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Accumulating space debris edges the space domain ever closer to cascading Kessler
syndrome, a chain reaction of debris generation that could dramatically inhibit the practical
use of space. Meanwhile, a growing number of retired satellites, particularly in higher orbits
like geostationary orbit, remain nearly functional except for minor but critical malfunctions
or fuel depletion. Servicing these ailing satellites and cleaning up “high-value” space debris
remains a formidable challenge, but active interception of these targets with autonomous
repair and deorbit spacecraft is inching closer toward reality as shown through a variety of
rendezvous demonstration missions. However, some practical challenges are still
unsolved and undemonstrated. Devoid of station-keeping ability, space debris and
fuel-depleted satellites often enter uncontrolled tumbles on-orbit. In order to perform
on-orbit servicing or active debris removal, docking spacecraft (the “Chaser”) must
account for the tumbling motion of these targets (the “Target”), which is oftentimes not
known a priori. Accounting for the tumbling dynamics of the Target, the Chaser spacecraft
must have an algorithmic approach to identifying the state of the Target’s tumble, then use
this information to produce useful motion planning and control. Furthermore, careful
consideration of the inherent uncertainty of any maneuvers must be accounted for in order
to provide guarantees on system performance. This study proposes the complete pipeline
of rendezvous with such a Target, starting from a standoff estimation point to a mating
point fixed in the rotating Target’s body frame. A novel visual estimation algorithm is applied
using a 3D time-of-flight camera to perform remote standoff estimation of the Target’s
rotational state and its principal axes of rotation. A novel motion planning algorithm is
employed, making use of offline simulation of potential Target tumble types to produce a
look-up table that is parsed on-orbit using the estimation data. This nonlinear
programming-based algorithm accounts for known Target geometry and important
practical constraints such as field of view requirements, producing a motion plan in the
Target’s rotating body frame. Meanwhile, an uncertainty characterization method is
demonstrated which propagates uncertainty in the Target’s tumble uncertainty to
provide disturbance bounds on the motion plan’s reference trajectory in the inertial
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frame. Finally, this uncertainty bound is provided to a robust tube model predictive
controller, which provides tube-based robustness guarantees on the system’s ability to
follow the reference trajectory translationally. The combination and interfaces of these
methods are shown, and some of the practical implications of their use on a planned
demonstration on NASA’s Astrobee free-flyer are additionally discussed. Simulation
results of each of the components individually and in a complete case study example
of the full pipeline are presented as the study prepares to move toward demonstration on
the International Space Station.

Keywords: space robotics, motion planning, robust tube MPC, visual estimation, on-orbit servicing, planning under
uncertainty

1 INTRODUCTION

Tumbling objects are commonplace on-orbit. Spent rocket
bodies, fuel-exhausted satellites, and space debris are all
examples of potential free-tumbling objects. In a variety of
sub-fields of space robotics, including on-orbit servicing and
repair, active debris removal, and on-orbit assembly, the
ability to dock with arbitrary tumbling objects given the
limited initial knowledge of the Target object is a key
capability (Flores-Abad et al., 2014). Often, these tasks are
safety critical but cannot allow human-in-the-loop oversight
due to the complexity of the maneuvers involved and the lack
of reliable teleoperation and communication. As a result, robotic
autonomous execution of rendezvous activities is a desirable
capability in order to repair satellites, de-orbit debris, and more.

Consequently, autonomous docking with tumbling Targets is
an active area of literature in the space robotics community, with
a variety of individual algorithmic contributions over the past
two decades. Some of the earliest studies dealt with motion and
parameter estimation of tumbling Targets, the first step in
preparing for rendezvous (Hillenbrand and Lampariello, 2005).
Assuming Target knowledge, multiple early studies also proposed
a variety of motion planning and control techniques, including
deterministic approximate analytical trajectory optimization
(Fejzi and Miller, 2008), detailed optimal control formulations
(Aghili, 2008), and nonlinear optimization-based formulations
(Lampariello, 2010). Work in this area progressively added
greater complexity, including increased sources of uncertainty
(Aghili, 2012; Sternberg and Miller, 2018) and more advanced
motion planning approaches (Aghili, 2020).

Recently, some work has begun to explore the significant
robotics systems integration considerations required for the
integration of multiple elements of the autonomous
rendezvous phase: estimation, motion planning, and control
under uncertainty, to name a few (Terán Espinoza et al.,
2019). Leveraging recent work in robust control and planning,
the ability to provide guarantees on system performance in the
real-time setting of autonomous rendezvous has brought full-
fledged autonomous docking frameworks within reach (Limon
et al., 2008; Majumdar and Tedrake, 2017; Buckner and
Lampariello, 2018; Mammarella et al., 2018). However, the
need remains for a complete autonomy pipeline for such a
maneuver that is additionally robust to the most significant

uncertainty sources of autonomous docking with tumbling
Targets and that can operate with automatic visual estimation
and motion planning components.

This study details such a framework that can account for some
of the key uncertainty sources of tumbling rendezvous;
specifically, the unknown Target tumble state. This framework,
currently scheduled for a series of International Space Station
(ISS) tests in 2021, introduces the algorithmic approach to
connect these submodules to make autonomous close
proximity rendezvous a reality, while additionally considering
uncertainty due to imperfect knowledge of these tumbling
Targets. Furthermore, this study describes the unique way in
which this form of uncertainty results in an uncertain reference
trajectory and discusses the limits on providing robustness
guarantees. Initial results on all parts of the autonomy pipeline
are presented independently, along with a full case study example
of an autonomous rendezvous in a detailed simulation
environment.

The remainder of this article is formulated as follows: Section
2 outlines the autonomous rendezvous problem; Section 3 details
the varied methods needed to form the full autonomy pipeline
and how these segments interact; Section 4 presents results of
individual components as well as a case study example of the full
pipeline algorithm in a detailed simulation environment; and
finally, Section 5 includes a discussion of the proposed pipeline
and plans for integration and future experimental testing.

2 PROBLEM FORMULATION

The problem considers a close proximity rendezvous maneuver
within the last ∼20–40 m of the approach operation, with the goal
of safely approaching a tumbling free-floating object (the
“Target”) and reaching a predefined offset point fixed in the
Target’s body frame called the mating point (MP). It is assumed
that the Target is non-cooperative and passive. The Chaser
spacecraft that will perform the rendezvous begins at some
initial standoff offset distance roff and is equipped to perform
visual estimation of the Target. Geometric and velocity state
constraints X on the Chaser motion are given by the geometry
and motion of the Target and the velocity and operational limits
of the Chaser. The Chaser also has input limits U due to its
thruster capability. The Chaser has rough knowledge of the
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Target’s inertial parameters, but not its spin. A strategy is
required to perform ingress to the uncertain tumbling Target
and sync up with a safe and predefined MP. Ideally, any motion
planning will be optimal with respect to some performance
measure and maintaining some level of robust execution with
respect to any plan is desirable.

2.1 Representative Satellite System of
Interest
The Astrobee robots are a series of free-flying robots operating
aboard the ISS with the purpose of 1) astronaut assistance and
2) microgravity autonomy research (Albee, Ekal, and Oestreich,
2020). In this way, the Astrobee program serves as a successor to
the Synchronized Position Hold, Engage, and Reorient
Experimental Satellites (SPHERES) in terms of guidance,
navigation, and control experiments in microgravity Saenz-
Otero and Miller (2005). The development of the autonomy
pipeline proposed in this study has been produced in
conjunction with scheduled ISS testing on the Astrobee
hardware, and so uses this representative satellite system for
demonstration purposes.

Astrobee is one of the first reusable microgravity testbeds
capable of providing the hardware needed to test an autonomous
tumbling rendezvous framework. Astrobee utilizes two impellers

which are throttled in each direction to provide full holonomic
propulsion capability. The robots use multiple sensors for
navigation, including 2D visual cameras, 3D time-of-flight
(ToF) cameras, and an inertial measurement unit (IMU). The
flight software is implemented on two general-purpose
processors, each running Ubuntu 16.04 and the Robotic
Operating System (ROS). Two Astrobees are used in this
experiment: one designated as the Chaser satellite, and the
other designated as the Target object. The Chaser’s forward-
facing 3D ToF camera (“HazCam”) and IMU provide the front-
end measurements to the relative state and parameter estimation
problem.

