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Space manipulators have attracted much attention due to their implications in on-orbit

servicing in recent years. Air bearing based support equipment is widely used for ground

test to offset the effect of gravity. However, an air bearing support introduces a new

problem caused by additional inertial and mass properties. Additional mass and inertial

load will influence the dynamics behavior, especially stiffness information and vibration

response of the whole ground test system. In this paper, a set of procedures are

presented to remove the influence of air bearings and identify the true equivalent joint

stiffness and damping from the test data of a motor-braked space manipulator with

an air bearing support. First, inertia parameters are identified. Then, the equivalent joint

stiffness and damping are determined by using a genetic algorithm (GA) method. Finally,

true vibration characteristics of the manipulator are estimated by removing the additional

inertia caused by the air bearings. Moreover, simulations and experiments are carried out

to validate the presented procedures.

Keywords: space manipulator, air bearing, vibration, ground-test, identification

1. INTRODUCTION

Space manipulator systems, of the kinds used in space missions, have attracted much attention due
to their high performance in active debris removal (Shan et al., 2016) and on-orbit servicing (Flores-
Abad et al., 2014) in recent years. Over the past decades, a succession of technological advances
has been made in both hardware device designs (Yoshida, 2009; Jaekel et al., 2018) and software
algorithm developments (Nanos and Papadopoulos, 2017; Valverde and Tsiotras, 2018; Virgili-Llop
and Romano, 2019; Liu et al., 2020).

Space manipulator systems have high requirements for safety and reliability on account of
the fact that operational errors of the manipulator may cause serious damage to the system.
Consequently, in order to reduce the risk of on orbit operations, strict ground tests before launch
are indispensable for both hardware and software. Among the existing ground test facilities, the
air bearing testbed has been widely used due to its simple structure, long simulation time, and
the least influence of resistance and reaction force (Wilde et al., 2019). Many air bearing testbeds
have been built and used for hardware testing (Rybus and Seweryn, 2016; Mantellato et al., 2017)
and control algorithm verification (Cocuzza et al., 2010, 2011; Rybus et al., 2013) in zero-gravity
condition. Functional prototypes were designed and tested by air bearing facilities for various
applications. Most of new end-effectors used for self-relocation (Han et al., 2016), target capturing
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(Liu et al., 2015; Kwok Choon et al., 2018), surface sampling
(Moreland et al., 2018), and spacecraft refueling (Medina
et al., 2017) were tested and verified carefully before on-orbit
applications. Moreover, many algorithmic procedures have been
presented and verified on an air bearing testbed for theoretical
research such as capturing controller design Huang et al. (2018),
on-orbit parameters identification and calibration (Li et al.,
2017; Meng et al., 2020), and trajectory planning for space
manipulators (Sabatini et al., 2017).

The studies mentioned above have provided considerable
results about air bearing experiments. However, most of the
existed experiments ignored the additional mass and inertia of
the supporting air bearings, which will significantly affect the
dynamic characteristics of the manipulator system during air
bearing test tasks, i.e., joints torque, and vibrations measured
in an air bearing test are different from those in a similar
on-orbit task. The influence of the air bearings on joint
torque was studied and decoupled from air bearing test data

FIGURE 1 | Manipulators used for air bearing test: (A) a 7-DOF manipulator, (B) a reduced equivalent manipulator, and (C) the two composite bodies.

(Ma and Zhao, 2015; Yao et al., 2018). On the other hand,
there is no open literature about the influence on air bearing
tested vibration characteristics. It is generally accepted that
the flexibility of a manipulator cannot be avoided completely.
In practice, flexibility will improve the adaptability of the
end effector, which ensures the manipulator is not easily
damaged. However, flexibility will also include unexpected
oscillations, which will significantly increase the propellant
expenditure and influence the control precision (Virgili-Llop
et al., 2017). In actual on-orbit tasks, especially when a space
manipulator has finished performing trajectories and brakes,
residual vibrations will be observed (Meng et al., 2018; Ren
et al., 2018). Moreover, it takes astronauts about 20 to 40s
to wait for the attenuation of vibration excited during the
process of manipulator movement before the next operation
(Meng et al., 2018). So, an estimation of the true vibration
characteristics from ground test data is very important for on-
orbit task design.
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FIGURE 2 | Coordinate system of the manipulator.

