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As robots become more advanced and capable, developing trust is an important factor of
human-robot interaction and cooperation. However, as multiple environmental and social
factors can influence trust, it is important to develop more elaborate scenarios and
methods to measure human-robot trust. A widely used measurement of trust in social
science is the investment game. In this study, we propose a scaled-up, immersive, science
fiction Human-Robot Interaction (HRI) scenario for intrinsic motivation on human-robot
collaboration, built upon the investment game and aimed at adapting the investment game
for human-robot trust. For this purpose, we utilize two Neuro-Inspired COmpanion
(NICO) - robots and a projected scenery. We investigate the applicability of our space
mission experiment design to measure trust and the impact of non-verbal
communication. We observe a correlation of 0.43 (p � 0.02) between self-assessed
trust and trust measured from the game, and a positive impact of non-verbal
communication on trust (p � 0.0008) and robot perception for anthropomorphism
(p � 0.007) and animacy (p � 0.00002). We conclude that our scenario is an
appropriate method to measure trust in human-robot interaction and also to study
how non-verbal communication influences a human’s trust in robots.

Keywords: human-robot interaction, investment game, non-verbal communication, science fiction, human-robot
trust

1 INTRODUCTION

As robot capabilities become more and more sophisticated, we not only want them to solve
increasingly complex tasks independently but ultimately aid humans in their day-to-day life.
Moreover, such social robots should act in a way that is reliable, transparent, and builds trust in
their capabilities as well as their intentions (Felzmann et al., 2019). As soon as humans and robots
autonomously work in a team on collaborative tasks, trust becomes essential for effective human-
robot interaction (Casper and Murphy, 2003). This shows the need for a deeper understanding of
what makes us willing to cooperate with robots and which factors enhance or destroy trust during
interactions.

We approach this topic by adopting the investment game by Berg et al. (1995), a widely used
experiment to measure trust in human-human collaboration. In the investment game, trust is
measured as the amount of money a person is willing to give to an anonymous counterpart, in the
prospect of a future profit. While others have used it in an HRI setting, some report limitations and
differences when applying it to human-robot collaboration (which we elaborate on in Section 2). We,
therefore, adapt the original investment game toward a persuasive HRI cooperative scenario by
scaling up both the robotic agent as well as the environment. With scaling up we allude to the
progression toward a human-like interaction: a realistic cooperative scenario as opposed to an
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abstract exchange of money. We do this by introducing a
plausible currency for both humans as well as robotic agents,
along with a weighted choice between two trustees, and removing
the ability of the participant to make choices based on domain
knowledge. The result is an HRI scenario, concealed as a
futuristic, immersive spaceship adventure containing multiple
rounds of the investment game for participants to develop
intrinsic motivation to collaborate with robots.

In this scenario, we utilize two Neuro-Inspired COmpanion
(NICO) humanoid robots by Kerzel et al. (2020) to advise the
participant who acts as a spaceship commander. A voice-
controlled artificial intelligence system which we refer to by
“Wendigo” guides the participant through the experiment,
where a large curved projector screen with an interactive video
feed simulates the inside of the ship’s cockpit (see Figure 1). The
setup is fully autonomous, with automatic speech recognition,
visual detection as well as dialogue management implemented as
ROS (Quigley et al., 2009) services, yet allows the experimenter to
intervene on necessity. During the scenario, participants
encounter four similar challenges (navigation malfunctioning,
impending asteroids, engine failures and leaks in the cooling
system): after the problem is announced by the ship AI, the
robotic advisers propose two diverging solutions. Subsequently,
the participants are asked to make a choice by distributing the
ship’s energy resources between the two robots and themselves,
which we evaluate as a quantitative measurement for trust.

The immersive setup allows controlling the emergence,
destruction, and reconstruction of trust in the robotic
companions throughout the game. To improve the robot’s
image and to ensure an experience which results in a more
human-like interaction, we add non-verbal cues to our robots
such as eye gaze toward the participants, facial expressions and
gestures (see Section 3.2.3 for details). Such features of non-
verbal communication (NVC), generally defined as “unspoken
dialogue” (Burgoon et al., 2016), have previously been shown to

account for over 60% of the meaning in communication for
human interactions (Saunderson and Nejat, 2019), as they allow
us to communicate mental states such as thoughts and feelings
(Ambady and Weisbuch, 2010). They are also thought to play an
important role in human-robot interaction, as the implicit,
robotic, non-verbal communication improves the efficiency
and transparency of the interaction, leading to a better
cooperation between human subjects and robots (Breazeal
et al., 2005).

As non-verbal communication is essential to both human-
human and human-robot trust (DeSteno et al., 2012; Burgoon
et al., 2016), we strive to measure the effect of NVCs in our HRI
scenario to assess how well it simulates a natural interaction.
Therefore, we utilize our novel investment game scenario to
investigate two research questions related to both evaluating
trust as well as the impact of NVCs on trust:

1. Does our variant of the investment game provide a reliable
measurement for human-robot trust?

2. Does non-verbal communication (NVC) affect human-
robot trust positively?

After surveying the latest research on measuring trust in
human-robot interaction and its shortcomings (Chapter 2) we
describe our approach (Chapter 3) and introduce an empirical
study to evaluate our hypotheses (Chapter 4). We discuss the
results as well as the limitations of this study (Chapter 5) and
conclude our findings (Chapter 6) with an outlook on further
research.

2 RELATED WORK

2.1 Trust and the Investment Game
One of the biggest challenges in human-robot interaction is to
develop a more natural relationship with robots. Previous
research shows that people refrain from accepting, tolerating,
and using robotic agents in everyday tasks, mainly because robots
still appear like intruders (Zanatto, 2019). A survey by the
institute DemoSCOPE (N � 1007) has found that while 50%
would accept information from a robot, only 16% would be
willing to work in a team with one ([Dataset] Statista, 2019). A
considerable portion of the general population still fears robots
and artificial intelligence, caused by a range of concerns about the
negative impact on interpersonal relationships and potential job
displacement (Liang and Lee, 2017; Gherheş, 2018).

This begs the question of what could aid in easing humans into
collaboration with a robot. As robots become more advanced and
take greater responsibility in social jobs such as in the education
sector (Kubilinskiene et al., 2017; Hameed et al., 2018; Neumann,
2019) or healthcare industry (Mukai et al., 2010; Logan et al.,
2019), this requires humans to be able to trust them. Whereas
human-human trust has been extensively studied, human-robot
trust poses new and complex research challenges. According to
Rempel et al. (1985) in human-human trust we can distinguish
cognitive trust - the willingness to rely on another person’s
competence and reliability - from affective trust - the

FIGURE 1 | The experimental setup. On the table there are three
compartments, with the one in the front (closest to the participant) containing
the total amount of 7 energy cells to distribute.
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confidence that the other person’s actions are intrinsically
motivated.

In both cases, the prediction and predictability of behavior are
fundamental (Wortham and Theodorou, 2017). Constructs such
as emotional empathy, shared attention, and mental perspective-
taking are essential to understand, recognize, and predict human
behavior, as well as adhere to people’s expectations of appropriate
behavior given circumstances (Breazeal et al., 2008). The
behavioral prediction is transferred when assessing human-
robot trust (Wortham and Theodorou, 2017), as humans build
a mental model, thus anthropomorphizing the machine. During
the first encounter, humans tend to apply social norms to robots
just as they do to humans (Rai and Diermeier, 2015). Cognitive
trust is measured by assessing the robot’s performance and
affective trust by assessing a robot’s motives. Prominent factors
that influence cognitive trust in a robot are its task performance
and characteristics (Hancock et al., 2011; Bernotat et al., 2019),
the timing and magnitude of errors (Rossi et al., 2017a; Rossi
et al., 2017b) and even physical appearance such as a gender-
specific body shape (Bernotat et al., 2019). In contrast to this
however stands the “uncanny valley” phenomenon: when a robot
exhibits aesthetic characteristics too similar to a human, this can
negatively impact trust. (Mathur and Reichling, 2016).

To quantitatively measure human-human trust, previous
work relies heavily on the investment game (also referred to as
the trust game) (Berg et al., 1995), an economic experiment
derived from game theory. Berg et al. introduced the
investment game in 1995, where a subject (the trustor)
invests money in a counterpart (the trustee). At the
beginning of the experiment, the trustor is provided with a
monetary resource amount r. They can then anonymously
decide which fraction p of their monetary resource r they want
to give to the trustee. This fraction is then multiplied by a
predetermined factor to incentivize investment. The receiving
person (trustee) is free to keep the whole of the increased
amount or can opt to send a fraction q of the received sum
back to the trustor, thereby reciprocating. Trust then is
quantitatively measured as the amount of money invested
by the trustor in the trustee.

