while the system is being executed, the
monitors parse log files containing the messages that were
generated during executions. The verification process does not
change, from the viewpoint of a monitor to check a trace online at
runtime or offline using log files is exactly the same. In this paper,
we preferred to follow the offline approach in order to focus on
the formal aspects of the properties and the corresponding
requirements. The extension to be applied online is simple
and straightforward to achieve; we left it out of this work to
improve clarity, since we are not considering failure handling at
this stage. In the future, we intend to apply online monitoring,
and tomodify the system to be aware of the monitors’ outcome, in
order to properly react if requirements are violated.

5.2 Monitoring of Requirements
Requirements 1.3.1, 1.3.2, 1.4, 1.8, 1.9, 2.1, 2.2, 2.3 in Table 1 have
been verified through RV. The resulting monitors are reported in
Figure 11. In the following we describe some of them more in
detail.

Requirement 1.3.2: The point cloud shall not be empty.
Past LTL: ■ ¬empty.
In Figure 11, for this property (R1.3.2), the monitor starts in a

state where as long as it observes ¬empty the property is
considered currently satisfied (?⊤). Indeed, as long as the point
cloud is not empty, the system behaves correctly. If empty is
observed, denoting that the point cloud is empty, we have a
violation of the Past LTL property, and the monitor moves to the
state with output (⊥). In this state the monitor can observe any
kind of event (*) without changing its output. We also have a
special event (END) representing the end of execution, meaning
that the system has been correctly terminated. When the system
ends, a current verdict becomes final (since there are no further
continuations); in this case ?⊤ becomes ⊤.

Requirement 1.8: The SVA shall capture the TGT at the BGP.
Past LTL: ■ (grasp 0 near)
In Figure 11, for this property (R1.8), the monitor starts in a

state where as long as it observes ¬grasp the property is
considered currently satisfied (?⊤). Indeed, as long as the

gripper does not grasp anything, there is nothing to
analyse for the property (it is trivially satisfied). Then,
when grasp is observed, the monitor moves to the state
with output (?⊥). The reason is that we are currently in a
situation where we know that the gripper has grasped the
target (TGT), and to verify that it was right to do so, the
monitor must also observe that the gripper is near the BGP. If
it is (near is observed), then the monitor goes back to the
initial state; otherwise (¬near or END are observed), the
monitor moves to the state with output ⊥. In fact, if the
gripper is not close to the BGP then the system is violating the
property. As in the previous requirement, when END is
observed, meaning that the system has been correctly
terminated, the current verdicts become final verdicts. In
this case if the monitor is in the initial state where it is
currently satisfying the property, then the monitor moves to
the state with output ⊤. Instead, if the monitor is in the top
right state when the system ends, then the monitor moves to
the state with output ⊥, since the system was not currently
satisfying the property. These monitors were deployed and
we describe our experimental results in the next section. In
particular, the monitors helped us to uncover some issues
with the requirements and we discuss these in Section 7.5.

6 EXPERIMENTAL RESULTS

To test our verification architecture, we set up a debris
capturing scenario, and verify the capturing process both
in a simulator and on a real (physical) orbital robotics
testbed. The capturing scenario includes a chasing
spacecraft (service vehicle SV) equipped with a 6-DOF
robotic manipulator, a 2-fingered gripper and a depth
sensor for point cloud extraction. The captured target is an
AKM, modeled after the Thiokol STAR 13b family of rocket
stages (Orbital ATK, 2016). The target was selected because of
its low mass and simplistic shape, that enables easier
modelling in simulation and emulation on the testbed. It
also serves as a realistic case for debris removal, as similar
AKMs from past launches remain in orbit, sometimes even
decades later. In all cases, the SV arm is tasked with generating
a grasping point on the target nozzle, moving the gripper
towards the grasping point, executing the grasping,
and pulling the target back for a specified distance. During
the entire process, we use the monitors that were presented in
Figure 11 to ensure that the system meets the requirements
listed in Table 1.