2.2 System Dynamics
Two sets of dynamics are at work: those of a partially
uncharacterized/uncertain tumbling rigid body Target and of a
rigid body Chaser. The Newton–Euler equations can be used to
fully describe the 6 degree of freedom (DOF) motion of both
systems. The translational dynamics are of particular interest for
the Chaser with respect to motion robustness (i.e., collision
avoidance).

2.2.1 Reference Frames
The frames of reference used in this study are defined as follows:

T: Target Body Frame (centred at the centre of mass of the Target Satellite),
C: Chaser Body Frame (centred at the centre of mass of the Chaser Satellite),
G: Geometric Frame (arbitrary fixed body frame on the surface of the Target),
W: Inertial Frame of the International Space Station.

These are depicted in context of the relative state estimation
problem in Figure 1. Note that frames are also referred to using
TF notation, and left superscripts indicate the frame of a vector
quantity when the frame is not obvious.

2.2.2 Tumbling Target Rigid Body Dynamics
The Target is assumed to be a rigid body in a free tumble, the
dynamics of which are described by the Newton–Euler equations.
The full equations of motion are given by the following:

rb[ rx ry rz ]u
qb[ qx qy qz qθ ]u
vb[ vx vy vz ]u
ωb[ωx ωy ωz ]u

xb
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r
q
v
ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (1)

_rCoM � v, (2)

_vCoM � F
m
,

_ω � −I−1ω × Iω + I−1τ,

I
T _q � 1

2
H(ITq)uTωIB,

where the rotational terms are of interest, namely, ω and I
Tq

describing the Target’s angular velocity and attitude with respect
to the local orbital (inertial) frame W , respectively. The input
torques τ are set to zero for the free-tumbling scenario of interest.
The inertia tensor I is given fully as:

FIGURE 1 | (A) The relevant coordinate frames for estimation of the
Chaser and Target states and Target inertial parameters. The Chaser’s body
frame C moves while the 3D ToF camera (frame H) collects point cloud
measurements of the Target. The Target’s body frame (T ) tumbles
around its center of mass. The geometric frame (G) origin is defined at the
centroid of the first point cloud measurement with an orientation matching the
Target’s body frame. There is a constant translation vector tGT between the
Target’s body frame and geometric frame which must be estimated. (B) The
rotation kinematic factors that link the otherwise separate Target and Chaser
pose chains in the factor graph formulation are also depicted. The bold vectors
in the image must sum to zero to satisfy the factor’s constraint.
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Ib⎡⎢⎢⎢⎢⎢⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎥⎥⎥⎥⎥⎦, (3)

where the products of inertia Ixy , Ixz , and Iyz are 0 in a principal
axes frame. In order to solve the initial value problem (IVP) of
future Target states for an inertia tensor in any arbitrary Target
frame, it is necessary to know q(t0),ω(t0), and I.

The inertia tensor and initial angular velocity can yield a large
variety of future system behaviors. A classic example is the flat
spin, where ω is aligned with the maximum moment of inertia
axis. In this case, the tumble is simply one-dimensional about this
axis. In a more extreme case, the angular velocity changes
drastically and suddenly when aligned with an intermediate
moment of inertia axis, flipping approximately one and a half
revolutions from one axis alignment to the other (Harris, 1994).

The Target is free to tumble, and dissipative effects are
considered negligible over the timescales of rendezvous.
Uncertainty in the Target’s tumbling dynamics will result in
an uncertain solution to the IVP, addressed in Section 2.4.

2.2.3 Chaser Translational Dynamics
The Chaser is also a 6 DOF rigid body and obeys the same set of
dynamics as the Target, albeit with its own unique parameters.
Since the translational dynamics of interest are purely linear they
may be written in state space form, as follows:

z+ � Az + Bu, (4)

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 dt 0 0
0 1 0 0 dt 0
0 0 1 0 0 dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dt2

2m
0 0

0
dt2

2m
0

0 0
dt2

2m

dt
m

0

0
dt
m

0

0 0
dt
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

z � [ r1 r2 r3 v1 v2 v3 ]u, (7)

where z indicates a nominal state which is derived from a
deterministic dynamics model of the Chaser (MC), z+
indicates a discrete state update, and dt is the timestep. Note
that orbital dynamics effects (e.g., the Clohessy–Wiltshire
equations) are not considered in this particular problem
statement due to the short timescales and distances under
consideration in the system of interest (1.5 meters and
3 minutes). However, the linear CHW dynamics could easily

be substituted into the system dynamics models of multiple
components of the pipeline detailed in subsequent sections,
which is intended for use in the range of ∼20–40 m of the
Target, and with motion plan timescales of up to
approximately 10 [minutes], as demonstrated in Stoneman
and Lampariello (2016). If desired, the CHW equations are
additionally applicable for distances up to a few kilometers
Fehse (2003). However, the control forces at play noted in
Section 2.3 are dominating with respect to any orbital
mechanics or perturbation forces.

The Chaser and Target Astrobees each have a mass of 9.58 kg
and inertial parameters Ixx � 0.153, Iyy � 0.143, and
Izz � 0.162 kgm2. The robots are capable of providing up to
0.4 N of force and up to 0.04 Nm of torque. Additionally, the
tumbling motion of the Envisat satellite is of interest ESA (2015).
The inertial parameters of Envisat are also provided in the Envisat
body frame:

IES � ⎡⎢⎢⎢⎢⎢⎣ 17023.3 397.1 −2171.4
397.1 124825.7 344.2
−2171.4 344.2 129112.2

⎤⎥⎥⎥⎥⎥⎦ [kg/m2]. (8)

The Envisat tumble can be mimicked by an actively controlled
Astrobee with a different inertia tensor—precomputed tumble
types can be actively tracked to simulate the tumble of a different
object.

2.3 Chaser Motion Constraints
As it is typical in on-orbit missions, the maneuver is constrained
by the Target geometry, as well as the Chaser’s limits on velocity
and input. Constraints are additionally drawn from safety
considerations including collision avoidance and plume
impingement of the Target. The thruster authority available to
the Chaser from the on-board thrusters dictates the available
Chaser linear force and rotational torque.

2.3.1 Constraints for the System of Interest
For the particular scenario of interest involving Astrobee, the
motion constraints also result from the restrictions on Chaser
movement dictated by the space available in the ISS Japanese
Experiment Module (JEM) which houses the Astrobee platform,
resulting in additional position and velocity constraints on the
Chaser.

Considering that the approach tasks are restricted to the JEM,
the robots are confined to move within a workspace of
dimensions of approximately 1.4 × 2.8 × 3.4 m. The Astrobee
specifications indicate that robots are restricted to move at a rate
of 0.1 m/s in each spatial dimension, and the thrusters can
provide forces f � [fx, fy , fz]u � [0.452, 0.216, 0.257]u N and
torques τ � [τx, τy , τz]T Nm approximately equal to one-tenth
of the force available in each spatial dimension (NASA, 2015).

While the Astrobee robots have a fairly simple shape, the
inertia of the Target satellite has been simulated, as discussed in
the previous section, to match the more complex shape of the
Envisat satellite. It is further assumed that this complex shape is
the actual shape of the Target spacecraft. The Target Astrobee
robot, therefore, wears a virtual geometry, similar to the real
geometry of Envisat. As can be seen in Figure 2, the virtual
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geometry of the Target Astrobee includes a large solar panel and
antenna appendages. This makes the collision avoidance task non-
trivial. This complexity is tackled by creating a geometricmodel (M)
for each of the Chaser and Target shapes and using these to conduct
collision detection. This geometric model appears in Figure 2 as
translucent red shapes encapsulating the Target and Chaser
geometries. The penetration depth (d) is then used to formulate
the collision avoidance constraint (see Section 3.3). Figure 2
additionally shows how the x-axis of the Chaser body frame is
required to point toward the center of mass of the Target robot, a
field of view constraint. The Chaser must, therefore, rotate its
attitude as well as translate in the course of the approach
maneuver. This finally indicates that a torque constraint is
present in tandem with the force limitations, limiting how fast
the Chaser can reorient itself to maintain the field of view constraint.