As the investment game has been established to measure trust
between humans, some researchers have also used it to
empirically measure trust between humans and robots, to
varying degrees of success. While most studies kept the
original setup, some extended the environment toward a
virtual reality setup (Hale et al., 2018), settings with multiple
robots (George et al., 2018; Zanatto et al., 2020) or switched the
roles so that the human becomes the trustee dependant on the
robot’s willingness to invest (Schniter et al., 2020). Other variants
such as the Give-Some Game slightly change the rules toward an
economic analogue of the prisoner’s dilemma (DeSteno et al.,
2010; DeSteno et al., 2012). In the original Investment Game,
interaction among the trustor and trustee is intentionally
prohibited. Designed as a double-blind procedure, neither the
participant nor the experimenter knows which trustor is matched
to which trustee. A different approach by Glaeser et al. (2000)
specifically fosters participants to get to know each other before
the experiment, instead of the double-blind procedure originally

proposed, thereby opening up possibilities to study the influence
of social interaction on trust.

As previously mentioned, in every social interaction involving
trust, predictability is essential. This predictability is where non-
verbal communication (NVC) plays a major role (DeSteno et al.,
2012): various studies show supportive evidence that implicit
robotic non-verbal communication improves the efficiency and
transparency of interaction (Breazeal et al., 2005) and report
increased measures of trustworthiness when displaying non-
verbal cues. Haring et al. (2013) measured the impact of
proximity (physical distance) and character of the subject
(trustor) on trust. DeSteno et al. (2012) demonstrate that the
accuracy of judging the trustworthiness of robotic partners is
heightened when the trustee displays non-verbal cues while
holding voice constant. Robotic arm gestures have been shown
to reinforce anthropomorphism, liveliness and sympathy (Salem
et al., 2011; Salem et al., 2013) - regardless of gesture congruency
(Saunderson and Nejat, 2019). In fact, a lack of social cues of a
robot may cause the participant to employ unwanted testing
behavior where they try to outwit the machine (Mota et al., 2016).

A lot of research has gone into the study of non-verbal
communication via the investment game in human-agent
interaction (Duffy, 2008; Haring et al., 2013; Mota et al., 2016;
Hale et al., 2018; Zanatto, 2019; Zanatto et al., 2020). However,
only a few of them have used robots that can be considered
anthropomorphic and humanoid, which leaves doubt to whether
the trust measured is comparable to human-human trust. How
much people invest in the investment game may in fact reflect a
mixture of the generalized trust (a stable individual characteristic)
and their specific trust toward the trustee (Hale et al., 2018), thus
suggesting a different scenario setup to measure specific trust
separately. It also remains questionable to what extent humans
perceive money as valuable currency for robotic agents.

To the best of our knowledge, there has not yet been any
research definitively confirming whether the investment game is
indeed suitable for measuring human-robot trust. While it is a
valid, established trust measuring experiment, the original
version lacks certain features to make it suitable for a human-
robot interaction scenario: a plausible currency for both humans
as well as robotic agents and a human-like interaction without the
possibility to make choices based on domain knowledge. The
current work addresses this gap and aims to create a scenario that
provides these features under which trust in robots can be built
and destroyed, in order to clearly measure the correlation
between the trust experienced by a human, and the trust that
is displayed in the trust game.

2.2 Study Design in the Context of Game
Design
To keep participants engaged and immersed in a study that is
built around a game or scenario with gamification elements, it is
important to consider generally established guidelines for the
design of game mechanics and the overall gameplay. In game
design, the Mechanics-Dynamics-Aesthetics [MDA; Hunicke
et al. (2004)] framework is often used to break down a
player’s gameplay experience into three components: the
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formal rules of a game (mechanics), how they react to player
input (dynamics), and the player’s emotional experience of the
game (aesthetics). From a design perspective, a game’s mechanics
determine its dynamics, which generate the aesthetics
experienced by the player.

Consequently, careful design of game mechanics is critical in
eliciting specific responses from the player. According to
Fabricatore (2007), minimizing the learning time required to
master core game mechanics is an essential guideline for
successful design. This is particularly important in user studies
where the amount of time spent in the game is limited. Additional
important guidelines are limiting the number of core mechanics,
making them simple to learn, and keeping them relevant
throughout most of the game.

For the purpose of collecting data from a scientific study, it is
desirable to limit the possibilities of experiencing different
narratives and events between different players to be able to
infer that different gameplay experiences are solely a result of
different subjective experiences. This can be particularly
important to control for confounding variables in small to
medium-scale sample sizes (Saint-Mont, 2015). At the same
time, the player’s choice has to feel meaningful such that their
actions have consequences (Stang, 2019). Therefore, the ideal
game design requires a balance between a player’s need to
influence the game’s environment and a study designer’s need
to limit the set of game states and player actions for the purpose of
drawing conclusions.

One important approach for achieving this balance is to
provide an illusion of choice (Fendt et al., 2012) within a set
of predetermined outcomes that are nevertheless dependent on
the user’s actions. The success of this approach is tied to the well-
studied illusion of control, first described by Langer (1975) as
people’s tendency to overestimate their ability to control outside
events.

Another important factor for player engagement is the reward
design (Jakobsson et al., 2011). According to Wang and Sun
(2011), well-designed reward systems offer positive experiences:
balance between challenge and skill, clear goals, and immediate
feedback. Clear goals and immediate feedback are especially
important for comparability to the original investment game
in this case, as these are shared characteristics. Reward is the
primary driver in how the player progresses the game and how
resources are shared in multi-agent games. Reward is often tied to
a currency or item and the perceived value is its impact on the
reward or the advantage it provides to progress in the game.

These aspects, i.e. the chosen reward system, set of available
actions, perceived control over choices, and easy-to-follow rules
can contribute to the overall immersion that a player feels.
Immersion plays a key role in the design of our experiment as
it fosters a more natural-like human-robot interaction. Murray
(1997) defines immersion as a metaphorical term derived from
the physical experience of being submerged in water: “the
sensation of being surrounded by a completely other reality
[. . .] that takes over all of our attention, our whole perceptual
apparatus.” Such a cognitive state of involvement can span across
multiple forms of media such as digital games, films, books or
pen-and-paper role-playing games (Cairns et al., 2014). Massively

multiplayer online role-playing game (MMORPG) fantasy games
are known to immerse the player, as they can engage in real-time
communication, role-play, and character customization
(Peterson, 2010).

Slater and Wilbur (1997) and Cummings and Bailenson
(2016), however, distinguish presence - the subjective
psychological experience of “being there” - from immersion as
an objective characteristic of a technology: Slater and Wilbur
(1997) propose to assess immersion as a system’s ability to create
a vivid illusion of reality to the senses of a human participant.
Presence then is the state of submerged consciousness that may be
induced by immersion. By looking at immersion as a property of
the (virtual) environment one can measure its influencing factors.
Cummings and Bailenson (2016) summarize that immersion can
be achieved by:

1. high-fidelity simulations through multiple sensory
modalities

2. mapping a participant’s physical actions to their virtual
counterparts

3. removing the participant from the external world through
self-contained plots and narratives.

Such properties then let participants become psychologically
engaged in the virtual task at hand rather than having to deal with
the input mechanisms themselves Cummings and Bailenson
(2016).

In our experiment, we provide a high fidelity simulation
through visual and auditory sensory modalities by the use of
curved screen projections, dry ice fog upon entrance, and
surround sound audio. We map the participant’s physical
actions to their virtual counterparts’ by providing a tangible
currency consisting of cubes that are physically moved to
represent energy distribution. Lastly, the participant is
removed from the external world through self-contained plots
and narrative drawn from science fiction.

Science fiction is used to further enhance immersion as it is
known to have a positive impact on engagement (Mubin et al.,
2016). The more immersive the system, the more likely
individuals feel present in the environment, thereby letting the
virtual setting dominate over physical reality in determining their
responses (Cummings and Bailenson, 2016). An example would
be a jump scare reaction during a horror movie, or when being
ambushed while playing a first-person shooter.

Put differently: the greater the degree of immersion, the
greater the chance that participants will behave as they do in
similar circumstances of everyday reality (Slater and Wilbur,
1997). This concept of presence as realism however has two
aspects that need to be distinguished: social and perceptual
realism. According to Lombard and Ditton (1997), social
realism is the extent to which a media portrayal is plausible in
that it reflects events that could occur. As an example, characters
and events in animated series may reflect high social realism but -
because they are not “photorealistic” - low perceptual realism. A
scene from a science fiction program, on the other hand, may be
low in social realism but high in perceptual realism, i.e. although
the events portrayed are unlikely, objects and characters in the
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program look and sound as one would expect if they did in fact
exist (Lombard et al., 2009).

We strive to minimize social realism to prohibit that
participants draw from past experience while retaining high
perceptual realism to psychologically engage them in the
virtual task.