6.1 Including the Runtime Monitors
The monitors that were presented in Figure 11 have been
implemented using ROSMonitoring and applied to the
simulation and real (physical) testbed. Section 5 focused on
the theoretical aspects of a monitor. Here, we describe some of
the more practical aspects. Specifically, we now consider the
structure of the messages that are observed by a monitor. In
the following, we provide an example of a trace of events observed
in the verification of requirement R1.9.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928215

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

{“pullingDistance”: 0.3011664608030819814, “t”:
177.44376802444458}

Each trace contains a JSON6 event. We used JSON because it is
the standard data exchange format used in ROSMonitoring to
propagate messages from ROS to the oracle. A ROS message can
be automatically translated into JSON format using a custom
Python library7. In this example, the log file contains the events
which report the current pulling distance of the robotic arm
(∼0.3 cm) and the time at which each event has been
observed8 (∼177 s). As shown, the events in the trace
satisfy R1.9, indeed the pulling distance is always within
the desired range.

Considering the previous trace, the corresponding output of
the monitor is:

The event \{“pullingDistance”: 0.3011664608030819814, “t”:
177.44376802444458\}
is consistent.

Current outcome:?⊤

Here, we have the monitor’s current outcome for each
observed event. If we look at the monitor representation in

Figure 11, it is easy to see that by consuming these events we
remain in the initial state, where the outcome is ?⊤. Meaning
that the trace currently satisfies the requirement. Similar
results were observed for all of the monitors depicted in
Figure 11.

6.2 Simulation Verification
Simulations continue to play an important role in verifying and
validating robotic systems (Luckcuck et al., 2019). As such, we
use the V-REP simulator (Rohmer et al., 2013) to set up the
simulated capturing scenario, as shown in Figure 12. The scene
is weightless, and we use the Newton physics engine, available in
V-REP to mimic the space environment. The SV has a mass of
500 kg, corresponding to a small to medium sized spacecraft,
and the target has a dry mass of 9 kg, in accordance with
the technical specifications provided in the manufacturer’s
catalogue.

For simplicity, we assume that the target (TGT) and the
chasing spacecraft (SV) have matched their attitude and
rotational velocity, i.e. the TGT appears completely
motionless as seen from the camera of the SV. In reality, this
can be achieved by orbital maneuvering of the SV using its
thrusters.

Figure 12 shows the detected point cloud of the target, as
well as the grasping pose generated after using the algorithm
of Mavrakis and Gao (2019). The robot is tasked with reaching
the grasping pose through an approaching pose of the same
orientation, but with an offset of 0.3 m towards the SV
body. The approaching pose is also shown in Figure 12. The

FIGURE 12 | Simulation setup (A) and detected grasp and approaching pose on the nozzle point cloud (B).

FIGURE 13 | Reaching the approaching pose (A), grasping pose (B) and final pulling pose (C).

6JavaScript Object Notation (www.json.org).
7Repository: https://github.com/uos/rospy_message_converter.
8The trace has been previously generated and the monitor analyses the log files
from past executions.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928216

Farrell et al. Formal Verification of Autonomous Grasping

http://www.json.org
https://github.com/uos/rospy_message_converter
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

grasping process is illustrated in Figure 13. The robot
begins from an initial pose, and ensures that requirements
R1.3 (including R1.3.1 and R1.3.2) and R1.4 are met by
examining the point cloud resolution and data size. R1.5
and R1.6 are verified formally using Dafny on the grasping
algorithm pseudocode.

The SV then reaches the approaching point and the grasping
point. Throughout the motion, the distance between each of
the SV joints and the grasping point is monitored, to ensure
that there is no collision between the SV body and the TGT
(R2.1 and R.2). The SV then closes its gripper to capture the
TGT. By checking the distance of the gripper tip and the
grasping point, the SV ensures that R1.8 is preserved. The
grasping force is monitored by simulated force sensors placed
on the fingertips of the gripper, making sure that R2.3 is
verified. After closing the fingers, the SV stores the gripper
position, and starts pulling the target towards the satellite body.
After pulling, the SV checks the new gripper position and
compares it with the saved one at the start of the pull, to verify
R2.3. The requirements were met for the whole capturing
duration.