2.4 Uncertainty Sources
Uncertainty enters the problem in a unique fashion: normally,
additive uncertainty is thought of as a representation of
unknowns in a system’s dynamics, environmental
disturbances, and “noise.” However, in this problem the
uncertainty of interest is due primarily to the reference
trajectory itself (Buckner and Lampariello, 2018). As the
motion planner must use the predicted Target motion to
successfully reach the MP and avoid collisions, deviations in
the Target motion due to parameter uncertainty in the Target’s
initial tumbling state must be accounted for.

First, an approach trajectory in the Target’s body frame
Txref (k � 0, 1, . . . N) is provided by a motion planner,
guaranteeing collision avoidance. This trajectory is rotated into
the inertial frame using the nominal predicted Target attitude
I
TR(k) at each timestep, as given below:

Ixref (k) � I
TR (ITq(k),ωIT(k), I)Txref (k), (9)

which is a function of the initial Target state estimate
(ITq(0),ωIT(0)), inertial parameter estimates or prior
knowledge I, and the tumbling dynamics.

The nominal inertial trajectory Ixref ,0(k � 0, 1, . . .N) provided
by the motion planner guarantees feasibility and collision
avoidance based on the nominal predicted Target motion.
However, this predicted motion is subject to initial estimation
errors and Target inertia parameter uncertainty. As the controller
performs the approach maneuver, the real collision-free
trajectory in the inertial frame

Ixref (k) � I
T R̂ (ITq(k),ωIT(k), I)Txref (k) (10)

will differ from the nominal trajectory due to the real Target
motion. This creates an additive disturbance to the system in the
inertial frame dependent on initial estimate inaccuracy, the
inertial parameter estimates or prior knowledge, and the rate
and accuracy of online updates,

Iw(k) � Ixref (k) − Ixref ,0(k). (11)

As such, the controller should strive to track Ixref (k) in order to
maintain the guarantees of the nominal body frame trajectory.
However, for high levels of Iw(k), the Chaser’s available actuation
will not be capable enough to stabilize this disturbance, thus
removing robustness guarantees from the docking
trajectory—this is an interesting case noted in Section 3.5.

3 APPROACH AND METHODS

3.1 The Autonomy Pipeline: Concept of
Operations
The approach taken can be broken into several distinct phases,
depicted pictorially in Figure 3. First, the Chaser vehicle uses its
time in the holding standoff position within approximately
∼20–40 m of the Target to gather observations of the Target
tumble state and produce estimates of its angular velocity and
attitude as well as its principal axes of rotation, as discussed in
Section 3.2. Next, the Target tumble may be propagated using the
nominal Target model, enabling the motion planning process
described in Section 3.3 and the calculation of an uncertainty
bound using the statistics of these estimates, as in Section 3.4. In
Section 3.5, the maneuver is executed using tube-based robust
model predictive control to retain performance guarantees.
Finally, the MP is reached and the mission concludes. The
algorithmic components in each of these phases are depicted
in Figure 4, delineating the flow of inputs and outputs to each
component of the algorithm.

3.2 Relative Navigation and Target
Characterization
As outlined in Section 3.1, on-orbit inspection of an unknown
spacecraft is not only a required component of currently
proposed missions (Sullivan et al., 2015) but also of the more
general spacecraft close-proximity operations (Terán Espinoza
et al., 2019). There have been numerous research efforts to
implement simultaneous localization and mapping (SLAM)
approaches for estimating the Chaser and Target states as well
as the Target’s inertial parameters (Tweddle et al., 2015;

FIGURE 2 | Scene depicting the approach of the Chaser to the Target
Astrobee. The virtual geometry of the Target Astrobee is shown.
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Setterfield et al., 2018a; Terán Espinoza, 2020). These studies
utilize incremental smoothing and mapping (iSAM) (Kaess et al.,
2008; Kaess et al., 2012) with stereo camera and IMU
measurements to recover both the inspector and the Target
state estimates in real time. Microgravity experiments on the
ISS-based SPHERES testbed indicated the success and potential of
these algorithms (Fourie et al., 2014; Tweddle et al., 2016). As
such, this pipeline adapts the framework of Terán Espinoza
(2020) for the inspection of an unknown tumbling Target
using Astrobee’s sensor suite to provide SLAM front-end
measurements. The full SLAM framework is implemented in
Astrobee’s simulation environment via ROS.

The remainder of this section describes the specific details of
the portion of the scenario handled herein (e.g., sensor suite), the
mathematical formulation used to formalize the problem (factor
graphs), the front-end components developed for information
extraction (e.g., point cloud registration), the back-end
components used for sensor fusion (e.g., iSAM), and the
accompanying problems resolved in incorporation with the
pipeline.

3.2.1 Scenario Description
It is assumed that the Chaser satellite has a sensor suite capable of
providing internal IMU measurements and external
measurements that can be interpreted by a front-end as the
Target pose. The Chaser Astrobee is equipped with the
following sensors that fulfill these requirements: an IMU for
ego-motion estimation, received at 62.5 Hz; and a 3D time-of-
flight (ToF) camera to return 3D information of the Target for
feature extraction and tracking purposes, received at 5 Hz. The
3D ToF camera is forward-facing on Astrobee and has a
resolution of 224 × 171 pixels.

Using the acquired per-frame IMU and 3D depth information,
the goal is to incrementally estimate the dynamic states of the
Target and Chaser.

Target : (WTT ,
TωT),

Chaser : (WTC ,
WvC ,

CωC),
where T represents complete pose (position and attitude)
information. The problem is formulated as a factor graph
SLAM problem using odometry measurements from the ToF
camera and the Chaser’s IMU. An overview of relevant
coordinate frames for the SLAM problem is given in Figure 1.

3.2.2 Factor Graphs and Problem Formulation
A bipartite factor graph connects all relevant variables and
measurement factors for the relative state estimation problem
(Figure 5). The graph is composed of independent Target and
Chaser pose chains. Nodes represent unknown variables (the
Chaser and the Target poses) and are connected by probabilistic
factors that arise from odometry measurements. The Target
motion GTCn is measured using a depth-based odometry, while
the Chaser motion WTCn is measured using an IMU-based
odometry. The two chains are connected via rotational
kinematic factors that disambiguate the Chaser and Target’s
motion, even while the Chaser is moving. Each measurement

FIGURE 3 | The concept of operations for the autonomous docking
procedure with Chaser (blue) and Target (red). Following a standoff estimation
phase a motion planner uses an estimate of future Target attitude to create a
plan in the inertial frame, which is tracked by a robust controller.
Uncertainty is converted from Target parameter uncertainty to Chaser
reference trajectory uncertainty bounds.
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is associated with a predefined noise model based on the sensor’s
characteristics. Through probabilistic inference on the factor
graph, one can minimize the error associated with the factors
and smooth all state estimates over time.

3.2.2.1 Front-End Modules for Information Extraction
The Chaser’s ToF camera provides a 3D point cloud of the
scene at regular intervals. This depth data provides
measurements of the Target motion relative to the Chaser
which are then used in the Target’s pose chain within the
factor graph. The Teaser++ solver (Yang et al., 2020) is used
to solve the point cloud registration problem between
frames, thus providing pose odometry measurements with
respect to the geometric frame ΔGTC(t − 1; t). The geometric
frame G is an arbitrary body-fixed frame on the Target with
the origin placed at the centroid of the initial features
gathered, and thus has some fixed offset from frame T.
The registration problem is carried out via three steps: 1)
detection of 3D features in the current frame, 2) matching of
features between the previous and current frames, and 3)
robustly solving the registration problem using the found

matches. Fast point feature histograms (FPFH) are selected
as the 3D feature descriptor for detecting and matching
(Rusu et al., 2009). For a pair of point clouds z]i and z]j at
timesteps i and j, the result is a pose odometry measurement

z]ij � {z]Rij
, z]tij} ∈ SE(3), (12)

of the Chaser with respect to the Target’s G frame.
The specific front-end for the Astrobee system of interest

will be addressed here, though similar front-ends could be
substituted for different satellite sensor suites. The Chaser’s
IMU serves as the source of measurements for the Chaser’s
pose chain in the factor graph. Since Astrobee’s IMU
operates at a much faster rate than the ToF camera, the
IMU preintegration theory from (Lupton and Sukkarieh,
2011; Carlone et al., 2014; Forster et al., 2016) is
leveraged. The set of IMU readings zIMUij � {zωτ , zaτ}jτ�i are
bundled between keyframes at ti and tj as a relative
transformation between the navigation states, allowing the
collected information to be summarized as a single
measurement of the following form:

FIGURE 4 | The full algorithmic pipeline, showing major inputs and outputs of each component algorithm. Inputs are shown above, and outputs are shown below.
(A) shows the SLAM and polhode analysis visual estimation of the Target, (B) shows the online motion planning component, and (C) shows the robust model predictive
controller and its supporting algorithms.
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Δxij � {ΔRij,Δtij,Δvij,Δbij}, (13)

where R denotes the rotational part of the Chaser’s state, t the
translation, v the velocity, and b the bias variables for the IMU.