3 HRI SCENARIO DESIGN

3.1 An Immersive Extension of the
Investment Game
We base our study design around a variant of the investment
game, in which two robotic counsellors compete for investments
from the human participant. However, in contrast to previous
competitive variants (Hale et al., 2018), our design allows the
human participant to allocate their investment proportionally
between the two robots and themselves.

Motivated by the goal to avoid prior experience in the game as
an influence for player investments, we deliberately exaggerate
the design of our game scenario: in our space mission, the
participants impersonate the commander of a spaceship with
the task to deliver critical cargo to a distant planet. For this
mission, they are accompanied by two robotic officers.
Throughout their journey through outer space, the crew
encounters challenges such as asteroid fields and ship
malfunctions that require immediate intervention and
collaborative solutions. The robotic officers counsel the
participant by individually proposing solutions, and the
participant proportionally decides on their preferred action by
moving energy cubes into respective compartments. However,
the two robots’ advice is designed to be incomprehensible
technical jargon, leaving the participant with no other choice
than to base their decision on the officer’s persona’s subjective
impression.

By allocating energy resources, we hypothesize that the
participant effectively invests in the robotic officer’s
trustworthiness. This scenario setup entails two important
requirements: i) making the participant reliant on the robots’
expertize to foster cooperation, and ii) ensuring that the
invested currency and investment outcome have an
inherent value to both the participant and the robots. We
achieve the former by designing a challenging scenario setting
of a space journey: all participants will have negligible
expertize regarding space travel. Thus, the robotic officers
that are introduced as specifically designed to advise in
interstellar travel will be perceived as more knowledgeable
in the subject matter. In combination, this should prevent
participants from making decisions based on their previous
experiences, leaving the participant primarily reliant on the
robots’ advice.

To achieve the second requirement, we employ a currency that
is considered valuable for both the human trustor and the robotic
trustee, to create intrinsic motivation to distribute the currency.
As we anticipate that participants do not perceive money as a
valuable currency for robotic agents, we adopt a fictional currency
of energy cells, represented by cubes. From the perspective of

game design, the value of items is often determined by their
aesthetics and functionality (Ho, 2014), i.e. their usefulness to
progress within the game. Therefore, we use cubes that visually fit
into the given science fiction setting and tie their value to the
ability to invest in the robots’ choices. Consequently, these energy
cells have a value to the player as they function as a resource that
can provide the ship’s engine with the extra power to reach the
destination planet faster. At the same time, the robotic officers
require such energy to execute their solutions to ensure safety
during the journey. To ascertain that players feel the impact of
their choices and investments, the ship AI gives feedback at the
end of each round, explaining the consequences of the taken
actions for the crew.

A comparison between the original and our immersive
extension in terms of defining features can be seen in Table 1.
In contrast, the original investment game uses the same
monetary currency for both the investment and the return,
which forms the basis for an exchange of benefits and
characterizes the reciprocity of the game’s interaction
(Sandoval et al., 2016). In our case, rather than a return of
the invested currency, we provide a different benefit that is
tied to the game progression: a reduction of the mission time,
which brings participants closer to their goal. A successful
distribution causes the presented emergency to be resolved by
the robot that received most of the currency. As such, a
participant’s distribution of the energy cells is followed by
feedback from the ship AI with regards to whether the robots
invested in were successful or not in executing their proposed
strategies. This builds the basis for reward within our scenario
as the return of investment is countered by the robots to
execute their problem-solving strategies. We aim to resolve
the challenges that i) the participant could perceive a real-
world currency as less “useful” for the robots than for
themselves, and ii) the energy cubes may be perceived as
not valuable enough for the participant to make a meaningful
investment choice. Therefore, we add the reward to the game
progression caused by the robots.

Each resolved emergency reduces the delivery time of the
cargo, progresses the game and rewards the player. An
unsuccessful distribution of the energy cells indicates the loss
of the invested currency, comparable to the original investment
game. The loss of the currency increases the delivery time since
the energy not invested in either robot’s solution speeds up the
ship. By giving a functional value to the energy cells for all, the
participant and the robots, and providing a return for the
investment, we create a currency that is perceived as valuable
to both trustor and trustee.

Lastly, participants can proportionally choose how much they
invest, i.e., they can freely distribute their energy cells between
both robots and themselves. However, as 7 cells are provided in
total, they are unable to distribute all energy cells evenly among
the 3 options (officer A, officer B, ship engine), effectively forcing
them to voice a preference.

These three aspects - i) the inability of the participants to make
choices based on prior existing domain knowledge, ii) a shared
currency between human trustor and robot trustee, and iii) the
weighted choice between two agents - allow us to go beyond an
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anonymous exchange of money while maintaining the structure
of the investment game, and meet the requirements for a suitable
human-robot interaction scenario.

3.2 Experimental Setup
One of the main goals of our scenario design is to achieve an
immersive and enjoyable experience for the participants. Besides
concealing our research question, our scenario needs to establish
enough involvement to allow trust-building toward the robots.
For this purpose, we developed a fully autonomous system that
only requires intervention in case of larger technical failures or
misunderstandings, which most likely would then result in a
cancellation of the experiment run. A schematic of our
experimental setup can be seen in Figure 2. The participant
(P) is seated in the cockpit of the ship (depicted by the interactive
video feed screen [S]), containing the two robots (R1 and R2) and
a table with three compartments containing the total of seven
energy cubes (E). Separated by a curtain, the experimenter (X)
and operator (O) monitor the experiment, to intervene only in
case of technical difficulties. Otherwise, the system acts through a

state machine, implemented in Python using the SMACH1 state
management library. The state machine orchestrates and
synchronizes several ROS (Quigley et al., 2009) services built
on top of the following components:

3.2.1 The Environment
For our environment setup we utilized the multi-sensory Virtual
Reality lab of the Knowledge Technology group at the Universität
Hamburg (Bauer et al., 2012). The participant is seated at a small
table in the center of a half-spherical screen canvas with a
diameter of 2.6 m and a height of 2.2 m. On the table, in front
of the player, there are three heptagonal-shaped compartment
areas containing in total seven plastic cubes, as can be seen in
Figures 1, 3. A condensator microphone is located in the middle
of the table for speech recognition. Next to the microphone lies a
laminated sheet with possible questions that can be asked to the
robots during the game. Four Optoma GT 750 4k projectors

TABLE 1 | Comparison of features from the original investment game and our immersive version.

Feature Original investment game Immersive investment game

Setting “Plain” experiment room Sci-Fi game
Parties involved 2 participants Participant and 2 robots
Interaction between parties No Yes
Currency invested Monetary Energy cells
Goal of participant Maximize monetary profit Optimize cargo delivery time
Currency returned Monetary Reduced mission time
Motivation for participant Monetary incentive Positive reinforcement

FIGURE 2 | Schematic of the experiment setup from above: The participant (P) sits at the cockpit table, with the two robots (R1, R2) opposite on each side. Behind
the robots, the curved screen (S) displays the virtual interior. In the middle of the table, three heptagonal compartments depict where energy cubes (E) can be placed. The
top view camera (C1) tracks the energy cube allocation, while two additional cameras (C2) allow to monitor the participant during the experiment. A microphone (M) and
loudspeakers (L) allow for voice interactivity and auditory immersion. Behind a privacy curtain, the experimenter (X) keeps additional notes, while an operator (O)
monitors the experiment to intervene in case of technical difficulties.

1http://wiki.ros.org/smach (accessed 2021-03-10)
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aimed at the canvas in front of the participant display still images
as well as video feeds, simulating the inside view of a spaceship
cockpit.

The canvas shows the journey through the galaxy by
displaying transition videos between scenes and provides
visual feedback such as warnings in case of emergency
situations. We use multiple surround loudspeakers installed
behind the canvas for the ship AI’s voice and special sound
effects such as ambient music, engine noise and alarm sounds.
Turquoize ambient lighting and dry ice fog create an atmospheric
environment throughout the game, while red lights are used
occasionally to indicate the emergency encounters.

3.2.2 The Robots
The two robot officers, non-descriptively named 732-A and 732-
B, are located at 45+ and 135+ respectively from the circle origin,
at a maximum angular distance to each other and the participant.
We chose their names to be as neutral and unrelated to any prior
experience of participants as possible.

We utilize NICO (Neuro-Inspired COmpanion) (Kerzel et al.,
2020, 2017), an open-source social robotics platform for
humanoid robots (see Figure 4) designed by the Knowledge
Technology group at the Universität Hamburg. NICO is a
child-sized humanoid robot that has a range of programmable
human-like sensory and motor capabilities, accessible and
customisable through the Robot Operating System (ROS)
(Quigley et al., 2009), characterized in particular by combining
social interaction capabilities. It has 10 degrees-of-freedom in the
torso (head and arms) and 22 degrees-of-freedom in the hands
(under-actuated, 8 motors) with additional joints for fingers,
which allows for fine-grained gestures and body language.