In this paper, vibration characteristics of an air bearing
supported manipulator with a flexible joint are studied.
The aim of the presented work is to develop a decouple
procedure by which the real on-orbit vibration characteristics
can be determined from the air bearing test data of a motor-
braked manipulator. Dynamic equations of the air bearing
test system are established, and a three-step procedure is
developed to remove the dynamics effect of supporting
air bearings. First, inertia parameters of the manipulator
with air bearings are identified. Then the equivalent joint
stiffness and damping are determined by using a genetic
algorithm (GA) method. Finally, true vibration characteristics
of the manipulator are estimated by removing the additional
inertia caused by the air bearings. The proposed method
is verified by a set of numerical simulations and air
bearing experiments.

The rest of the presented work is organized as follows. In
section 2, dynamic equations of the system is established, and
a three-step procedure including parameter identification and
additional inertia removing is presented in detail. Concequently,
simulations and experiments are conducted to verify the
presented method in section 3. Finally, the paper is summarized
in section 4.

2. MATERIALS AND METHODS

Dynamics model of a motor-braked manipulator supported by
air bearings is established in this section, based on which a
three-step procedure is developed to remove the influence of
air bearings. In this study, a dimension reduced equivalent
manipulator with joint flexibility is adopted to illustrate the
established method.

2.1. Dynamics Equation
In order to test complex tasks in on-orbit operations, a “section”
method is usually used as a practical option (Liu et al., 2015).
With this method, first, a series of planar motions are tested, and
then the composition of the planar motions is treated as a spatial

one. Therefore, dimension reduced dynamics equivalent models
in a plane are often used in the air bearing test facilities (Du et al.,
2018). A typical 7-DoFmanipulator is illustrated in Figure 1A for
air bearing ground test. Due to the planar motion constraint, the
four yaw and roll joints are constrained, and a reduced equivalent
manipulator shown in Figure 1B is usually used to replace the
7-DOF one in the air bearing facilities.

A flexible-link manipulator and a rigid-link manipulator are
designed for different tasks. Manipulators with flexible links
have good robustness but poor positioning accuracy and are
suitable for heavy load transportation or auxiliary docking. Rigid-
link manipulators have high precision and are suitable for fine
operation and target capture. This paper mainly studies the joint
vibration of rigid-link manipulators such as ETS-VII and the
Orbital Express. Equivalent stiffness and damping are lumped at
the joint level in this study, and links are simplified as rigid ones
(Nanos and Papadopoulos, 2015).

It is assumed that the manipulator is fixed on a large
base such as the International Space Station (ISS) so that the
reaction motion of the base caused by the manipulator can be
ignored, thus, the equivalent manipulator shown in Figure 1B

consists of three joints and two links. From the base to the
end-effector, the three joints are named as shoulder joint (J1),
elbow joint (J2), and wrist joint (J3), separately. The upper
arm link L1 is connected to the base by J1, the lower arm
link L2 is connected to L1 by J2, and the end-effector is
connected to L2 by J3. In this equivalent manipulator system,
displacements of the end-effector are mainly determined by the
first two joints while the wrist joint is mainly used to adjust
the orientation of the end-effector. Therefore, vibrations of the
motor-braked manipulator are mainly caused by flexibilities of
the first two joints, so the flexibility of J3 is neglected in this
work. Consequently, the system is separated into two composite
bodies B1 and B2 as shown in Figure 1C. The equivalent
angular deformations q1 and q2 are chosen to be the generalized
coordinates, and reference coordinate system is established as
shown in Figure 2. The dynamics equation of the system is
obtained as:

Zq̈+ f w + f k = 0 (1)

where Z is the generalized mass matrix, f w is the non-linear

torque caused by inertia, and f k is a set of joint passive

torque including stiffness and damping. Due to the fact that
the joint motors are braked, the motor driven torque vanishes
in Equation (1). The generalized mass matrix Z can be
expanded as:

Z

=

(

I1 + I2 +m2l
2
1 + 2l1m2[ρ2 cos(θ2,0 + q2)] m2ρ2l1 cos(θ2,0 + q2)+ I2

m2ρ2l1 cos(θ2,0 + q2)+ I2 I2

)

(2)

where I1 is the inertia of B1 expressed in the body fixed
frame and I2 is the inertia of B2 in the body fixed frame. l1
and l2 depict the length of the two links L1 and L2. m2 is the
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mass of B2. ρ2 is the axial coordinate of the mass center of B2
decomposed in the body fixed frame. The value of ρ2 is usually
unknown due to the asymmetric of B2. θ2,0 is the initial angle
of J2.

The non-linear inertia torque f w is given by:

f w =

(

m2l1(q̇
2
2 − q̇21) sin(θ2,0 + q2)ρ2

−m2l1q̇
2
1 sin(θ2,0 + q2)ρ2

)

(3)

where q̇1 and q̇2 depict the angular velocities of J1 and J2,
respectively. For constant coefficients of stiffness and damping,
the joint passive torque f k is given by:

f k =

(

k1q1 + c1q̇1
k2q2 + c2q̇2

)

(4)

where ki and ci, (i = 1, 2) are the stiffness and damping
coefficients of Ji, (i = 1, 2).

In order to estimate the true vibration characteristics of the
manipulator, the primary effect introduced by air bearings should
be determined. Inertial parameters affected by the air bearings
can be expressed as:







m2 = m2,0 +ms1 +ms2

I2 = I2,0 + Is1 + Is2 +ms2 l
2
2

m2ρ2 = m2,0ρ2,0 +ms2 l2

(5)

where msi, (i = 1, 2) and Isi are the mass and inertia of the i-th
air bearing.

As can be seen in Equations (1, 5), the extra terms in
the dynamics equation are caused by additional inertia of
the air bearings. Therefore, a primary route to get the true
dynamics information is to identify the dynamics parameters
of the air bearing supported system, and then remove the
additional inertia of the air bearings. So, an essential step
is to identify the parameters of the air bearing supported
manipulator system.

2.2. Identifiability of the Parameters
For parameter identification of a system presented by Equation
(1), if values of the mass, inertia, stiffness and damping are scaled
by an arbitrary constant factor α, the three terms in Equation (1)
can be rewritten as:

(

αI1 + αI2 + αm2l
2
1 + 2l1αm2[ρ2 cos(θ2,0 + q2)] αm2ρ2l1 cos(θ2,0 + q2)+ αI2

αm2ρ2l1 cos(θ2,0 + q2)+ αI2 αI2

)

= αZ (6)

(

αm2l1(q̇
2
2 − q̇21) sin(θ2,0 + q2)ρ2

−αm2l1q̇
2
1 sin(θ2,0 + q2)ρ2

)

= αf w (7)

(

αk1q1 + αc1q̇1
αk2q2 + αc2q̇2

)

= αf k (8)

Therefore, dynamics equation of the scaled system is:

α(Zq̈+ f w + f k) = Zq̈+ f w + f k = 0 (9)

It is obvious that different sets of parameters lead to the same
dynamics equation, which indicates that only the proportional
relationship between the joint parameters and inertia can be
determined bymotion data of a system described by Equation (1).
In order to complete the identification, inertial parameters should
be determined at first. Then, corresponding joint information
could be identified. As a result, a three-step procedure is
presented as follows:

1. Identify the inertial parameters by driving the joints according
to a prescribed trajectory.

2. Identify the joint stiffness and damping with motion data and
the inertial parameters identified from step one.

3. Remove the additional inertia of the air bearings and establish
the dynamics equation with the new inertial parameters and
the joint parameters determined by step 2.