6.3 Testbed Verification
To verify the capturing scenario using real robots, we utilised
the STAR-Lab Orbital Robotics Testbed (Hao et al., 2019). The
testbed consists of two UR5 robots, the SV and TGT arm. The
SV arm is mounted on top of a 2 m long track that enables
motion in a 2D plane, emulating an approaching spacecraft.
The TGT arm can emulate the orbital dynamics of a target
mounted on its end-effector, and reproduce the motion of a
weightless target when a force is applied to it. The SV arm has a
Robotiq 2F-85 gripper for capturing, and an Intel Realsense

D435 depth sensor mounted over its end-effector for point
cloud capturing.

The grasping process is the same as the simulation, with the
robotic arm going through the approaching, grasping and pulling
poses sequentially. The starting point, detected point cloud,
approaching pose and grasping pose are shown in Figure 14.
The capturing and pulling motion is also shown in Figure 14. The
requirements were checked for the physical in the same way as for
the simulation. A difference lies in the grasping force
measurement, where it is provided by Robotiq in the
programming SDK of the gripper, by measuring the gripper
motor current. In the end, the requirements were met for the
whole grasping process.

6.4 Fault Injection
We conducted a capturing experiment where we intentionally
injected a fault into the system to demonstrate the effectiveness of
the monitors in identifying cases where the requirements are
violated. Specifically, we reduced the grasping force used by the
gripper to grasp the target. The gripper captured the target with a
grasping force of 40 N, substantially less than the lower limit of
R2.3. As a result, the applied force was not able to hold the target
because it slipped through the gripper fingers during the pulling
phase, and the SV lost contact with the TGT. This fault was
correctly identified by the monitors for the requirements R1.9 and
R2.3, approximately 134 s after the initial detection of the grasp.

We note how the property is initially satisfied (grasping force
is within range and the target is grasped), but then, at
approximately 134 s the grasping force observed by the
monitor is ∼40N, which is outside of the range allowed by
R2.3. We observe how this causes the gripper to lose contact
with the target, indeed right after observing the wrong grasping

FIGURE 14 | Testbed setup (top left) and detected grasp and approaching pose on the nozzle point cloud (top right). Approaching pose (bottom left), grasping
pose (bottom middle) and final pulling pose (bottom right).

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928217

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

force, the monitor observes the event with “isTargetGrasped” set
to false. The monitor recognises these events, and reports them as
inconsistent. The outcome becomes ⊥, as reported in Figure 11,
where a violation sends the monitor to the state ⊥, where any
event can be observed without changing the final verdict.

In this section, we discussed our experimental evaluation and
use of the runtime monitors that were developed in Section 5 to
verify our system, both in simulation and on the physical test bed.

7 DISCUSSION

In this paper, we reported on our use of both non-formal (AADL) and
formal (FRET, Dafny and ROSMonitoring) tools for the analysis of a
previously developed autonomous debris grasping system. In this
section, we describe the benefits/modifications that each approach
offered, the gaps that were identified in the requirements and discuss
our approach to post-implementation verification.

7.1 Architecture Analysis and Design
Language
Firstly, we devised an AADL model of the system. This was
primarily to act as a point of reference where we decomposed the
system into its constituent parts (both hardware and software).
Through this process, with a view to include runtimemonitors for
the system we refactored our original algorithm to split up the
functionality of imagepreprocessing and
findoptimalgrasp which were originally encoded as a
single entity in our algorithm. This refactoring facilitated the
use of runtime monitors and the definition of detailed
requirements for each of these components. It was beneficial
to use this AADL model when we were defining the system’s
requirements because it allowed us to focus on specific
components of the system when devising particular
requirements. It also provided a reference point for variable
names and component names to be used in natural language
requirements.