NICO is also capable of displaying a range of programmable
facial expressions through LED matrices in its eyebrows and

mouth. The utterance of spoken messages is enabled via an
Embodied Dialogue System, integrated with loudspeakers in
the robotic torsos to produce enhanced speech.

3.2.3 Non-Verbal Communication
As elaborated in Section 2, non-verbal communication (NVC)
plays a key role in human-human trust (DeSteno et al., 2012). For
our investigation of the effect of non-verbal communication on
human-robot trust we equip both robotic officers with sets of
non-verbal cues, one set more elaborate than the other.

These more elaborate cues include: adapting the gaze direction
via head movements toward the participant and the other robot,
four different facial expressions (happiness, sadness, surprise,
anger), as well as gestures toward the participant such as pointing,
saluting or beat gestures. These facial expressions and body
movements show evidence to improve the transparency of the
interaction and reinforce the spoken word (Breazeal et al., 2008).

The other robot adheres to a minimal set of neutral
movements to keep the illusion of life (Mota et al., 2016),
such as looking down at the allocated energy cells and turning
their head toward the speaker. We alternate the condition
between participants in order to control for potential biases.

3.2.4 The Vision System
To support the full autonomy of the system, we developed an
automatic object detection system. It handles the energy cell
counting during allocation as well confirms that the robot’s
compartments are empty before proceeding to the next scene.

On the table, in front of the participant are three heptagonal-
shaped compartments holding the energy cells. All compartments
have seven quadratic markers on which the energy cells must be

FIGURE 3 | Top view of the commanding table. One energy cell is
assigned to each robot and the participant kept five.

FIGURE 4 | The neuro-inspired COmpanion (NICO).
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placed for successful allocation. Am RGB-camera is mounted on
top of the commanding table near the ceiling to count and track
energy cubes allocation and de-allocation from the robot
compartments. A picture of the commanding table taken by
this camera can be seen in Figure 3.

After a request from the dialogue manager state machine, the
object detection algorithm processes an image taken from the
RGB-camera mounted on top of the commanding table using the
OpenCV library (Bradski, 2000), to detect the number of energy
cells allocated to each heptagon-shaped compartment. The
allocation distribution is sent back to the dialogue manager
via ROS service response. Two additional cameras are used by
the experimenter and operator to observe the participant and
monitor the experiment flow. Using a camera mounted behind
the participant, the operator verifies the movements of the robots
for technical faults, with the other placed on top of the canvas the
experimenter examines the participants’ expressions and
movements for possible difficulties.

3.2.5 The Speech Systems
Interactive dialogue via spoken words is a cornerstone to enable
natural human-like human-robot interaction (Spiliotopoulos
et al., 2001; Kulyukin, 2006). We, therefore, built the spaceship
AI named Wendigo as a closed dialogue manager utilizing the
SMACH state management library, the Automatic Speech
Recognition system DOCKS2 developed by Twiefel et al.
(2014), and the Amazon Polly2 Speech Synthesis service.

The participants can directly interact with Wendigo and the
robotic officers via a microphone located in the middle of the
commanding table. The dialogue is restricted in allowing the
participants to only pick questions from a predefined list and
confirming that they are ready to go on with the experiment. Both
NICO robot officers exhibit the same voice persona represented
by loudspeakers embodied in their torso, allowing for a natural
sound-source localisation.

3.3 Protocol and Game Scenes
As formulated in Section 3.2, we strive to automate the
experiment procedure as much as possible to limit variability
and experimenter bias. In the remaining human interventions,
the experimenter, therefore, follows a scripted protocol (all
detailed lines can be inspected in the full experiment protocol
publicly available at3): The participants are welcomed and
brought to the anteroom, where they are asked to fill out the
consent and data privacy forms as well as a pre-experiment
questionnaire.

This questionnaire asks for standard demographic questions
such as age, sex, former experience with robots and computers,
and general attitude toward robots. We include the 30-item Big
Five Inventory-2 Short Form questionnaire (Soto and John, 2017)
to assess the Big Five personality domains, which measure
individual differences in people’s characteristic patterns of

thinking, feeling, and behaving (Goldberg and Kilkowski,
1985). Participants rate each item statement using a 5-point
Likert scale ranging from “disagree strongly” to “agree
strongly”. We choose the shortened forms to minimize
assessment time and respondent fatigue while retaining much
of the full Big Five measure’s reliability and validity. Moreover, we
measure the general risk-taking tendencies via the Risk
Propensity Scale (RPS) by Meertens and Lion (2008), as well
as the self-reported trust propensity using the 4-item form by
Schoorman et al. (1996). The scales use 5-point Likert-type items
with anchors of agree and disagree for each scale point.

After completing the pre-experiment questionnaire, the
experimenter then guides the participant toward the experiment
room with the half-spherical canvas, depicted as the spaceship
cockpit. By entering the cockpit, the experiment context is set and
immersion is fostered by the screen depicting the outside view of a
space cargo hangar, dimmed lights, dry ice, as well as the
experimenter from now on addressing the participants as
“commander”. Following the scripted introductory narrative, the
experimenter instructs the participants to the space mission task,
their goal as the commander to deliver important cargo safe and
fast, and makes them aware of the two robotic officers who
accompany them on their journey. The participants are
encouraged to familiarize themselves with the cockpit
environment, the energy cells, the allocation compartments, and
the list of possible questions that can be asked to the robots during
the game. The experimenter also elaborates on the meaning and
impact of the energy cubes, and demonstrates how they can be
distributed by way of example. The experimenter asks for any
remaining questions, then steps back out of the experiment room
behind a curtain before the trial scene 0 begins.

In this scene, the voice-controlled artificial intelligence system
Wendigo and the robotic officers introduce themselves, then
conduct an introductory round of the cube allocation, which is
concealed as a system check. This trial round serves to acquaint
the participants with the experiment procedure and reveal
possible misunderstandings. It familiarizes them with the
ship’s visual and auditory feedback mechanics and accustoms
them to the delay between voice input and feedback response. The
trial round furthermore allows the operator behind the curtain to
possibly re-calibrate the microphone sensitivity without breaking
immersion.

After the trial scene 0, the experimenter briefly enters the
cockpit again to answer any remaining questions before the start
of the actual experiment. At this point, we consider participants
to be informed about the game mechanics, prepared for the
upcoming tasks, and motivated to achieve the game’s objective,
following their mental model they have formed about the game.

Figure 5 depicts the overall course of the experiment narrative:
every participant passes through the same scripted events,
followed by the same type of feedback (neutral, negative, or
positive). While the specific feedback lines are adjusted to the
individual allocation choices, the resulting feedback characteristic
is always predetermined for each round to ensure comparability
between different participants’ interactions. In each scene, the
participant goes through the following steps (as visualized in
Figure 6):

2https://aws.amazon.com/polly/ (accessed 2021-03-10)
3https://www.frontiersin.org/articles/10.3389/frobt.2021.644529/full#supplementary-
material
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1. Wendigo draws attention to the challenge at hand (Scene 1:
malfunctioning navigation system, Scene 2: interfering
asteroids, Scene 3: entering the atmosphere, Scene 4:
leaking cooling system).

2. Both robotic officers advertise their solution for which they
require energy cells.

3. The participant can ask a question from the list of
predefined options, to which the robotic officers reply one
after another and in a randomized order.

4. The participant is asked to distribute the energy cells as
they see fit, and say ‘Wendigo, I am done! ‘when they
are done.

5. Wendigo provides feedback on the decision outcome
(Scene 1: neutral, Scene 2: negative, Scene 3 and 4:
positive).

6. After the participant places all energy cells back into their
own compartment, the state machine autonomously
transitions to the next scene.

Note that after each cube allocation, we employ rich visual and
auditory feedback (see step 5) in terms of ambient light and
spoken response lines disguised as status reports, such as

“Unsuccessful. Ship damaged. The breach has been closed but
the life support system is damaged.” as an example for negative
feedback. By design, in the second scene, the feedback for the
investment decision (regardless of how the energy cubes were
distributed) will be portrayed as unsuccessful, while on each of
the other investments the participant receives positive feedback
instead. This control of the narrative, regardless of the
participant’s concrete decision, enables us to reproducibly
observe the effects of building and destroying trust.

During the experiment, the experimenter behind the curtain,
observing on the extra camera view (provided by the cameras
indicated as C2 in Figure 2), takes free-form observation notes
about the progression of the experiment, as well as any
noteworthy occurrence that could invalidate the participant’s
data. After the final scene, the experimenter steps back in,
congratulates the participant on a successful mission, and
escorts them back into the anteroom. The participant is
provided with the post-study questionnaire that asks to
evaluate their perception of the experiment and their
impression of each robot.