Finally, range and bearing measurements of the Target are
provided by the ToF camera point clouds. These measurements
are defined as:

zρj � {zρdj ∈ R+, zρbj ∈ S2}, (14)

where zρd and zρb are assumed to be range and bearing
measurements to the Target’s center of mass, respectively, with
S2 representing the two-sphere manifold.

3.2.2.2 Factor Graphs for Probabilistic Inference
As stated above, the Target’s pose chain is established using
features from the Target’s depth information, correlated across
subsequent frames. The point cloud-based odometry factor ]
added to the graph is formulated as a relative pose measurement
constraint, as given below:

]ij(GTCi,
GTCj)∝ exp{1

2

�����(GTG
Ci
· GTCj) . z]ij

�����2Σ]i}, (15)

where ‖( · )‖2
Σ]

is the weighted Mahalanobis distance using the
noise model parameter Σ].

Loop closures on this pose chain can be implemented in the
same manner by taking matching point cloud features across
non-successive frames. Practically speaking, a randomly chosen
past frame can be checked for loop closures with the current
frame. If there are enough matches, the odometry is computed
and added to the graph.

The Chaser’s pose chain is generated from IMU factors. To
carry out inertial navigation using the IMU’s information, a
binary IMU factor ψ is created of the form given below:

ψij(xi, xj)∝ exp{− 1
2

����(ruΔRij
, ruΔtij , r

u
Δvij , r

u
Δbij)����Σψij

}, (16)

where r represents the residual errors for each of the terms shown
in Eq. 13. This factor is placed between two subsequent

navigation states xi and xj in the inertial navigation pose
graph chain to constrain their relative motion using the IMU
information.

The range and bearing measurements between the Chaser and
the (approximate) Target’s center of mass are implemented as
binary factors between the Chaser’s navigational state WxCi and a
variable representing a constant Target’s center of mass offset
WtT . Since the Target’s center of mass is assumed to be centered at
the W frame origin, this extra variable simply accounts for any
errors while modeling. The range and bearing factor is
formulated as:

ρj ∝ exp
⎧⎪⎨⎪⎩ − 1

2

���������⎡⎣
hd(WxCj,

WtT) − zρdj
hb(WxCj,

WtT).zρbj
⎤⎦���������

2

Σρ

⎫⎪⎬⎪⎭, (17)

where hd and hb are the measurement models for range and
bearing.

Rotation kinematic constraints are used to disambiguate the
motion of the Target and Chaser satellites. The rotation kinematic
factor enforces a zero sum vector addition between temporally
equivalent time step pairs in the Target and Chaser pose chains,
given the assumption that the Target is unperturbed and
translationally stationary. The rotation kinematic factor is built
by following the vector addition shown in Figure 1, to give:

κt−1,t(xt−1,xt ,GTCt−1,
GTCt)∝exp{−1

2

����WRCt−1
Gt−1Ru

Ct−1(Gt−1 tCt−1/Gt−1 − GtC/G) +
WRC

GtRu
Ct
(GtC/G − Gt tCt /Gt) +(W tCt /W −W tCt−1/W)����2Σρt−1}.

(18)

Notice that the rotation kinematic factor is dependent on
estimating the constant offset between the geometric frame and
Target’s body frame, GtT (3). This translation is added as a single
unknown variable to the factor graph that is connected to all
rotation kinematic factors. The full factor graph, including the
Target’s pose chain, Chaser’s pose chain, and rotation kinematic
factors is shown in Figure 5.

While the factor graph shown thus far exactly represents
the mathematical formulation of the problem being solved,

FIGURE 5 | The full factor graph used for Chaser and Target state estimation. Nodes represent pose variables and are connected by ToF camera pose odometry,
IMU odometry, range/bearing measurements, and rotation kinematic factors.
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the actual online solution is computed using a different, but
directly related, data structure called the Bayes tree (Kaess
et al., 2010; Fourie et al., 2020; Terán Espinoza, 2020). By
recycling computations at each time step, a full SLAM
solution can be computed fast and accurately every time
new information is received.

3.2.3 Estimation of Angular Velocity and Target
Principal Axes
The above factor graph formulation allows the Chaser to estimate
its own navigational state and the Target’s attitude at each
timestep. These estimates are then processed to provide
angular velocity measurements of each spacecraft and also
determine the Target’s principal axes of rotation.

The instantaneous angular velocity estimates GωG and CωC are
extracted at each timestep via the relative rotation between
temporally subsequent poses in the world frame. Using the
factor graph variables,

CωCi �
1
Δtij

Log ((WRCi)uWRCj), (19)

GωGi �
1
Δtij

Log ((WRTi(GRTi)u)uWRTi(GRTi)u), (20)

where Log acts as shorthand for the SO(3) logarithmic map log
followed by the inverse skew symmetric matrix operator.

Note that the Target’s orientation and angular velocity
estimates are with respect to the arbitrarily initialized G frame.
While the GtT variable is solved for in the factor graph, the
orientation GRT is still undetermined. This issue is resolved by
estimating the principal axes of the Target’s inertia tensor and
establishing a non-arbitrary T frame. Through polhode analysis,1

by Setterfield et al. (2018b), this misaligned angular velocity
vector in the G frame is rotated such that the polhode’s new
orientation produces central conic projections onto the XY, YZ,
and XZ planes.

The specific combination of conic types for each plane
further specifies the convention and estimate for the
principal axes orientation. For instance, a tumbling Target
with a tri-axial inertia tensor and low rotational energy will
result in two ellipses and one hyperbola Setterfield et al.
(2018b). The final result is an optimized orientation GRP

that best aligns the measured angular velocity values into
the newly defined P frame based upon the Target’s
principal axes of inertia. The rotation between the principal
axes frame and the defined Target frame T where Envisat’s
inertia tensor is defined, TRP, is now used to determine the
Target’s orientation and angular velocity with respect to the T
frame, as given below:

TRW � WRC(GRC)uGRP(TRP)u, (21a)
TωT � (GRP)(TRP)uGωG. (21b)

Once the angular velocity profile has been correctly aligned
with the principal axes, it is possible to proceed with the
estimation of the Target’s inertia ratios if they are not already
known. By leveraging the closed-form solution for rigid body
motion based on the Jacobi elliptic functions Hurtado and Satak
(2011), a second procedure from Setterfield et al. (2018b) can be
employed to create a constrained nonlinear optimization
problem and solve for physically consistent values for the
inertia ratios J1 and J2. An alternative approach for identifying
the inertia parameters, as well as the state parameters of a
tumbling Target, can be found in Lampariello et al. (2021).
The same study also presents a method for performing long-
term motion prediction, while accounting for the state and
inertial parameter dispersity which results from the parameter
identification. This allows for robust motion prediction of the
Target’s tumbling motion even if there is no available inertia
tensor. The inclusion of such methods in the pipeline proposed
here is a subject of future study.