7.2 Formal Requirements Elicitation Tool
We used FRET to formalise our requirements. Previously in
(Farrell et al., 2020), we had identified three requirements
specific to the software itself. However, in this paper, we
adopted a much broader view of the system which allowed us
to identify and formalise many more requirements as illustrated
in Table 1. Our goal was to utilise formal verification techniques,
specifically Dafny and ROSMonitoring, to verify our system so
the intermediate FRET representation was desirable as it more
closely resembled formal requirements than their natural-
language description. Also, the semantics given by FRET could
be used in the development of runtime monitors with
ROSMonitoring.

7.3 Dafny
We had originally developed a Dafny model of the
imagepreprocessing and findoptimalgrasp

components. However, like the implementation, we refactored
our Dafny model to match the architecture shown in Figure 1
with little consequence to the verification of the model. This
refactoring forced us to include some further specification
constructs for the helper functions that are used by the
imagepreprocessing component but this was relatively
straightforward. Interestingly, some of the specification
constructs that were specified in the original Dafny model
corresponded to the requirements identified in Table 1.

7.4 ROSMonitoring
We used the FRET requirements to synthesise a catalogue of
runtime monitors, using ROSMonitoring, for a subset of the
requirements shown in Table 1. Some of these requirements were
also verified using Dafny (e.g. R1.3.2). However, most were
focused on requirements that would not be easily verified in a
static verification tool similar to Dafny. It is important to stress
that the process of developing these monitors was simplified by
our use of FRET since it provided a concise semantics for each of
these requirements. We executed these monitors offline (using
log files) both for the simulation and the real system to ensure that
the requirements were preserved. We also note that, due to the
novelty of the autonomous grasping system, it was not possible to
provide detailed requirements for specific components without
having an implementation.

7.5 Gaps in the Requirements
Interestingly, the development of some of these monitors allowed
us to identify gaps in our requirements that were subsequently
captured and formalised using FRET. Specifically, the requirements
R1.9 and R2.3 were initially considered to be violated by the
corresponding monitors when applied to the real testbed. This
was mainly caused by hardware restrictions. In R1.9, the initial
requirement stated that the pulling range should have been
between 0.3 and 0.5 cm. Even though this was obtainable in
simulation, it was not in the real system because the robotic
arm did not allow it (safety mode enforced a shorter pulling
range). This helped us to understand the hardware limitations,
and it caused us to update the pulling range in this requirement.
The range has been updated to 0.2–0.5 cm, which was derived from
the observation of what happened in similar real case studies.

In R2.3, the grasping force was stated to be 180 N. Again, this
requirement was met in simulation, but not in the testbed. As for
R1.9, this violation was a result of hardware restrictions. Specifically,
the gripper’s maximum force is 180N, and the hardware could not
always reach it. This was a violation of R2.3, and it was correctly
observed by the correspondingmonitor. Following this observation,
the requirement was modified to constrain the grasping force to the
range 100–180 N. Such a range has been determined through
experiments.

There were three requirements (R1.1, R1.2 and R1.7) listed in
Table 1 that we did not formally verify or monitor. Specifically,
R1.1 was verified by construction on the test bed where we
physically placed the camera 0.5 m away from the TGT. With
respect to R1.2, we didn’t impose an initial velocity on the TGT in
either the simulation or the testbed so this requirement was met by
design. However, if this system were to be deployed then we would

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928218

Farrell et al. Formal Verification of Autonomous Grasping

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

have to encode a way of determining whether the TGT was indeed
motionless and potentially synthesise a monitor for this. Finally,
R1.7 was verified via physical testing and visual examination. We
intend to investigate whether it would be possible to develop a
runtime monitor for this property as future work.

7.6 Post-implementation Verification
The usual approach that is advocated is linear, where the system
architecture is defined, requirements are elicited/formalised,
formal models of system components are verified, monitors
are generated and finally, the system is implemented.
However, it is often the case that system verification is
forgotten about until the development is almost finished. This
tends to make the verification process more difficult, particularly
as system complexity increases (Luckcuck et al., 2019). In our
case, we were in the latter category. The system was almost
complete when we sought to verify it.