For the purpose of rating the robot’s impression, we employ
the Godspeed questionnaire (Bartneck et al., 2008), a
standardized measurement tool for human-robot interaction
using semantic differential scales on five key concepts in
human-robot interaction: anthropomorphism, animacy,
likeability, perceived intelligence, and perceived safety. We
omit questions related to Perceived Safety, since there is no
physical interaction between the participants and the robots
and distance is kept throughout the experiment. The post-
study questionnaire furthermore asks the participant to rate
the trustworthiness (Bernotat et al., 2019) and performance of
each robot. Inspired by Bernotat et al. (2017), we adapt seven
items on the measurement of cognitive trust (grouped into
“content” and “speech” clusters), and six items on affective
trust (grouped into “cooperation” and “sociability” clusters)
(Johnson and Grayson, 2005). Lastly, the participants are
asked to choose which robot they preferred as an assistant,
and to provide additional feedback about shortcomings,
immersion, and their overall experience during the experiment.

4 RESULTS

The study was conducted over two consecutive weeks at the end
of February 2020 on the campus of the computer science
department of Universität Hamburg. It was advertised via
flyers and word of mouth to people with at least some

FIGURE 5 | General course of the experiment. Each scene is followed by a feedback statement with predetermined characteristic (neutral, negative or positive).

FIGURE 6 | Each of the four scenes follows the same structure: the
participant is presented with an emergency for which the robots suggest
different solutions. The player can engage in a conversation with both robots
to determine their investment. Based on which round is played, the
player’s investments have lead to robot actions with either positive or negative
consequences, resolving the emergency and transitioning to the next scene.
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experience and familiarity with computers and robots, who are
comfortable with participating in a science fiction game and could
understand and speak English fairly well. In the following
sections, we start by discussing general population statistics
and overall perception of the robots. We then proceed to
evaluate whether our scenario is a valid augmentation of the
Investment Game. For this, we introduce two derived metrics
from the energy cube allocation to compare trust measurements
among two conditions. Lastly, we report on the results of the trust
measurements and the effect of non-verbal communication
(NVC) on trust.

4.1 Population Statistics
Our study was conducted with 53 participants, of whom 45
finished the experiment successfully. For 8 participants the
experiment was started but had to be aborted because of
technical issues such as robot actuator overloading, language
barriers or a misunderstanding of the game rules. All
following statistics, therefore, apply to the 45 participants
who completed the experiment without complications. Our
participants’ mean age (M � 26.8, SD � 7.0) lies in the range
of young adults, with 95% between ages 19 and 34.60% of
them identified as male, 38% as female, 2% made no
statement. All of the participants were familiar with
computers and 51% of them have programming
experience. While 29% of the participants had worked with
robots previously as a developer, 42% had never interacted
with a robot prior to the experiment.

We compared our participants to the general German
population of a similar age group with results obtained from
other studies (Lang et al., 2011). The comparison was conducted
with a Welch’s t-test for independent samples on descriptive
statistics with significance level 0.01. Based on the personality
questionnaire (Section 3) results, the participants had average
scores for extroversion (M � 4.68, SD � 1.30), agreeableness
(M � 5.22, SD � 1.03) and neuroticism (M � 3.62, SD � 1.78).
However they scored below-average in conscientiousness
(M � 4.79, SD � 0.99) and above-average in openness
(M � 5.50, SD � 1.04) compared to the general German
population of a similar age group (Lang et al., 2011). We
refrained from assessing the detailed facet-level trait properties
of the Big Five domains, as this is recommended by the authors
for a sample size below 400 (Soto and John, 2017).

The trust and risk propensity questionnaires showed that
our participants were less prone to take risks (M � 4.05,
SD � 1.32) than the general population (Meertens and
Lion, 2008) yet more prone to trust (Mayer and Davis,
1999) (M � 2.93, SD � 0.61). We used the cognitive trust
items described in Section 3.3 as a rating of the robot’s
performance to compare our population to other findings
compiled by Esterwood and Robert (2020): we found a very
strong correlation between the cognitive and affective trust
items (r � 0.82, p � 7.2e − 23), confirming that cognitive and
affective trust go hand in hand.

We can confirm the finding by Sehili et al. (2014) for a positive
relationship between neuroticism and an anthropomorphic
perception of the robot (r � 0.22, p � 0.035). In contrast to

Looije et al. (2010), we cannot confirm any relationship
between self-reported conscientiousness of a participant and
the perceived sociability of a robot. We moreover cannot confirm
a significant relationship between perceived anthropomorphism and
robotic performance like Powers and Kiesler (2006) did, however
similar to Broadbent et al. (2013) we find a moderate relationship
between perceived anthropomorphism and affective trust
(r � 0.2, p � 0.057).

4.2 Metrics and Grouping Criteria
We now introduce two metrics specific to our scenario that allow us
to quantify the differences in the trust placed between the robots.

4.2.1 Allocation Metric
Measures the investment displayed via energy cells allocated to
each single robot. The allocation metric is calculated as

A(R) � cubes(R2) − cubes(R1)
cubes(R2) + cubes(R1) (1)

where cubes(R) stands for the energy cells allocated to one of the
robots R ∈ {R1,R2}. A(R)< 0 indicates a preference for R1,
A(R)> 0 a preference for R2, while the magnitude in the
differences is indicated by |A(R)|.

4.2.2 Relative Trust Metric
Measures the trust expressed in each robot according to the post-
experiment questionnaire. Relative trust is calculated as

T(R) � trust(R2) − trust(R1) (2)

where trust(R) is the value obtained from the different
trustworthiness Likert items in the post-interaction questionnaire,
normalized to lie within [0, 1]. As before, T(R)> 0 indicates a
preference for R2 or a preference for R1 otherwise, and the
magnitude in the differences is indicated by |T(R)|.

Inspecting both the Allocation Metric and the Relative Trust
metric over consecutive scenes, we now segment the participants
into two groups:

4.2.3 The Alternating-Minimum Investment Group
(N � 16)
During the exploratory data analysis, two outstanding gameplay
patterns were observed. These two patterns are defined by specific
behavior throughout the game, participants that showed either
one or both of these behaviors were grouped together:

• Minimum Investment Behavior: This behavior resembles a
lack of engagement in the game. Three of the participants
investing less than one-third of the available cubes were
considered disengaged. A threshold of fewer than 10 energy
cells allocated in total throughout the four scenes was
considered as a criterion for this group.

• Alternating Investment Behavior: The energy cell allocation
results indicated that some participants changed their minds
about the robot they trusted more throughout the game. A
group of 14 participants changed their mind at every scene as
they would alternate between either allocating more energy
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cells to one robot or the other, or allocating an equal amount
to both robots. These alternating participants did not
particularly trust or prefer one robot over another to
invest in throughout the game.

Figure 7 highlights these two behaviors in the context of the
number of preference changes and amount of cubes invested
throughout the game. The group of participants showing either of
those behaviors is further referred to as the alternating-minimum
investment group and consists of 16 participants. Further analysis
of the alternating-minimum investment group showed that there
is no link between these patterns and one specific robot, nor the
NVC variable. As such, this behavior did not depend on the
content of speech or appearance of either of the robots.

4.2.4 The Main Group (N � 29)
This is the group of participants that did not show either of the
two aforementioned behaviors: the majority of the participants.
With a Mann-Whitney U test for independent samples, we found
that these participants had no notable differences to the
alternating-minimum investment group with regards to risk
and trust propensity. They, however, obtained a lower score in
Neuroticism (p � 0.024) in the personality questionnaire than the
alternating-minimum investment group.

4.3 Transferability of the Investment Game
The aim of our study is to verify that our scaled-up version of the
investment game can be used to measure trust in HRI. The results
were evaluated separately on the main group (N � 29) and the
alternating-minimum investment group (N � 16). For this the
coherence between measured trust and self-assessed trust was
evaluated by means of the Spearman test for correlation on the
previously introduced metrics: the allocation metric represents
the measured trust and the relative trust metric represents the
self-assessed trust.

A statistically significant correlation can be observed for the
main group (correlation � 0.43, p � 0.02), however not for the

alternating-minimum investment group (correlation � −0.24,
p � 0.37). A comparison between both groups can be seen in
Figure 8. In the standard human-human investment game, the
amount of money invested by the trustor represents the trust in the
trustee. As such, the observed correlation supports the hypothesis
that our variation of the investment game between human and
robot works much like the investment game between two humans.

The fact that alternating-minimum investment behavior was
found also in a simple setting (Mota et al., 2016) and that there
was no relationship between the alternating behavior of the
participants and the robot characteristics show that the setting
had no impact on the effectiveness of the trust game. This
supports our hypothesis, that our scaled-up version of the
investment game can indeed be used as a measure of trust.

4.4 Impact of Non-Verbal Communication
on the Perception of the Robot
After ensuring that it is indeed possible to measure trust in
human-robot interaction with our scaled-up version of the
investment game, we further look into the impact of NVC on
trust in the robot but also at other characteristics of the robot. As
has been mentioned previously, NVC plays a significant role in
human interaction but also in the efficiency and transparency of
the interaction between humans and robots (Casper andMurphy,
2003). In our case, we find that these non-verbal cues have indeed
made an impact on the trust in the robot as well as on its
perceived anthropomorphism and animacy.