Details of these steps will be presented in section 2.3.

2.3. Identification of Inertia
The inertia of a composite part can be identified by the least-

squares method, which is usually used to identify the inertia

information of an industrial manipulator (Wu et al., 2010).When

the shoulder joint J1 is locked, the relationship between motor

torque and motions of the other joint J2 can be written as:

I2q̈2 − ff2sign(q̇2)− fv2 q̇2 = τ2 (10)

and when J2 is locked, dynamics equation of the combination of
B1 and B2 can be presented as:

(I1 + I2 +m2l
2
1 + 2m2l1ρ2 cos(θ2,0))q̈1 − ff1sign(q̇1)− fv1 q̇1 = τ1

(11)
where ffi , (i = 1, 2) is a constant part of the friction torque and fvi
is a viscous friction coefficient. τi is the drive torque generated by
the motor of Ji.

With a time series of data, Equations (10, 11) can be
rewritten as:







q̈1,t1 sign(q̇1,t1 ) q̇1,t1
...

...
...

q̈1,tn sign(q̇1,tn ) q̇1,tn











I1 + I2 +m2l
2
1 + 2m2l1ρ2 cos(θ2,0)

ff1
fv1





=







τ1,t1
...

τ1,tn






(12)

and







q̈2,t1 sign(q̇2,t1 ) q̇2,t1
...

...
...

q̈2,tn sign(q̇2,tn ) q̇2,tn











I2
ff2
fv2



 =







τ2,t1
...

τ2,tn






(13)

Using the least squares method, the values of the parameters can
be determined.
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In order to get all the four elements in the generalized mass
matrix Z, another value θ ′0,2 of the initial angle of J2 can be
chosen to repeat the identification of Equation (11). Then, the
relationship between the inertial parameters and the identified
results is obtained as follows:







I1 + I2 +m2l
2
1 + 2m2l1ρ2 cos(θ2,0) = p1

I1 + I2 +m2l
2
1 + 2m2l1ρ2 cos (θ

′
2,0) = p′1

I2 = p2

(14)

where p1, p
′
1, and p2 are composite inertia values obtained from

the least-squares method. Thus, the term m2ρ2 in Equation (1)
can be determined by:

2[cos(θ2,0)− cos (θ ′2,0)]m2l1ρ2 = p1 − p′1 (15)

This equation can be solved by choosing suitable values of θ2,0
and θ ′2,0 to ensure that:

[cos (θ2,0)− cos (θ ′2,0)] 6= 0 (16)

Therefore, the elements in the generalized mass matrix Z and
inertial torque vector f w can be fully determined.

2.4. Determination of Joint Parameters
Identification of joint parameters is different from the previous
identification step due to the fact that no motor driven torque
can be obtained and that the equivalent joint deformation angle
cannot be measured directly. The least-squares method cannot
be used to complete the identification because the right term τ

is zero, which leads to an invalid solution that all parameters
are zero. Futhermore, the deformation angles series is not
a prescript function of time, so analytical values of angular
velocities and accelerations cannot be calculated directly. To
address this issue, a motion capture system is introduced to get
the motion information of the manipulator, and then the GA
method (Chipperfield and Fleming, 1995) is used to identify the
joint parameters. Then the problem of parameters identification
is converted to an optimization problem of finding the suitable
values of k1, k2, c1, and c2 to minimize an objective function as:

O =
|q

s1
− q

1
|

|q
1
|

+
|q

s2
− q

2
|

|q
2
|

(17)

where q
si
, (i = 1, 2) is a set of time series of the predicted joint

angle of Ji, and q
i
is the joint angle meausred from simulation

or experiment.
Figure 3 shows the procedure of the GA method, which

iterates around the generational loop until the present generation
ng reaches the default maximum generation Gmax and then
terminates. The results of the genetic optimization are the
required joint parameters in this step.