3.3 Chaser Motion Planning
The motion planner considers only the nominal motion of the
Target (propagated within the motion planner using Boost
(Mascellani, 2019)) to generate nominal trajectories to
control the Chaser. The method is based on Stoneman and
Lampariello (2016), in which it is made evident that, if
present, large appendages play an important role in the
motion planning task. Similar approaches can be found in
the literature, such as (Ventura et al., 2015; Park et al., 2017;
Sternberg and Miller, 2018). In these studies, the convex
optimization-based approach does not retain convergence
guarantees. In Virgili-Llop et al. (2019), a covexification of
the nonlinear collision avoidance constraint allows fast
online planning for any relevant tumbling state of the
Target, while retaining convergence guarantees. It is noted,
however, that the method therein is based on a three-stage
planning approach, necessary to account for the case in which
the MP is inside the convex hull, as well as on repeated
replanning, possibly for a complete period of motion of the
Target, to identify the global minimum for the query at hand.

The Chaser trajectory xref (p, t) is composed of three b-splines
and their first three derivatives, one b-spline for each spatial
dimension. Each spline has n free parameters p and is sampled at
m via points. The Chaser pose xref (t) considers the Chaser’s
position and orientation such that xref (p, t) � [xref ,p, xref ,o] �
[xref ,x, xref ,y, xref ,z , qref ,x, qref ,y, qref ,z , qref ,θ]. At the final via point,
the Chaser is required to meet the MP, matching the position and
velocity of theMP in the inertial frame, andmust be oriented such
that the Chaser body frame’s positive x-axis points towards the
Target’s center of mass.

The approach maneuver is formulated here as a nonlinear
optimization problem (NLP) to ensure feasibility of the
generated trajectories with respect to the motion
constraints. The NLP minimizes the mechanical energy cost
J(p), for a fixed final time tf , and as a function of the free
parameters of these b-splines subject to position, velocity,
actuation, plume impingement, and collision avoidance
constraints at each via point:

1The polhode is the path traced by the angular velocity vector of a rotating body on
its inertia ellipsoid.
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min
p

J(p), (22)

s.t. cposition(xref ,p(p), t)≤ 0,
cvelocity( _xref ,p(p), t)≤ 0,
cforce(€xref ,p(p), t)≤ 0,
ctorque(xref (p), _xref (p), €xref (p), t)≤ 0,

ccollision(xref ,p(p), t)≤ 0,

cplume(r, q, xref (p), €xref ,p(p), t)≤ 0,

for t � 0, . . . ,m − 1.

In this NLP, the first four constraints in the list are box
constraints using the values outlined in Section 2.3.
Additionally, X and U constraints are further tightened to
provide a conservative bound on potential tightening required
by the robust MPC nominal controller. It should also be noted
that, while an optimal trajectory in the spatial dimensions is
sought xref ,p(p, t), the orientation of the Chaser along this optimal
trajectory must also be sought xref ,o(p, t), to ensure that its x-axis
always points in the direction of the Target’s center of mass (field
of view constraint). It can thence be determined if the necessary
torque related to this pointing rotational motion is permitted by
the Chaser thrusters.

Recalling the discussion of the collision avoidance constraint
from Section 2.3, the collision constraint is given by the
penetration depth d such that

ccollision(xref ,p(p, t)) � d(q, xref ,p(p),M, t)≤ 0, (23)

which is an iterative, nonlinear function. Note that the Chaser is
modeled as a sphere, therefore relieving the need to consider its
orientation in this constraint. Geometric modeling and collision
detection is implemented using the Open Dynamics Engine, and
additionally tested using the Gazebo simulation environment,
detailed in Section 4 (Smith, 2009).

In order to reduce the computation time, an online planning
method has been devised which provides a warm start to the
optimization problem. This method makes use of a precompiled
look-up table (LUT) of corresponding pairs of initial conditions
for the Target’s motion and composite optimization parameter
solutions p for the three b-splines to identify a suitable initial
guess for the planner. By inspecting the members of the LUT to
select the initial guess, it is possible to quickly reach the local
minimum in solving (Eq. 22).

This LUT must be generated offline, due to the computational
burden involved. Its generation requires approximate knowledge
of the inertia of the Target (up to a constant multiplying factor)
and geometry of the Target. If the Target is initially entirely
unknown with respect to these criteria, this missing information
must first be identified and relayed to ground. The inertia can be
identified using one of a variety of methods, including those
detailed in Setterfield and Miller (2017); Teran, (2021);
Lampariello et al. (2021) and the geometry can be determined
using 3D reconstruction methods. However, aside from this
modeling information (which is often given ahead of time, at

least approximately) the motion planning method is entirely
online-computable. The resulting NLP is implemented and
solved using the SLSQP algorithm provided in the nonlinear
optimization package NLopt (Johnson, 2017).

3.4 Uncertainty Bound Definition
The disturbance level of major uncertainty sources must be
defined in order to provide a form of robustness guarantee.
The tube model predictive control (MPC) relies on a known
bound of the additive disturbances; in the context of the tumbling
rendezvous maneuver, this means that limits must be determined
for the magnitude of disturbances defined by Eq. 11, the primary
uncertainty source of interest. Given a nominal reference
trajectory provided by the motion planner and uncertainty
levels of the Target state estimates a series of Monte Carlo
trials is computed to approximate the maximum disturbance
over the course of the trajectory in a manner similar to (Buckner
and Lampariello, 2018). Additionally, the effect of online-
updating (and the frequency of online updating) is accounted
for in the approximation procedure. For each trial, the nominal
initial Target state is perturbed within the state estimate
uncertainty levels, based on the statistics of the state estimates.
This creates a Target tumbling trajectory that differs from the
predicted motion used by the motion planner. The disturbance is
thenmeasured at each timestep of theMonte Carlo trial trajectory
by comparing the nominal reference trajectory to the “real”
trajectory that arises from Eq 10. This difference constitutes
the defined disturbance in Eq. 11. The repeated Monte Carlo
trials build up a sampling of disturbance values seen across all
trajectories and, like all Monte Carlo evaluations, increase the
modeling accuracy of the true distribution with a greater number
of trials. From there, the uncertainty bound is defined via the
largest disturbance magnitudes in each state dimension. This is a
conservative approximation, and can be relieved if a lower σ value
is desired. The full algorithm to determine the uncertainty bound
is detailed in the algorithm of Figure 6. Note that the current
implementation assumes all disturbances arise from initial state
estimate errors. This algorithm can be easily modified to include
disturbances from inertia parameter error as well, if desired. The
Monte Carlo uncertainty bound determination process is shown
in Figure 6.

3.5 Robust Tube Model Predictive Control
Model predictive control (MPC) is a commonly used control
technique which is particularly notable for its ability to
approximately optimally control general dynamical systems
under constraints. While proofs for MPC stability under
certain conditions (Mayne et al., 2011) abound, guarantees for
stochastic systems are generally lacking. Tube MPC is a notable
exception, providing robustness guarantees when bounded
additive uncertainty is encountered in the system dynamics.
Using tube MPC, a portion of control authority is reserved for
robust actuation, often in a simple feedback form to counter
disturbances. The guarantee obtained is one of tube
robustness—if a system starts in a tube of possible states, it
remains within a tube around a nominal trajectory. These
tubes are formed around the nominally planned MPC
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trajectory, and the motion of the system can be thought of as a
composition of these planned “safe sets.”

Tube MPC methods exist for both nonlinear and linear
systems with additive bounded uncertainty—for this particular
problem linear tube MPC is of interest for the linear translational
satellite (double integrator) dynamics. (Attitude control is not
considered under this robustness paradigm: the Euler equations
are nonlinear and pointing constraints under the tumbling
uncertainty are not as important—line of sight constraints are
somewhat generous and it is assumed that motion plans produce
collision-free trajectories for a max-radius ball about the system’s
center of mass.) In essence, two controllers must be produced: 1) a
nominal MPC, operating under a modified set of constraints to
account for worst-case uncertainty; 2) an ancillary or
“disturbance rejection” controller that provides robustness to
aleatoric uncertainty. Given a reference trajectory, tube MPC
will repeatedly plan the nominal trajectory online, and append
ancillary controller actuation to the system inputs, resulting in
tube robustness.

This framework is now explained for the trajectory tracking of
the uncertain rendezvous reference trajectory, requiring a few
ingredients: a reference trajectory xref (i), a reference input uref (i),
a Chaser dynamics model MC , and a Target dynamics model
which includes parameter and angular velocity estimates and
prior knowledge MT : {I, q̂, ω̂} (for solving the IVP for pose
propagation). The tube robustness guarantee for the robust
rendezvous problem is depicted in Figure 7.