We analyze the main group which didn’t show alternating-
minimum investment behavior (N � 29) where it has been
established that the game does measure trust. For this main
group, the non-verbal communication of the robot had an
impact on the number of energy cells received. This impact was
observed in the first scene, the only scene where the participant had
no previous disappointment related to any of the robots, but had
already gotten to know the robot. In this scene, the robot that
showed non-verbal communication obtained a significantly higher

FIGURE 7 |Occurrence of alternating behavior (A) andminimum investment behavior (B), highlighted in red in the distribution of relevant gameplay metrics (amount
of preference changes and total cubes allocated, shown in steps of 4 cubes).
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amount of energy cells compared to the other. The one-sided
Wilcoxon test for independent samples between the distribution of
the energy cells for the robot with NVCs and the robot with
minimal NVC (MNVC) confirmed this (p � 0.0008).

Independent of the gameplay choices, for all participants
(N � 45) the robot showing NVC seemed more human-like
and animated. As can be seen in Figure 9, the Godspeed
values for anthropomorphism (p � 0.008) and animacy
(p � 0.00001) are significantly distinct when comparing the
NVC/MNVC conditions with a Mann-Whitney U test,
whereas this is not the case for likeability (p � 0.23) and
intelligence (p � 0.24). The observed values for
anthropomorphism support our hypothesis that the NVC
robot invokes more trust, which is consistent with findings of
similar studies. Wortham and Theodorou (2017) state that the
perceived anthropomorphism of the robot increases the trust in
the robot, especially for non-specialist humans, as the human
needs to create a mental model for the robot to trust it.
Furthermore, an increase in NVC leads to an increase in
motion which subsequently leads to more perceived animacy
(Parisi and Schlesinger, 2002).

However, likeability does not seem to be affected by the use of
NVC, potentially because the quantity and type of gestures used
for non-verbal communication vary with culture (DeVito et al.,
2000). Thus the degree to which a robot moves does not
necessarily influence the likeability of the robot, as this is a
personal preference that can vary across participants.
Consistent with previous research (Deshmukh et al., 2018),
there are no perceived differences in intelligence either.

Our results show a correlation between trust measured by the
investment game and the self-reported trust from the
questionnaire. This gives us evidence that the scaled-up
investment game can be used as a tool for measuring human-
robot trust and therefore it can have practical applications in
future experiments to study the impact of different variables
(such as NVCs) between robots on how trustworthy the human
perceives them. We anticipate that this serves as a positive
example of extending socioeconomic experiments to a human-
robot social interaction setting.

5 DISCUSSION AND FUTURE WORK

Our experiment revolves around three main characteristics: the
weighted choice between two agents, the participants’ inability to
make choices based on prior domain knowledge, and the additional
incentive for interaction between the trustor and the trustee.
Maintaining these characteristics, we believe our game design can
be adapted to various situations and environments where trust and
NVCs play a role. Such environments comprise, but are not limited
to, a work environment or a public service environment.

Overall, our results show that our variant of the investment
game provides a reliable measure for human-robot trust and that
non-verbal communication positively affects human-robot trust.
However, there are some points of discussion which we address
further in the following section.

5.1 Science Fiction and Immersion
In our study, we chose a futuristic environment since most people
know robots from media and science fiction stories (Horstmann

FIGURE 8 | Correlation of relative trust and allocation metric for the two participant groups: Main group (A) and Alternating-Minimum Investment group (B).

FIGURE 9 | Effect of non-verbal communication (NVC) and minimal non-
verbal communication (MNVC) on Godspeed items.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 64452912

Zörner et al. Immersive Investment Game for HRI

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


and Krämer, 2019). While we hypothesize that this is not a limiting
factor for our study’s replication, this should be subject to further
research. It is essential to note that participants likely acted following
amental model, acting as a player in a game based around a fictional
narrative (see Section 3.1 for a summary or4 for the full narrative).
As such, our presented results should be interpreted within this
context. For example, as a byproduct of high immersion, we cannot
exclude that some participants might have engaged so strongly in
role-playing their alter ego so that their observed behavior might
have started to differ from their usual self. Consequently,
generalisability from contained game studies to real-world
settings is an additional open question that is subject to academic
debate and research, even in normal trust games with minimal role-
play (Levitt and List, 2007; Johnson andMislin, 2011). Furthermore,
we argue that our investigated NVCs and trust factors are likely to be
experienced on amore intuitive level and therefore difficult to “fake”
when role-playing, given a certain degree of independence from the
actual decision-making process in our game.

5.2 Gameplay Behavior
We found two different gameplay behaviors that identify the two
groups on which results were compared: the main group (N � 29)
and the alternating-minimum investment group (N � 16). The
alternating-minimum investment group (described in Section
4.2.3) either alternated their investment or invested little in the
robots, which shows no engagement in the game. There was no
significant trust correlation for the alternating-minimum
investment group, whereas the main group showed a significant
correlation. As 16 participants is quite a high number, we
hypothesize that the participants in the alternating-minimum
investment group could have been alternating their strategies to
infer the experiment research question or to simply test the system
similar to as experienced by Mota et al. (2016), possibly due to the
fact of the experiment being advertised in a computer science
department. This group also showed higher scores for neuroticism
compared to the main group in our personality test. Some
participants may have not liked the experimental setup or may
have felt not immersed enough to participate. However, the lack of
immersion does not reflect the game’s general perception, since
most participants in the post-interview stated toward the
experimenter to have felt immersed and motivated to win
the game.

Mota et al. (2016) observed that when a human needs to judge
a robot’s trustworthiness, they draw on past social experiences
with humans or try to build social experience with the robot. Due
to insufficient shared social cues between humans and robots,
humans are mostly incapable of determining a robot’s
trustworthiness based on past experiences. The alternating and
minimum investment behavior observed could indicate an
insufficient social experience, thus preventing the
establishment. However, further research is necessary to study
the particular motivations.

In our experiment, almost half of all 45 participants had never
interacted with a robot previously. We fostered building social

experience with the robot by making the participant ask them one
question before each of the four rounds of cube allocation.
Potentially, participants in the alternating-minimum group
may have needed more rounds to build social experience
reliably. From this perspective, adding more rounds to the
game could potentially lead to the behavior regularizing over
time. Future work might want to investigate the optimal number
of rounds, thereby balancing the trade-off between the
experiment’s length and the number of collected data points.

For the small number of three participants who showed non-
engaging behavior (see Section 4.2.3), this could result from
misunderstanding the rules of the game, the relative worth of the
energy cubes, or a general aversion to decision-making or the
presented scenario. The non-engaging behavior may also be
an attempt to delay decision-making until enough social
experience has been built between the participant and the
robots.

5.3 Improvements for Future Studies
While we observed and measured trust through the player’s
investments, we suggest weighing the following points in
future studies. Clearer and more detailed results could likely
be obtained with a more prolonged experiment and a bigger
participant pool with a revised scenario, mitigating some of this
experiment’s limitations.

Since our robots functioned fully autonomously, the natural
language interface sometimes malfunctioned due to usage or
technical errors, potentially prolonging the time until feedback.
The participants who had to repeat themselves, some multiple
times, may have experienced a break in immersion. Although our
post-interviews did not reflect it, we cannot eliminate that some
participants may have felt frustrated by a bumpy interaction.
Future experiments could investigate the effect of simplified
design choices on our measurements, for example, by
substituting our autonomous setup with a wizard-of-oz design
for timely interaction. The processing time of the many parts of
the experimental setup sometimes leads to slight delays between
user action and robot reaction, which could have led to a break of
the immersion and frustration.

Our study is limited to the NICO robots. We have
encountered some technical limitations, including the lack of
a more extensive range of different facial expressions and a
wider range of human-like movements. Moreover, NICO has a
childlike appearance. It is unclear how the perceived robot age
can affect human perception of honesty and reliability, even
though we introduced the NICOs as specialists in the complex
field of space exploration.

It is important to note that we merely compared non-verbal
communication (NVC) against minimal non-verbal communication
(MNVC). There is currently no widely established baseline or notion
of minimal NVC, and the impact of our interpretation and
subsequent design choices on the participants is an open question.
Our study showed that the mere presence of NVC has a positive
impact on both the trust in the robot and the perceived characteristics
of it. Future studies should investigate where the boundaries of
minimal and too much NVC lie. As both robots showed at least
a baseline of non-verbal cues, the difference between the two4https://gist.github.com/SZoerner/12cefe9ca612b4ae57385b9ea47bf999
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conditions may have been diminished. Future studies may also
investigate how different gestures affect trust, as there is no clear
consensus that social cues translate to “reliable” or “unreliable”, and
no obvious way to categorize these cues.