2.5. Additional Inertia Removing
By using the previous two steps, dynamics parameters of the air
bearing supported manipulator system can be fully obtained. The

FIGURE 3 | Procedure of the genetic algorithm method.

FIGURE 4 | Simulation model of an air bearing supported manipulator.

TABLE 1 | Parameters of the simulational manipulator with air bearings.

l1, m l2, m ms1, kg ms2 Is1 kg·m2 Is2 kg·m2

0.4 0.4 1.9635 1.9635 0.00245437 0.00245437

last step to get the true vibration information is to remove the
additional inertial caused by the air bearings.

After measuring the mass and inertia of the air bearings,
the values of m20, I20, I10, and m20ρ20 can be calculated by
Equation (5). Consequently, replace the values in Equation (1)

Frontiers in Robotics and AI | www.frontiersin.org 5 May 2021 | Volume 8 | Article 641165

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Li et al. Parameter Estimation From Air Bearing Test

with the result above. Dynamics equations of the motor-braked
manipulator without air bearings are obtained as:

Z0q̈+ f w
0
+ f k = 0 (18)

where

Z0 =

(

I10 + I20 +m20l
2
1 + 2l1m20[ρ20 cos(θ2,0 + q2)] m20ρ2l1 cos(θ2,0 + q2)+ I20

m20ρ20l1 cos(θ2,0 + q2)+ I20 I20

)

(19)

and

f w
0
=

(

m20l1ρ2(q̇
2
2 − q̇21) sin(θ2,0 + q2)

−m20l1ρ20q̇
2
1 sin(θ2,0 + q2)

)

(20)

Finally, vibration characteristics can be predicted by
Equation (18).

3. VALIDATION AND RESULT

In this section, simulations and experiments are designed and
conducted to validate the presented procedure of estimating
the true vibration characteristics of a tested manipulator. A
manipulator capable of operating both with and without air
bearings are designed, hence the estimating results can be
compared with the measured one directly.

TABLE 2 | Identification result of the inertial parameters.

(I1+I2 +m2l
2
1+2m2l1ρ2) I2

Set value 2.9640 0.5920

Identified value 2.8959 0.5790

Identified error 2.29% 2.20%

FIGURE 5 | Motions and torque of the simlational Test I, II, and III, (A) Joint angles, (B) Joint angular velocties, (C) Joint angular accelerations, and (D) Joint torque.
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FIGURE 6 | Simulational vibration angles with air bearings, (A) Angles of J1 (B) Angles of J2.

FIGURE 7 | Simulational vibration angles without air bearings, (A) Angles of J1 (B) Angles of J2.

3.1. Simulation
To illustrate the proposed procedure, a set of numerical
simulations is conducted based on the open source platform
Webots (Michel, 2004). A no-gravity simulation environment
is adopted by assuming that the gravity is counteracted by the
air-supporting force. A 3-DOF manipulator is built as shown in
Figure 4. Lengths of L1 and L2 are both 0.4 m. Joint stiffness is set
to be 100 N/rad, and the damping is set to be 0.1 Nms/rad. Other
parameters of the simulation model can be found in Table 1.

In the first identification step, three tests are conducted
according to Equations (10, 11). For Tests I and II, the elbow joint
J2 is locked, and J1 is driven to perform a trajectory, where θ2,0
and θ ′2,0 are chosen to be 0 and π/2, separately. In Test III, J1 is

locked, and J2 is driven to perform the trajectory. In these tests,
the joint trajectory is designed as:

θ = a+ b cos (ωt + θ0) (21)

where a = 0.7854, b = –0.7854, ω = 0.3, and theta0 = –0.028.
Joint rate and acceleration can be obtained by the first and second
derivatives of θ :

θ̇ = −bω sin (ωt + θ0) (22)

θ̈ = −bω2 cos (ωt + θ0) (23)
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FIGURE 8 | Experiment facilities (A) Manipulator with air bearings (B) Manipulator without air bearings.