MT , which is updated every time a pose observation is
available, allows for continuous inertial frame updates of
Ixref (i). Further, the algorithm of Figure 6 is used to convert
the state Target uncertainty into a predicted bound on reference
trajectory disturbance. The resulting Target orientation
uncertainty is used to express an additive disturbance on the
Chaser reference trajectory error dynamics, Iw,

W � {Iw ∈ Rn: [ I6−I6 ]w ≤[ Iwmax
Iwmax

]}. (24)

The inertial frame Chaser translational error dynamics are
then,

Ix+err � AIxerr + BIuerr + w, (25)

where xerr � z − xref ,i (where xref ,i is updated based on the latest
pose estimate) and uerr � u − uref ,i. w can be thought of as the
worst possible disturbance in the reference trajectory that can be
caused by a Target pose update at any given timestep.

The stochastic dynamics are now in a suitable format for linear
robust tube MPC. First, a disturbance rejection controller called
the ancillary controller must be used to reject disturbance from a
nominal MPC trajectory. The ancillary controller takes the form
below and is added onto a nominal MPC input, v:

uanc � Kanc(x − z), (26)

u � v + uanc, (27)

where v is a nominal actuation determined by a deterministic
MPC and Kanc indicates the ancillary controller disturbance
rejection gain, and z is a nominal state not necessarily the

same as the real initial state. Kanc can be determined through a
simple LQR procedure on the nominal dynamics, but provides
optimal performance and better robustness guarantees when
determined via a tube minimization procedure (Buckner and
Lampariello, 2018). That is, if the robust positively invariant set
(RPI) can be minimized through the choice of Kanc then more
rigorous guarantees exist; namely, the tube robustness guarantee that
if the system state x starts within a set Z centered around a planned
control trajectory z, under the given uncertainty and ancillary
controller it will remain with a tube around this trajectory for all
possible w disturbances. The tube robustness guarantee can be
thought of simply as “if you start in the tube, you stay in the tube.”

Secondarily, the actual nominal MPC trajectory z used by the
ancillary controller must be determined. The error dynamics of
Eq. 25 are used. U and X are converted to tightened constraints,
effectively giving up control authority to the ancillary controller
for disturbance rejection. These tightened constraints are
indicated as x ∈ X ⊂ X and u ∈ U ⊂ U and are derived from
the nominal box constraints, X and U. The exact constraint
tightening procedure can be found in both Buckner and Limon
(Limon et al., 2008; Buckner and Lampariello, 2018). A notable
feature observed in this constraint tightening procedure is the fact
that large uncertainty bounds will make constraint tightening
infeasible. This serves as a notification that the considered
uncertainty levels are beyond the system’s actuation and/or
dynamics capability to adequately counter. It is possible to
compromise and settle for a lower level of robustness with a
lower σ for the procedure of Section 3.4, or to even require
replanning at prior stages of the pipeline.

An additional modification to the MPC can be added: a
parameterization of steady state values for the nominal system,
captured in θ ∈ Rnθ as defined in (Buckner and Lampariello,
2018). Finally, the nominal MPC (which does not necessarily
align with the initial real state, xi) can be found by solving:

min
u(i),z0 ,θ

J � ∑N−1

i�0
[zi −xi,ref ]uQ[xi −xi,ref ]+[vi −ui,ref ]uR[vi −ui,ref ] +

[z(N)−xref (N)]uH[z(N)−xdes(N)]+[θ−θref ]uT[θ−θref ]
subject to

z+i � f (zi, vi).
z ∈ X

v ∈ U

v ∈ x ⊕(−Z)
(z(N), θ) ∈ Ωe

Eq. 27 is executed for the first timestep of the nominal MPC
solution until the solution can be recomputed at i+.

4 RESULTS

The components of the full rendezvous pipeline were implemented
and tested using Astrobee’s simulation environment. Astrobee’s
software is based on the Robotic Operating System (ROS)
framework, where modular software components (nodes)
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exchange messages over topics for complex multi-threaded code
coordination. Each part of the proposed autonomy pipeline
constitutes a ROS node that is added to Astrobee’s core flight
software and in some cases overrides default behavior.

The Target coordinator provides torque-free tumbling motion
setpoints that are tracked by a custom standard MPC controller.
In this way, the Target Astrobee can follow correct tumbling
trajectories for various inertia tensor test cases, such as Envisat’s.
The Chaser coordinator orchestrates all parts of the autonomy
pipeline and activates each step based on timing parameters and
completion status. The full ROS architecture will be used in
experimental testing on the ISS. Additional detail is provided in
Section 4.4 on the full pipeline setup and testing.

Each component of the pipeline is first demonstrated against
individual performance tests, in preparation for combined
experimental testing. The full composition of algorithms is
provided in Figure 4. The results of the vision-based state and
parameter estimation are summarized in Section 4.1, the motion
planning in Section 4.2, and the uncertainty bound and tube
MPC in Section 4.3. In Section 4.4, a case study is presented for
the full operations pipeline, providing a complete example of the
full autonomous rendezvous pipeline operating in the high-
fidelity Astrobee simulation environment.

4.1 State and Principal Axes Estimation
Performance
In testing the relative state and principal axes estimation
framework, the Chaser was initially situated 1.5 m away from

the Target Astrobee, which had an initial angular velocity
ωIT(0) � [0, 3.53, 3.53 ] deg/s. In this case, the Target
performed a tumble that abides by Envisat’s inertia tensor.
The Chaser was commanded to follow a sample inspection
trajectory consisting of 1) a lateral arc maneuver, 2) a vertical
arc maneuver, and 3) an approach/recede maneuver along the
viewing axis. Chaser attitude commands kept the Target in the
HazCam field of view. The factor graph was solved at a rate of 1
[Hz]; most of the computation run-time was taken up by point
cloud matching and registration, this fairly slow rate ensures that
the factor graph updates are achievable on the robot hardware.

Downsampling and background elimination was applied to the
point clouds for more efficient processing. Sufficient numbers of
matches from frame to frame were found, which in turn enabled
reliable pose registration solutions. In general, the Teaser++ pose
registration solver provided robust pose odometry estimates of the
Target’s geometric frame with low noise levels along with several loop
closures. Truth values from the simulator serve as a metric to evaluate
the proposed approach and provide estimation error statistics.

In terms of Chaser navigation, the estimates were smooth and
closely corresponded to the true values, demonstrating the ability
to disambiguate Chaser motion from the tumbling Target
motion. The Target orientation and angular velocity estimates
were estimated in the factor graph with respect to the arbitrary G
frame. As such, there is a coordinate frame offset between the
initially estimated values and the simulator truth values. These
“unaligned” values were used to perform the polhode analysis in
order to determine the principal axes of the Target and its inertia
tensor ratios (if applicable).

FIGURE 6 | The Propagate step of the uncertainty bound procedure (left). Many Monte Carlo runs over potential initial conditions and parameters for the Target
result in many possible reference trajectory updates from [t0 , tf ]. At each point in time, there is amaximumpossible error from the nominal reference trajectory. A reference
trajectory update resulting from a pose update (right). When new Target pose estimates are available, Txref can be repropagated in the inertial frame. The algorithm to
compute the uncertainty bound for tube MPC is shown below. The maximum disturbance magnitudes are found over the course of a number of Monte Carlo trials.
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Figure 8 shows the results for the principal axes estimation
portion of the pipeline. The optimized value of GRP produced the
best conic projection fits shown in the figure. Since the Envisat’s
inertia tensor is tri-axial, the projection of the polhode produced
central ellipses in the XY and YZ planes, and a hyperbola in the
XZ plane. This orientation is then used to rotate the “measured”
Target angular velocity values (defined in the G frame) into the
P frame.

Table 1 shares estimation error statistics for the navigational
states. The low magnitude of these values indicate successful
performance of the on-orbit inspection task, which in turn would
enable the subsequent motion planning and trajectory tracking
with online-updating phases that are required to intercept the
Target.

4.2 Chaser Motion Planning Performance
The motion planner was validated and analyzed for

performance. A few statistics are note-worthy within the above
context.