6 CONCLUSION

We provided an elaborate HRI scenario to model the building of
trust more closely to human relationships than in the original
investment game. Our experimental setup includes social
interaction, non-verbal communication, a shared goal, and
intrinsic motivation, thereby allowing participants to collaborate
with robots more realistically than in the original investment game,
and measuring trust reliably. The environmental variables that our
scenario (and its life-like agents) adds to the data are a natural
reflection of the many factors, internal and external, that influence
human trust and how different levels of trust affect human
behavior in different contexts, modeling aspects of human-robot
trust that the original trust game does not cover.

We found a correlation between the self-assessed trust and the
trust measured from the game for the majority of participants (main
group). These same participants allocated more energy cells to the
robot with non-verbal communication (NVC) in the first scene of
the game. We were therefore able to replicate the positive effect of
non-verbal communication on trust and robot perception. The
Godspeed (Bartneck et al., 2008) values for anthropomorphism
and animacy were increased by NVC for all participants.

Future research should comprise an investigation of the
gameplay behaviors observed and could explore the effects of
the use of different robots in this setup. Moreover, a similar setup
can be used in future studies as a platform for studying trust and
other potential factors that influence trust, in a real-world
scenario and without losing the complex dynamics of building,
breaking andmaintaining trust given life-like agents and complex
real-world situations. We can use it to formulate an in-depth trust
analysis without losing the complex dynamics between internal
and external factors that influence the human ability to trust
others - be they humans or robots.
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(2017). Applying Robotics in School Education: a Systematic Review. Bjmc 5,
50–69. doi:10.22364/bjmc.2017.5.1.04

Kulyukin, V. A. (2006). “On Natural Language Dialogue with Assistive Robots,” in
Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-robot
Interaction, 164–171. doi:10.1145/1121241.1121270

Lang, F. R., John, D., Lüdtke, O., Schupp, J., and Wagner, G. G. (2011). Short
Assessment of the Big Five: Robust across Survey Methods except Telephone
Interviewing. Behav. Res. 43, 548–567. doi:10.3758/s13428-011-0066-z

Langer, E. J. (1975). The Illusion of Control. J. Personal. Soc. Psychol. 32, 311–328.
doi:10.1037/0022-3514.32.2.311

Levitt, S. D., and List, J. A. (2007). Viewpoint: On the Generalizability of Lab
Behaviour to the Field. Can. J. Economics/Revue canadienne d’économique 40,
347–370. doi:10.1111/j.1365-2966.2007.00412.x

Liang, Y., and Lee, S. A. (2017). Fear of Autonomous Robots and Artificial
Intelligence: Evidence from National Representative Data with Probability
Sampling. Int. J. Soc. Robotics 9, 379–384. doi:10.1007/s12369-017-0401-3

Logan, D. E., Breazeal, C., Goodwin, M. S., Jeong, S., O’Connell, B., Smith-
Freedman, D., et al. (2019). Social Robots for Hospitalized Children.
Pediatrics 144, e20181511. doi:10.1542/peds.2018-1511

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 64452915

Zörner et al. Immersive Investment Game for HRI

https://doi.org/10.1006/game.1995.1027
https://doi.org/10.1007/978-3-319-70022-9_8
https://doi.org/10.1007/s12369-019-00562-7
https://doi.org/10.1109/IROS.2005.1545011
https://doi.org/10.1007/978-3-540-30301-5_59
https://doi.org/10.1007/978-3-540-30301-5_59
https://doi.org/10.1371/journal.pone.0072589
https://doi.org/10.4324/9781315663425
https://doi.org/10.1109/tsmcb.2003.811794
https://doi.org/10.1080/15213269.2015.1015740
https://de.statista.com/statistik/daten/studie/1005815/umfrage/akzeptanz-von-roboter-dienstleistungen-in-der-schweiz
https://de.statista.com/statistik/daten/studie/1005815/umfrage/akzeptanz-von-roboter-dienstleistungen-in-der-schweiz
https://de.statista.com/statistik/daten/studie/1005815/umfrage/akzeptanz-von-roboter-dienstleistungen-in-der-schweiz
https://doi.org/10.1145/3284432.3284445
https://doi.org/10.1037/a0017883
https://doi.org/10.1177/0956797612448793
https://doi.org/10.21236/ada377245
https://doi.org/10.4284/0038-4038-78.1.53
https://doi.org/10.4284/0038-4038-78.1.53
https://doi.org/10.1145/3406499.3415075
https://doi.org/10.1109/mra.2019.2904644
https://doi.org/10.1109/mra.2019.2904644
https://doi.org/10.1007/978-3-642-34851-8_11
https://doi.org/10.1007/978-3-642-34851-8_11
https://doi.org/10.1515/eras-2018-0006
https://doi.org/10.1162/003355300554926
https://doi.org/10.1037/0022-3514.48.1.82
https://doi.org/10.1080/17470218.2017.1307865
https://doi.org/10.1007/978-3-319-74690-6�5810.1007/978-3-319-74690-6_58
https://doi.org/10.1007/978-3-319-74690-6�5810.1007/978-3-319-74690-6_58
https://doi.org/10.1007/978-3-319-74690-6�5810.1007/978-3-319-74690-6_58
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1007/bf03392357
https://doi.org/10.1007/bf03392357
https://doi.org/10.3389/fpsyg.2019.00939
https://doi.org/10.1016/s0148-2963(03)00140-1
https://doi.org/10.1016/j.joep.2011.05.007
https://doi.org/10.3389/fnbot.2020.00028
https://doi.org/10.22364/bjmc.2017.5.1.04
https://doi.org/10.1145/1121241.1121270
https://doi.org/10.3758/s13428-011-0066-z
https://doi.org/10.1037/0022-3514.32.2.311
https://doi.org/10.1111/j.1365-2966.2007.00412.x
https://doi.org/10.1007/s12369-017-0401-3
https://doi.org/10.1542/peds.2018-1511
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Lombard, M., and Ditton, T. (1997). At the Heart of it All: The Concept of
Presence. J. Computer-mediated Commun. 3, JCMC321.

Lombard, M., Ditton, T. B., and Weinstein, L. (2009). “Measuring Presence: the
Temple Presence Inventory,” in Proceedings of the 12th annual International
Workshop on Presence, 1–15.

Looije, R., Neerincx, M. A., and Cnossen, F. (2010). Persuasive Robotic Assistant for
Health Self-Management of Older Adults: Design and Evaluation of Social Behaviors.
Int. J. Human-Computer Stud. 68, 386–397. doi:10.1016/j.ijhcs.2009.08.007

Mathur, M. B., and Reichling, D. B. (2016). Navigating a Social World with Robot
Partners: A Quantitative Cartography of the Uncanny Valley. Cognition 146,
22–32. doi:10.1016/j.cognition.2015.09.008

Mayer, R. C., and Davis, J. H. (1999). The Effect of the Performance Appraisal
System on Trust for Management: A Field Quasi-Experiment. J. Appl. Psychol.
84, 123–136. doi:10.1037/0021-9010.84.1.123

Meertens, R. M., and Lion, R. (2008). Measuring an Individual’s Tendency to Take
Risks: The Risk Propensity Scale. J. Appl. Soc. Pyschol 38, 1506–1520. doi:10.
1111/j.1559-1816.2008.00357.x

Mota, R. C. R., Rea, D. J., Le Tran, A., Young, J. E., Sharlin, E., and Sousa, M. C.
(2016). Playing the ‘trust Game’with Robots: Social Strategies and Experiences.
In 2016 25th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). NY: Columbia University; IEEE, 519–524.

Mubin, O., Obaid, M., Jordan, P., Alves-Oliveria, P., Eriksson, T., Barendregt, W.,
Sjolle, D., Fjeld, M., Simoff, S., and Billinghurst, M. (2016). “Towards an Agenda
for Sci-Fi Inspired Hci Research,” in Proceedings of the 13th International
Conference on Advances in Computer Entertainment Technology (New York,
NY, USA: Association for Computing Machinery)). doi:10.1145/3001773.
3001786

Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., et al. (2010).
Development of a Nursing-Care Assistant Robot Riba that Can Lift a Human in
its Arms, 5996–6001. doi:10.1109/IROS.2010.5651735

Murray, J. (1997). Hamlet on the Holodeck: The Future of Narrative in Cyberspace.
MIT Press.

Neumann, M. M. (2019). Social Robots and Young Children’s Early Language and
Literacy Learning. Early Child. Educ J 48, 157–170. doi:10.1007/s10643-019-
00997-7

Parisi, D., and Schlesinger, M. (2002). Artificial Life and Piaget. Cogn. Develop. 17,
1301–1321. doi:10.1016/s0885-2014(02)00119-3

Peterson, M. (2010). Massively Multiplayer Online Role-Playing Games as Arenas
for Second Language Learning. Comp. Assist. Lang. Learn. 23, 429–439. doi:10.
1080/09588221.2010.520673

Powers, A., and Kiesler, S. (2006). “The Advisor Robot: Tracing People’s Mental
Model from a Robot’s Physical Attributes,” in Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-robot Interaction, 218–225.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros:
an Open-Source Robot Operating System. In ICRA Workshop on Open Source
Software, 3. Kobe, Japan (IEEE), 5.