TABLE 3 | Parameters of the experimental manipulator with air bearings.

l1, m l2, m ms1, kg ms2 Is1 kg·m2 Is2 kg·m2

0.4 0.4 2.376 2.334 0.001455 0.001430

The joint angle, angular velocity, acceleration, and torque are
shown in Figure 5. Parameters of the inertia information are
determined as I1 = 2.8959 kg·m2, I2 = 0.5790 kg·m2, and m2ρ2
= 1.4384 kg·m. Consequently, these results can be used in the
next step to determine the joint parameters. Comparison between
the identification results and the real values are listed in Table 2.
The identification error is about 2.3%. It is noticeable that
the flexibilities of joint are not considered in the identification
procedure, but are considered in the simulation. Therefore, a
conclusion can be drawn that the stiffness factor can scarcely
influence the identification result, which is because that the
stiffness does not dissipate any energy.

The equivalent stiffness of a motor-braked manipulator
includes two parts, one is the same as a motor-driven one, and
the other is caused by the deformation of the brakes. Therefore,
the equivalent stiffness can be treated as a serial of two torsional
springs. Then, the stiffness can be calculated by:

1

k
=

1

kj
+

1

kb
(24)

where kj is the stiffness caused by joint and link flexibilities and
kb is the stiffness caused by the deformation of the brakes. The
value of kj is set to be the same as the previous simulation, i.e.,
100 Nm/rad and kb are set to be 20 Nm/rad, so the value of the
equivalent joint stiffness is 16.67 Nm/rad according to Equation
(24).

In the GA procedure, 100 individuals are generated in each
generation and Gmax is set to be 500. After 500 generations,
the values k1 = 16.2717 Nm/rad, k2 = 16.1601 Nm/rad,
c1 = 0.0754 Nms/rad, and c2 = 0.1522 Nms/rad lead to

an acceptable agreement with the motion collected from the
vibration simulation as shown in Figure 6, which indicates that
the first two step is practical to identify the dynamics parameter
of an air bearing supported manipulator. In the next section,
the identification result is used to predict the motion of the
manipulator without air bearings.

As described in section 2.5, the additional inertia can be
removed from the dynamics equation by measuring the mass
and inertia of the air bearings. Thus, the dynamics Equation
(18) can be solved to predict the motions of the manipulator
without air bearings. The predicted joint angles and themeasured
result without air-bearings (solid lines) and the measured result
with air-bearings (dotted lines) are shown in Figure 7. It can be
observed that the predicted results are in good agreement with
the measured one. The measured frequency of the manipulator
without air bearings is 0.5128 Hz. The predicted oscillation
frequency of the manipulator without air bearings is 0.5263 Hz,
and the measured frequency with air bearings is 0.3488 Hz. Thus,
it can be concluded that the predicted value is much closer to
the true frequency than the measured one with air bearings. The
presented method has reduced the frequency error from 32% of
the air bearing test result to 2.6% of the prediction.

3.2. Experiment
An experimental system is designed and built as shown in
Figure 8 to validate the presented method. The test manipulator
is the same one used in Yao et al. (2018) which has three
single-axis revolute joints, and each joint is actuated by a
brushless motor with a harmonic gearbox and an absolute
encoder. The manipulator is designed such that it can freely
operate on the horizontal plane with (see Figure 8A) or without
(see Figure 8B) air bearings. The testing without air bearings
represents the true dynamics of the manipulator operating in
a microgravity environment. The test data from the testing
with air bearings are first treated by the presented procedures
and then compared with the data from the testing without
air bearings. The comparison result indicates the validity of
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FIGURE 9 | Motions and torque of the experimental Test I, II, and III, (A) Joint angles, (B) Joint angular velocties, (C) Joint angular accelerations, and (D) Joint torque.

the presented methods. Markers of a Vicon motion capture
system are fixed on the center of each joint. Consequently,
the motion of each joint is captured by cameras in the
Vicon system. The kinematics parameters of the manipulator
and inertial parameters of the air bearings are listed in
Table 3.