First, for the chosen tuning of the NLP implementation in
terms of the cost function accuracy (1e-8) and constraint gradient
finite-difference step size (1e-10) and with a warm start provided
by the LUT and nominal initial conditions for the Chaser, it is
found that the planner produces motion plans for random queries
of the Target parameters with a mean runtime of 0.84 s with a 3σ
of 2.03 s. Without this warm start, the mean planner runtime is
1.68 s and the 3σ is 5.56 s.

For 1,000 queries with a warm start of the motion planner
and the Chaser located at the nominal initial position, there is a
100% success rate in the optimizer converging to a feasible
trajectory. For comparison, for the same sample size and
Chaser initial position, but with a cold start, the success rate
is 90%.

As the Chaser will be placed at its initial position manually,
the effect of placement error has also been investigated. For
10, 000 samples of perturbation only in the x-direction of up to

10 cm, 10, 000 samples of perturbation in the y-direction only of
up to 10 cm, 10, 000 samples of perturbation in the z-direction
only of up to 10 cm, and 10, 000 samples where the modulus of
the perturbation in the x-, y-, and z-direction is up to 10 cm, the
failure rate for the optimization to converge to a feasible
trajectory is only 0.007%. When the initial conditions of the
Chaser are within boundaries and a warm start is provided to
the motion planner, the mean runtime is 0.92 s with a 3σ of
1.51 s.

4.3 Uncertainty Bound and Robust Tube
MPC Performance
A reference trajectory xref and reference input uref were provided
using the nonlinear programming-based motion planning
method of Section 3.3. Using these references, the uncertainty
bound method of Section 3.4 was used to produce W. Finally,
using the tube MPC method of Section 3.5, an ancillary
controller and nominal MPC were then created to robustly
guide the Chaser along the reference trajectory in the inertial
frame, with knowledge of the potential disturbances induced by
inaccurate Target pose knowledge.

The reference trajectory used is a long looping motion occurring
over tf � 120 s. Providing this reference trajectory to
TumbleUCBound produces a W box constraint of wmax �
[0.147, 0.0385, 0.1236, 0.0053, 0.0049, 0.0016] for the duration of
the entiremaneuver, the result of n � 100Monte Carlo propagations
of inertia disturbances derived from approximate statistics of the
visually estimated parameters. In practice for this sample study, a
smaller wmax was required for tightened constraint feasibility. This
can be viewed as a feature of robust tube MPC—if constraints are
tightened beyond feasibility, this is a sign that uncertainty levels must
be improved and that robust control (given system constraints) is
not enough to robustly counteract uncertainty. A smaller, less
conservative stepwise bounded uncertainty is used in this sample
analysis: wmax � [0.05, 0.05, 0.05, 0.00005, 0.00005, 0.00005]. Note
that reference trajectory velocity uncertainty is less impacted by
Target uncertainty.

An ancillary gain matrix Kanc was computed using an LQR
formulation for Q � diag([1, 1, 1, 10, 10, 10]) and
R � diag([1000, 1000, 1000]), and the discrete dynamics of Eq.
4 with dt � 0.2 s. An example of the constraint tightening
procedure can be shown for U ∈ U. Initial constraints are
provided by an input box constraint U, with umax � 0.4 [N].
Other parameters are set as in Section 2.3. After computation of
the robust positively invariant set (RPI), constraint tightening via

FIGURE 7 | A demonstration of the tube robustness guarantee. Robust
tubes are produced around nominal reference trajectories which need not
necessarily coincide with the real initial state and are in turn made to track a
motion planning reference trajectory, xref (black). The maximum possible
deviation of xref in any given timestep is treated as an additive uncertainty for
tracking, and is dealt with via the tube robustness guarantee.

TABLE 1 | Estimation error statistics for the navigational states. All error values are
the median L2 norm between the estimated and true values, except for ã,
which is computed as ã � Log(R

u
R̂) � [δax , δay , δaz ]

u and θ̃ � ∣∣∣∣∣∣ã∣∣∣∣∣∣, where R and
R̂ correspond to true and estimated orientations, respectively.

t̃
W
C 4.1 cm
ṽWC 5.3 mm/s
ãWC , θ̃ [ − 0.1,0.001, 0.61]u, 1.00 deg
ω̃C 0.08 deg/s
ãWT , θ̃ [6.26,−4.24, 0.85]u, 7.25 deg
ω̃T 0.6199 deg/s
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the procedure in (Limon et al., 2008) is performed, resulting in a
new set of polyhedral constraints:

Auu � bu, (28)

Au � [ I3×3−I3×3 ], (29)

bu � [ 0.239 0.239 0.239 0.239 0.239 0.239 ]u. (30)

FIGURE 8 | (A) Resulting polhode after alignment to the Target’s estimated principal axes. The polhode’s plane projections produce central conics (not rotated nor displaced
from their respective origins). Solid circles indicate the polhode, and open circles indicate the projected conics. (B) Polhode comparison between the measured (blue, in geometric
frame), aligned (red, after rotating by the estimated orientation from geometric to principal axes), and groundtruth-aligned (orange) curves. (C) Visual comparison of the offset between
the groundtruth principal axes (bold RGB triad) against the estimated orientation (thin, longer RGB triad).
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The tightened constraints are passed off to the robust tube
MPC, which computes a nominal MPC solution at each time step,
supplemented by the action of the ancillary controller. A series of
n � 100 Monte Carlo trials using this reference trajectory and
uncertainty bound were performed to evaluate the tube MPC’s
performance. To approximate w, a uniform distribution of
w ∼ U(− wmax,wmax) was used to simulate the stepwise
reference trajectory uncertainty. In reality, this trajectory
uncertainty is caused by the differing Target tumble dynamics
coupled with online trajectory updates (and is shown in Section
4.4). The averaged tracking results of this procedure are shown
in Figure 9 for position and velocity tracking. The robust tube
MPC was implemented using the CasADi optimal control

framework (Andersson et al., 2019). Runtimes for a CasADi-
based implementation with N � 10, dt � 0.2 were μt � 0.014 s,
σ2t � 1.89 × 10−5 [s2] per step on a standard quad core Intel Core
i7-4700MQ desktop system.

4.4 The Full Pipeline: A Case Study Result
A case study is presented for a full pipeline run of the proposed
rendezvous algorithm for a scenario representing planned
testing on the ISS using NASA’s Astrobee robotic satellites.
To provide additional context on the computing environment,
the Astrobee Robot Software uses the Robotic Operating
System (ROS) as middleware for communication, with
approximately 50 nodelets running on two ARM processors

FIGURE 9 | The position and velocity tracking performance for the robust tube MPC, with shading indicating 1-σ bounds of n � 100 Monte Carlo trials. Note that
nominal MPC and ancillary controller tuning can have a significant impact on controller performance (as with any MPC).
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(MLP and LLP). These processors run the general-purpose
operating system Ubuntu 16.04 and ROS Kinetic with a sensor
suite including time of flight cameras, IMUs, and more as
previously detailed.

Simulation results for this scenario were obtained using
NASA’s ROS/Gazebo-based Astrobee simulation
environment. The simulation environment includes
extensive modeling of Astrobee including its impeller
propulsion system, onboard visual navigation,
environmental disturbances, and many more true-to-life
models Flückiger et al. (2018). The full rendezvous pipeline

was implemented as an additional set of Python and C++ ROS
nodes and nodelets that run alongside the default Astrobee
flight software. Significant development effort was dedicated to
architecting software that would be usable for both simulation
and hardware testing Albee et al. (2020). It may be helpful to
the reader to follow Figure 4, which fully delineates the flow of
information in the rendezvous pipeline.

4.4.1 The Scenario
For this scenario it is assumed that the participant Astrobee
robots have been placed at their respective starting positions

FIGURE 10 | Chaser and Target state estimates over the time-history of the full pipeline demonstration. Solid lines indicate estimated values, dashed lines indicate
simulator truth. Notice the “snap” that occurs in the Target estimates when the principal axes are determined (∼150 s).
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within the Japanese Experiment Module (JEM) and are
initially station-keeping. The relative distance between the
two robots is 1.5 [m] in the y-axis of the ISS world frame,
W . Both robots begin at rest, with the Target facing forward
(positive x-direction) and the Chaser facing port (negative
y-direction).