Contrary to the usual difficulties caused by taking such an
approach, we were able to reverse engineer our verification
process. Notably, our system was not overly simple but it was not
too complex in terms of structure and we were willing to make small
changes to the implementation in order to streamline the verification
phase. We conclude that, although it would have been beneficial to
develop the system with verification in mind from the outset, it was
also useful from a verification perspective to have an implementation
to examine from the beginning.When defining the requirements, we
were able to query the system to find special cases where the
requirements were violated and to thus refine the requirements
and associated formal models based on this. In a way, we used both
the implementation artefacts and the verification artefacts to inform
one another. From the perspective of scaling this approach to a more
complex system, the main factor would be the degree of modularity
in the system. From this work, it has become clear that the more
modular a system is then the easier it is to analyse and verify.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented our approach to formally verifying a
previously developed autonomous debris grasping system. We
used AADL to devise a model of the system which was used as a
basis for defining natural language requirements that were

subsequently formalised in FRET. For the software
components defining the autonomous behaviour, we developed
and verified their functionality using the Dafny program verifier.
We then generated a suite of runtime monitors using
ROSMonitoring and used these in an offline fashion to
examine log files from both the simulation of the system and
the physical testbed. Further, to validate these monitors we
injected a fault into the system which was successfully
identified by the monitors as a violation of the defined
requirements.

Our definition of requirements for this system followed a
usual, safety-focused approach. However, cyber-security is
increasingly becoming a concern for space systems and, as
future work, we intend to analyse and verify requirements of
this system related to security, taking inspiration from (Farrell
et al., 2019a) and (Maple et al., 2020).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

The autonomous grasping system was developed by NM and YG.
The Dafny model was constructed by MF and NM. The
requirements were developed by MF and NM. MF formalised
the requirements in FRET. AF developed the runtime monitors.
NM carried out the experiments and constructed the simulation.
CD and YG acted in a supervisory role and contributed to the
writing of the paper.

FUNDING

This work is supported by grants EP/R026092 (FAIR-SPACE
Hub) and EP/R026084 (RAIN Hub) through UKRI under the
Industry Strategy Challenge Fund (ISCF) for Robotics and AI
Hubs in Extreme and Hazardous Environments.

REFERENCES

Alves, M. C. B., Drusinsky, D., Michael, J. B., and Shing, M.-T. (2011). “Formal
Validation and Verification of Space Flight Software Using Statechart-
Assertions and Runtime Execution Monitoring,” in International
Conference on System of Systems Engineering, Albuquerque, NM, United
States (IEEE), 155–160. doi:10.1109/sysose.2011.5966590

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and Leino, K. R. M. (2005).
“Boogie: A Modular Reusable Verifier for Object-Oriented Programs,” in
Formal Methods for Components and Objects (Berlin: Springer), 364–387.
vol. 4111 of LNCS.

Barnett, M., Leino, K. R. M., and Schulte, W. (2004). “The Spec# Programming System:
An Overview,” in International Workshop on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (Berlin: Springer), 49–69.

Bauer, A., Leucker, M., and Schallhart, C. (2006). “Monitoring of Real-Time
Properties,” in Foundations of Software Technology and Theoretical
Computer Science. Editors S. Arun-Kumar and N. Garg (Berlin: Springer),
260–272. vol. 4337 of LNCS. doi:10.1007/11944836_25

Bourbouh, H., Farrell, M., Mavridou, A., Sljivo, I., Brat, G., Dennis, L. A., et al.
(2021). “Integrating Formal Verification and Assurance: An Inspection Rover
Case Study,” in NASA Formal Methods Symposium, (Cham: Springer), 53–71.
doi:10.1007/978-3-030-76384-8_4

Brat, G., Denney, E., Giannakopoulou, D., Frank, J., and Jónsson, A. (2006).
“Verification of Autonomous Systems for Space Applications,” in IEEE
Aerospace Conference, Big Sky, MT, United States (IEEE), 11.

Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry,
M., et al. (2004). Experimental Evaluation of Verification and Validation Tools
on Martian Rover Software. Formal Methods Syst. Des. 25, 167–198.
doi:10.1023/b:form.0000040027.28662.a4

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928219

Farrell et al. Formal Verification of Autonomous Grasping

https://doi.org/10.1109/sysose.2011.5966590
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1023/b:form.0000040027.28662.a4
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Cardoso, R. C., Dennis, L. A., Farrell, M., Fisher, M., and Luckcuck, M. (2020a).
“Towards Compositional Verification for Modular Robotic Systems,” in
Workshop on Formal Methods for Autonomous Systems (Electronic
Proceedings in Theoretical Computer Science), 15–22. doi:10.4204/
eptcs.329.2Electron. Proc. Theor. Comput. Sci.329

Cardoso, R. C., Farrell, M., Luckcuck, M., Ferrando, A., and Fisher, M. (2020b).
“Heterogeneous Verification of an Autonomous Curiosity Rover,” in NASA
Formal Methods Symposium (Cham: Springer), 353–360. vol. 12229 of LNCS.
doi:10.1007/978-3-030-55754-6_20

Cardoso, R. C., Kourtis, G., Dennis, L. A., Dixon, C., Farrell, M., Fisher, M., et al.
(2021). A Review of Verification and Validation for Space Autonomous
Systems. Curr. Robotics Rep. 2 (3), 273–283. doi:10.1007/s43154-021-00058-1

Carré, B., and Garnsworthy, J. (1990). “Spark—an Annotated ada Subset for Safety-
Critical Programming,” in Proceedings of the conference on TRI-ADA’90,
392–402.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2001).Model Checking. Cmabridge,
MA: MIT Press.

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski, B.
(2012). “Frama-c,” in International conference on software engineering and formal
methods (Berlin: Springer), 233–247. doi:10.1007/978-3-642-33826-7_16

De Moura, L., and Bjørner, N. (2008). “Z3: An Efficient Smt Solver,” in Tools and
Algorithms for the Construction and Analysis of Systems (Berlin: Springer),
337–340. vol. 4963 of LNCS. doi:10.1007/978-3-540-78800-3_24

Dutle, A., Muñoz, C., Conrad, E., Goodloe, A., Titolo, L., Perez, I., et al. (2020).
“From Requirements to Autonomous Flight: An Overview of the Monitoring
Icarous Project,” in Workshop on Formal Methods for Autonomous Systems
(Electronic Proceedings in Theoretical Computer Science) 329, 23–30.
doi:10.4204/eptcs.329.3

[Dataset] ESA About Space Debris. (online).
Farrell, M., Bradbury, M., Fisher, M., Dennis, L. A., Dixon, C., Yuan, H., et al.

(2019a). “Using Threat Analysis Techniques to Guide Formal Verification: A
Case Study of Cooperative Awareness Messages,” in Software Engineering and
Formal Methods (Cham: Springer), 471–490. vol. 11724 of LNCS. doi:10.1007/
978-3-030-30446-1_25

Farrell, M., Cardoso, R. C., Dennis, L. A., Dixon, C., Fisher, M., Kourtis, G., et al.
(2019b). “Modular Verification of Autonomous Space Robotics,” in Assurance
of Autonomy for Robotic Space Missions Workshop.

Farrell, M., Luckcuck, M., and Fisher, M. (2018). “Robotics and Integrated Formal
Methods: Necessity Meets Opportunity,” in International Conference on
Integrated Formal Methods (Cham: Springer), 161–171. vol. 11023 of
LNCS. doi:10.1007/978-3-319-98938-9_10

Farrell, M., Mavrakis, N., Dixon, C., and Gao, Y. (2020). “Formal Verification of an
Autonomous Grasping Algorithm,” in International Symposium on Artificial
Intelligence, Robotics and Automation in Space, United States (ESA).