The same procedure as section 3.1 is conducted on
the air bearing platform as shown in Figure 8. In the
first identification, three tests were conducted according to
Equations (10, 11). For Tests I and II, the elbow joint J2
is locked, and J1 is driven according to the trajectory in
Figure 9A, where θ2,0 and θ ′2,0 are chosen to be 0 and
π/2, separately. In Test III, J1 is locked and J2 is driven
to perform the trajectory. The trajectories, angular velocities,
accelerations, and torque are shown in Figure 9. Therefore,
composition inertia of the manipulator can be identified. The
composite inertia [I1 + I2 + m2l

2
1 + 2m2l1ρ2 cos(θ2,0)] in

each configuration have been identified by using the results of
Tests I and II. The inertia terms I2 and m2ρ2 of B2 can be

determined by solving Equation (10) with the results of Test
III.

After the inertial parameters are determined, joint motors
are all braked. External forces are applied at the start of the
experiment to cause vibrations of the manipulator. Motions of
the Vicon markers are collected to calculate the equivalent joint
deformation angles.

In the GA procedure, 100 individuals are generated in each
generation and Gmax is set to be 500. After 500 generations, the
values k1 = 8.30 Nm/rad, k2 = 3.15 Nm/rad, c1 = 0.65 Nms/rad,
and c2 = 0.21 Nms/rad lead to an acceptable agreement with
the motion collected from the experiment with air bearings as
shown in Figure 10, which indicates that the first two steps are
practical to identify the dynamics parameter of the air bearing
supported manipulator.

In next step, the identification result is used to predict the
motion of the manipulator without air bearings.

As described in section, the additional inertia is removed
from the dynamics equation. Thus, the dynamics equation can
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FIGURE 10 | Experimental vibration angles with air bearings, (A) Angles of J1 (B) Angles of J2.

FIGURE 11 | Experimental vibration angles without air bearings (A) Angles of J1 (B) Angles of J2.

be solved to predict the motions of the manipulator without air
bearings. The predicted joint angles and the measured one of the
manipulator without air bearings are shown in Figure 11. It can
be observed that the predicted results are in good agreement with
the measured one. The measured frequency of the manipulator
without air bearings is 0.3750 Hz.The predicted oscillation
frequency of the manipulator without air bearings is 0.3390 Hz,
and the measured frequency with air bearings is 0.2222 Hz. Thus,
it can be concluded that the predicted value is much closer to

the true frequency than the measured one with air bearings.
The presented method has reduced the frequency error from
40.75% of the air bearing test result to 9.6% of the prediction.
Therefore, the presentedmethod for estimating the true vibration
frequency of a motor-braked space manipulator from the air
bearing supported test data is validated. On the other hand, it

is noticeable that the measured result and the predicted one
diverging as the time increases due to the fact that the equivalent
damping coefficients aremuch larger than the true values without
air bearings. This problem is mainly caused by additional friction
and damping of the air bearings. Future work should, therefore,
focus on this issue.

4. DISCUSSION

This paper presented a three-step procedure to remove additional
inertial effect of air bearings from air bearing supported
manipulator ground test data. With the presented procedure,
true vibration frequency of a joint-braked manipulator can
be determined from the air bearing test data. Therefore, the
vibration information can be used for on-orbit controller
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design and the prevention of operational risk. Simulations and
experiments are conducted to validate the proposed procedure.
Results of the simulations and experiments show that the
additional air bearings could introduce a frequency error of
about 30 ˜40%. Estimation result of the presented procedure
demonstrated that the procedure can process the test data with
air bearings close to the true data, and the frequency error is
reduced to less than 10%. However, some limitations are worth
noting. Although the vibration frequency has been determined by
using the presented method, the determined equivalent damping
is much larger than the true values without air bearings. This
problem is mainly caused by additional friction and damping of
the air bearings. Future work should therefore focus on issues
such as additional damping of air bearings caused by friction and
air resistance.
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