The Target performs a tri-axial tumble mimicking Envisat’s
inertia IES with initial angular velocity ωT (0) � [0, 3.53, 3.53][deg/s]
and maintains its translational position in the ISS inertial frame. The
Chaser conducts Target observation at its initial position andmaintains
this position while the Target state and principal axes are estimated, the
motion plan for a rendezvous maneuver with a duration of 60 s is
generated, and the controller parameters determined. When the
starting time for the approach provided by the motion planner is
reached, the Chaser begins its approach to the MP.

4.4.2 State and Principal Axes Estimation
The Chaser successfully observed the Target’s tumbling motion
and provided accurate state estimates for both spacecraft
throughout the entire maneuver. The observation period lasted
120 s to accumulate enough Target angular velocity estimates
before determining the orientation of the principal axes.
Figure 10 shows the time history of state estimates
throughout the maneuver. The “snap” in Target’s attitude and
angular velocity estimates is clearly evident when the principal
axes are determined and proper alignment occurs. The average
time taken for a factor graph update was 0.08 s on the same
machine as Section 3.5. These values were then handed off to the
Chaser motion planner.

4.4.3 Chaser Motion Planning
The estimated Target parameters and the measured Chaser and
estimated Target positions in the inertial frame are of interest for
the motion planner. The motion planner uses the LUT designed
for a given set of Target parameters as indicated in Section 3.3 to
determine the warm-start parameters for the given Target
parameter query and from which a motion plan is developed.
Included in this plan are Chaser states at each via point and a start
time for the approach maneuver. A planned trajectory for this
scenario is provided in Figure 11, using the outputs of the visual
estimation procedure.

For the tumble described in this case study, the motion
planner produces plans with 100% success for random initial
conditions. The mean time for plan generation for this scenario is
1.12 s and the 3σ is 3.12 s.

4.4.4 Uncertainty Bound and Robust Tube MPC
The resultingmotion plan, Bxref (t0: N ) (defined in the body frame)
and uref (t0: N), is handed off to the robust controller as in

FIGURE 11 | A planned trajectory in position (A) and velocity (B) for a tri-axial tumble query with inputs supplied by the Target estimation, with final Chaser position
and velocity equal to that of the MP. The 3D representation of the trajectory is given (C). The trajectory is presented in the inertial frame.

FIGURE 12 | An example of the robust tube MPC maintaining the real x
(red) within an invariant set (gray polytope) centered on the nominally planned
MPC solution (green). Here, the RPI is shown for the first timestep of each
receding horizon MPC solution.

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 64133817

Albee et al. Robust Autonomous Rendezvous With Tumbling Targets

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Figure 4. The primary ingredients remaining before robust tube
MPC can begin tracking are an approximation of the robust
invariant set (RPI), Z and accompanying tightened input and
state constraints, and real-time updates of the estimated Target
orientation q̂T(i).

The first step in calculating these values is to determine the
uncertainty bound, w. The motion plan is handed off to the
uncertainty bound approximation module along with the vital
full statistics of estimated values from the visual estimation:
N (q̂T (0),Σq), N (ω̂T (0),Σω). Using the algorithm of Figure 6,
the uncertainty bound can be approximated. In this case, the
stepwise uncertainty due to Target estimation inaccuracy is
w � [0.0145, 0.0065, 0.0152, 0.0024, 0.0012, 0.0027], representing
stepwise error in reference trajectory positions and velocities.

Now,w is handed off to the robust set approximation method
detailed in Section 3.5 along with other vital information
including the disturbance rejection gain Kanc, system
dynamics f (x, u), and constraints as detailed in Figure 4. The
goal is to produce the robust set approximation Z, with feasible

state and input constraints. In this particular scenario, the
uncertainty levels are too great for the available thruster
authority from U; this is a useful feature, indicating that an
absolute robustness guarantee for this particular level of
uncertainty is not possible, and prompting two options. The
agent could, in theory, choose to reobserve and replan for new
Target statistics, thus increasing confidence in the Target
motion. On the other hand, it is possible to obtain a safety
guarantee for a reduced uncertainty bound, ws for a less
conservative σ of the uncertainty approximation. This can
still provide a robustness certification for a likely level of
uncertainty.

In this case, a shrunken ws is used resulting in an
approximation of the RPI visible in Figure 12, along with
tightened input and state constraints. Now, the robust tube
MPC is operated, constantly adjusting Bxref (t0: N ) to inertial
frame coordinates based on an updated q̂T(i). The resulting
track, showing the online-updated reference trajectory in
dashed lines, is shown in Figure 13. The shifting of the

FIGURE 13 | The input and state histories for the robust controller tracking the online-updated reference trajectory (dashed). It is important to remember that the
reference trajectory in this scheme actually shifts in real-time as new SLAM estimates of the true Target attitude, q̂T become available. It is precisely this stepwise shifting
for which the tube robustness guarantee is produced. udr indicates the disturbance rejection component, while umpc indicates the nominal MPC component.

FIGURE 14 | A timelapse of the rendezvous portion of the pipeline for an arbitrary tri-axial tumble. (A–D), the Chaser begins tracking the motion plan with its robust
controller while periodically updating the inertial frame reference trajectory based on SLAM estimates of q̂T .
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reference trajectory is accounted for in the robust tube MPC
setup; this is visible in Figure 12, where the RPI centered on the
nominal MPC plan always contains the real trajectory. The MPC
runs at 5 Hz over a 5 s horizon with a computation time of
N (7.2, 1.6) ms on the machine used in Section 3.5. Even
assuming a generous ten-fold computational slowdown on the
Astrobee processors (a value that has held in practice) this timing
is well within the required 200 ms desired. The result is a
successful track to the MP, as shown in the simulation
progression of Figure 14.

5 CONCLUSION

The framework and algorithms proposed in this study are a
significant step toward autonomous rendezvous with tumbling
Targets, uniting multiple key algorithmic components of the
autonomy pipeline. Furthermore, key uncertainty sources are
considered throughout and robustness and constraint
satisfaction despite these uncertainties are incorporated into
the pipeline logic. The treatment of uncertainty due to
imperfect Target estimation combined with online-updating
is considered, along with the implications of choosing overly
conservative uncertainty bounds. Planned ISS tests in mid-
2021 on the Astrobee platform will provide extensive
experimental validation of this study, which has been
shown algorithmically defined here and demonstrated in a
detailed simulation environment that directly transfers to the
Astrobee hardware.

Some major lessons learned from the development of this
framework include the need for early standardization and the
practical difficulties of moving to hardware implementation.
Hardware implementation is vital, giving a direct look at the
actual sensors, noise, computational power, and environments
that will be seen by the algorithms developed for autonomous
systems. However, hardware implementation leads to many
complications, particularly in moving from desktop-based
computational tools to embedded programming that may be
lacking important libraries or computational power for
example. Additionally, because of the number of algorithmic
components, standardization and message-passing procedures
must be settled early in development; luckily, ROS takes care
of some of this complexity on the Astrobee platform. Some
practical lessons learned are further documented in (Albee
et al., 2020).

Algorithmically, the estimation, motion planning, uncertainty
propagation, and robust control components have been outlined
in detail and their application to a relevant satellite system
explained. Individual performance metrics have been analyzed,
showing the effectiveness of each of these portions independently.
Additionally, the full pipeline presented in Figure 4 has been
shown, demonstrating success of the autonomous rendezvous
procedure in a detailed simulation environment, in real-time. A
significant next step is ISS demonstration of the proposed
pipeline on Astrobee hardware.

An interesting future direction for this study from a
motion planning and controls perspective is the

determination of system unknowns during execution. Prior
work in this area for robotic free-flyers has recently been
proposed and is applicable here in the case of online motion
planning that accounts for the learning of Target inertial
properties and permitting online recomputation, for instance
(Albee et al., 2019). As it stands, the robust rendezvous
framework documented here creates a full framework of
algorithms needed to perform autonomous rendezvous
with uncertain tumbling targets and adds robustness and
systems integration considerations to an important open
problem in microgravity close proximity operations, and
demonstrates its effectiveness in a detailed simulation
environment. Future study will document the framework’s
performance as it moves toward on-orbit hardware
demonstration.
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