Feiler, P. H., Gluch, D. P., and Hudak, J. J. (2006). The Architecture Analysis &
Design Language (AADL): An Introduction, United States Carnegie-Mellon
Univ. Pittsburgh PA Software Engineering Inst. Tech. rep.

Ferrando, A., Cardoso, R. C., Fisher, M., Ancona, D., Franceschini, L., and
Mascardi, V. (2020). “Rosmonitoring: a Runtime Verification Framework
for Ros,” in Towards Autonomous Robotic Systems Conference (TAROS).
doi:10.1007/978-3-030-63486-5_40

[Dataset] Ford, R. L., and Leino, K. R. M. (2017). Dafny Reference Manual.
Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., and

Shi, N. (2020). “Formal Requirements Elicitation with Fret,” in Requirements
Engineering, Pisa, Italy (Foundation for Software Quality).

Hao, Z., Mavrakis, N., Proenca, P., Gillham Darnley, R., Fallah, S., Sweeting, M.,
et al. (2019). “Ground-based High-Dof Ai and Robotics Demonstrator for In-
Orbit Space Optical Telescope Assembly,” in Congress IAC 19-paper Arcive,
Washington, DC, United States (International Astronautical Federation).

Hopcroft, J. E., and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

Krucker, R., and Schaden, M. (2017). Visual Studio Code Integration for the Dafny
Language and Program Verifier (HSR Hochschule für Technik Rapperswil).
Ph.D. thesis.

Leino, K. R. M. (2010). “Dafny: An Automatic Program Verifier for Functional
Correctness,” in Logic for Programming Artificial Intelligence and Reasoning
(Berlin: Springer), 348–370. vol. 6355 of LNCS. doi:10.1007/978-3-642-
17511-4_20

Leino, K. R. M. (2013). “Developing Verified Programs with Dafny,” in 2013 35th
International Conference on Software Engineering (ICSE), San Francisco, CA,
United States (IEEE), 1488–1490. doi:10.1109/icse.2013.6606754

Leucker, M., and Schallhart, C. (2009). A Brief Account of Runtime Verification.
The J. Logic Algebraic Programming 78, 293–303. doi:10.1016/
j.jlap.2008.08.004

Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., and Fisher, M. (2019). Formal
Specification and Verification of Autonomous Robotic Systems. ACM Comput.
Surv. 52, 1–41. doi:10.1145/3342355

Maple, C., Bradbury, M., Yuan, H., Farrell, M., Dixon, C., Fisher, M., et al. (2020).
Security-minded Verification of Space Systems. IEEE Aerospace Conf. 1–13.
doi:10.1109/aero47225.2020.9172563

Mavrakis, N., and Gao, Y. (2019). “Visually Guided Robot Grasping of a
Spacecraft’s Apogee Kick Motor,” in Proceedings of the 15th Symposium on
Advanced Space Technologies in Robotics and Automation (ASTRA).

Mavridou, A., Bourbouh, H., Garoche, P.-L., and Hejase, M. (2019). “Evaluation of
the FRET and CoCoSim Tools on the Ten Lockheed Martin Cyber-Physical
challenge Problems,”. Technical report, TM-2019-220374, NASA.

M. Leino, K. R. (2017). Accessible Software Verification with Dafny. IEEE Softw.
34, 94–97. doi:10.1109/ms.2017.4121212

[Dataset] Orbital ATK (2016). ATK Space Propulsion Products Catalog
Pnueli, A. (1977). “The Temporal Logic of Programs,” in 18th Annual Symposium on

Foundations of Computer Science, Providence, Rhode Island, USA, 31October - 1
November 1977 (IEEE Computer Society), 46–57. doi:10.1109/SFCS.1977.32

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS: an
Open-Source Robot Operating System,” in Workshop on Open Source Software at
the International Conference on Robotics and Automation (Japan: IEEE).