Rai, T. S., and Diermeier, D. (2015). Corporations Are Cyborgs: Organizations
Elicit Anger but Not Sympathy when They Can Think but Cannot Feel.
Organizational Behav. Hum. Decis. Process. 126, 18–26. doi:10.1016/j.obhdp.
2014.10.001

Rempel, J. K., Holmes, J. G., and Zanna, M. P. (1985). Trust in Close Relationships.
J. Personal. Soc. Psychol. 49, 95–112. doi:10.1037/0022-3514.49.1.95

Rossi, A., Dautenhahn, K., Koay, K. L., and Saunders, J. (2017a). “Investigating
Human Perceptions of Trust in Robots for Safe Hri in Home Environments,” in
Proceedings of the Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction, 375–376. doi:10.1145/3029798.3034822

Rossi, A., Dautenhahn, K., Koay, K. L., and Walters, M. L. (2017b). Social Robotics.
(Cham: Springer International Publishing), 42–52. doi:10.1007/978-3-319-
70022-9_5How the Timing and Magnitude of Robot Errors Influence
Peoples’ Trust of Robots in an Emergency Scenario

Saint-Mont, U. (2015). Randomization Does Not Help Much, Comparability Does.
PLOS ONE 10, e0132102–24. doi:10.1371/journal.pone.0132102

Salem, M., Eyssel, F., Rohlfing, K., Kopp, S., and Joublin, F. (2013). To Err Is
Human(-like): Effects of Robot Gesture on Perceived Anthropomorphism and
Likability. Int. J. Soc. Robotics 5, 313–323. doi:10.1007/s12369-013-0196-9

Salem, M., Rohlfing, K., Kopp, S., and Joublin, F. (2011). A Friendly Gesture:
Investigating the Effect of Multimodal Robot Behavior in Human-Robot
Interaction. In , 2011. (Ro-Man, IEEE), 247–252. doi:10.1109/ROMAN.2011.
6005285

Sandoval, E. B., Brandstetter, J., and Bartneck, C. (2016). “Can a Robot Bribe a
Human? the Measurement of the Negative Side of Reciprocity in Human Robot
Interaction,” in 11th ACM/IEEE International Conference on Human-Robot
Interaction (IEEE), 117–124. doi:10.1109/HRI.2016.7451742

Saunderson, S., and Nejat, G. (2019). How Robots Influence Humans: A Survey of
Nonverbal Communication in Social Human-Robot Interaction. Int. J. Soc.
Robotics 11, 575–608. doi:10.1007/s12369-019-00523-0

Schniter, E., Shields, T. W., and Sznycer, D. (2020). Trust in Humans and Robots:
Economically Similar but Emotionally Different. J. Econ. Psychol. 78, 102253.
doi:10.1016/j.joep.2020.102253

Schoorman, F. D., Mayer, R. C., and Davis, J. H. (1996). Organizational Trust:
Philosophical Perspectives and Conceptual Definitions. Acad. Manage. Rev. 21,
337–340.

Sehili, M., Yang, F., Leynaert, V., and Devillers, L. (2014). A Corpus of Social
Interaction between Nao and Elderly People. In 5th International Workshop on
Emotion, Social Signals, Sentiment & Linked Open Data. Reykjavik, Iceland.
LREC. doi:10.1145/2666499.2666502

Slater, M., and Wilbur, S. (1997). A Framework for Immersive Virtual
Environments (Five): Speculations on the Role of Presence in Virtual
Environments. Presence: Teleoperators & Virtual Environments 6, 603–616.
doi:10.1162/pres.1997.6.6.603

Soto, C. J., and John, O. P. (2017). Short and Extra-short Forms of the Big Five
Inventory-2: The Bfi-2-S and Bfi-2-Xs. J. Res. Personal. 68, 69–81. doi:10.1016/j.
jrp.2017.02.004

Spiliotopoulos, D., Androutsopoulos, I., and Spyropoulos, C. D. (2001). “Human-
robot Interaction Based on Spoken Natural Language Dialogue,” in Proceedings
of the European Workshop on Service and Humanoid Robots, 25–27.

Stang, S. (2019). “This Action Will Have Consequences”: Interactivity and Player
Agency. Game Stud. 19.

Twiefel, J., Baumann, T., Heinrich, S., andWermter, S. (2014). Improving Domain-
independent Cloud-Based Speech Recognition with Domain-dependent
Phonetic Post-processing. Proceedings of the AAAI Conference on Artificial
Intelligence 28

Wang, H., and Sun, C.-T. (2011). Game Reward Systems: Gaming Experiences and
Social Meanings. DiGRA Conf. (Citeseer) 114.

Wortham, R. H., and Theodorou, A. (2017). Robot Transparency, Trust and
Utility. Connect. Sci. 29, 242–248. doi:10.1080/09540091.2017.1313816

Zanatto, D., Patacchiola, M., Goslin, J., Thill, S., and Cangelosi, A. (2020). Do
Humans Imitate Robots? Proceedings of the 2020 ACM/IEEE International
Conference onHuman-Robot Interaction. New York, NY, USA: Association for
Computing Machinery), HRI ‘20, 449–457. doi:10.1145/3319502.3374776

Zanatto, D. (2019). “When Do We Cooperate with Robots?,” (University of
Plymouth). Ph.D. thesis.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zörner, Arts, Vasiljevic, Srivastava, Schmalzl, Mir, Bhatia, Strahl,
Peters, Alpay and Wermter. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 64452916

Zörner et al. Immersive Investment Game for HRI

https://doi.org/10.1016/j.ijhcs.2009.08.007
https://doi.org/10.1016/j.cognition.2015.09.008
https://doi.org/10.1037/0021-9010.84.1.123
https://doi.org/10.1111/j.1559-1816.2008.00357.x
https://doi.org/10.1111/j.1559-1816.2008.00357.x
https://doi.org/10.1145/3001773.3001786
https://doi.org/10.1145/3001773.3001786
https://doi.org/10.1109/IROS.2010.5651735
https://doi.org/10.1007/s10643-019-00997-7
https://doi.org/10.1007/s10643-019-00997-7
https://doi.org/10.1016/s0885-2014(02)00119-3
https://doi.org/10.1080/09588221.2010.520673
https://doi.org/10.1080/09588221.2010.520673
https://doi.org/10.1016/j.obhdp.2014.10.001
https://doi.org/10.1016/j.obhdp.2014.10.001
https://doi.org/10.1037/0022-3514.49.1.95
https://doi.org/10.1145/3029798.3034822
https://doi.org/10.1007/978-3-319-70022-9_5
https://doi.org/10.1007/978-3-319-70022-9_5
https://doi.org/10.1371/journal.pone.0132102
https://doi.org/10.1007/s12369-013-0196-9
https://doi.org/10.1109/ROMAN.2011.6005285
https://doi.org/10.1109/ROMAN.2011.6005285
https://doi.org/10.1109/HRI.2016.7451742
https://doi.org/10.1007/s12369-019-00523-0
https://doi.org/10.1016/j.joep.2020.102253
https://doi.org/10.1145/2666499.2666502
https://doi.org/10.1162/pres.1997.6.6.603
https://doi.org/10.1016/j.jrp.2017.02.004
https://doi.org/10.1016/j.jrp.2017.02.004
https://doi.org/10.1080/09540091.2017.1313816
https://doi.org/10.1145/3319502.3374776
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	An Immersive Investment Game to Study Human-Robot Trust
	1 Introduction
	2 Related Work
	2.1 Trust and the Investment Game
	2.2 Study Design in the Context of Game Design

	3 HRI Scenario Design
	3.1 An Immersive Extension of the Investment Game
	3.2 Experimental Setup
	3.2.1 The Environment
	3.2.2 The Robots
	3.2.3 Non-Verbal Communication
	3.2.4 The Vision System
	3.2.5 The Speech Systems

	3.3 Protocol and Game Scenes

	4 Results
	4.1 Population Statistics
	4.2 Metrics and Grouping Criteria
	4.2.1 Allocation Metric
	4.2.2 Relative Trust Metric
	4.2.3 The Alternating-Minimum Investment Group (N = 16)
	4.2.4 The Main Group (N = 29)

	4.3 Transferability of the Investment Game
	4.4 Impact of Non-Verbal Communication on the Perception of the Robot

	5 Discussion and Future Work
	5.1 Science Fiction and Immersion
	5.2 Gameplay Behavior
	5.3 Improvements for Future Studies

	6 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