Rohmer, E., Singh, S. P., and Freese, M. (2013). “V-rep: A Versatile and Scalable Robot
Simulation Framework,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan (IEEE), 1321–1326. doi:10.1109/
iros.2013.6696520

Rozier, K. Y., and Schumann, J. (2016). “R2u2 in Space: System and Software
Health Management for Small Satellites,” in 9th Annual Workshop on
Spacecraft Flight Software (FSW-2016).

Schumann, J.,Moosbrugger, P., andRozier, K.Y. (2015). “R2u2:Monitoring andDiagnosis
of Security Threats forUnmannedAerial Systems,” inRuntime Verification (Springer),
233–249. vol. 9333 of LNCS. doi:10.1007/978-3-319-23820-3_15

Shan, M., Guo, J., and Gill, E. (2016). Review and Comparison of Active Space
Debris Capturing and Removal Methods. Prog. Aerospace Sci. 80, 18–32.
doi:10.1016/j.paerosci.2015.11.001

Sistla, A. P., and Clarke, E. M. (1985). The Complexity of Propositional Linear
Temporal Logics. J. ACM 32, 733–749. doi:10.1145/3828.3837

Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., and Nummila, L. (2012).
“Formal Development and Assessment of a Reconfigurable On-Board Satellite
System,” in International Conference on Computer Safety, Reliability, and
Security (Berlin: Springer), 210–222. vol. 7612 of LNCS. doi:10.1007/978-3-642-
33678-2_18

Webster, M., Western, D., Araiza-Illan, D., Dixon, C., Eder, K., Fisher, M., et al.
(2020). A Corroborative Approach to Verification and Validation of Human-
Robot Teams. Int. J. Robotics Res. 39, 73–99. doi:10.1177/0278364919883338

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Farrell, Mavrakis, Ferrando, Dixon and Gao. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 63928220

Farrell et al. Formal Verification of Autonomous Grasping

https://doi.org/10.4204/eptcs.329.2
https://doi.org/10.4204/eptcs.329.2
https://doi.org/10.1007/978-3-030-55754-6_20
https://doi.org/10.1007/s43154-021-00058-1
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/eptcs.329.3
https://doi.org/10.1007/978-3-030-30446-1_25
https://doi.org/10.1007/978-3-030-30446-1_25
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/icse.2013.6606754
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1145/3342355
https://doi.org/10.1109/aero47225.2020.9172563
https://doi.org/10.1109/ms.2017.4121212
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/iros.2013.6696520
https://doi.org/10.1109/iros.2013.6696520
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1016/j.paerosci.2015.11.001
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/978-3-642-33678-2_18
https://doi.org/10.1007/978-3-642-33678-2_18
https://doi.org/10.1177/0278364919883338
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Formal Modelling and Runtime Verification of Autonomous Grasping for Active Debris Removal
	1 Introduction
	2 Related Work
	3 System Overview and Requirements Elicitation
	3.1 Architecture Analysis and Design Language Model
	3.2 Requirements Elicitation

	4 Formal Modelling and Verification with Dafny
	4.1 Overview: Autonomous Grasping Algorithm
	4.1.1 Pre-Processing the Image
	4.1.2 Finding the Optimal Grasp

	4.2 Encoding the Basic Data Types
	4.3 Image Pre-Processing
	4.4 Find Optimal Grasp
	4.5 Verification Results and Discussion

	5 Runtime Verification
	5.1 ROSMonitoring
	5.1.1 Instrumentation
	5.1.2 Oracle
	5.1.3 ROS Monitor

	5.2 Monitoring of Requirements

	6 Experimental Results
	6.1 Including the Runtime Monitors
	6.2 Simulation Verification
	6.3 Testbed Verification
	6.4 Fault Injection

	7 Discussion
	7.1 Architecture Analysis and Design Language
	7.2 Formal Requirements Elicitation Tool
	7.3 Dafny
	7.4 ROSMonitoring
	7.5 Gaps in the Requirements
	7.6 Post-implementation Verification

	8 Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References

