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Over the past years, extensive research has been dedicated to developing robust

platforms and data-driven dialog models to support long-term human-robot interactions.

However, little is known about how people’s perception of robots and engagement with

them develop over time and how these can be accurately assessed through implicit

and continuous measurement techniques. In this paper, we explore this by involving

participants in three interaction sessions with multiple days of zero exposure in between.

Each session consists of a joint task with a robot as well as two short social chats with

it before and after the task. We measure participants’ gaze patterns with a wearable

eye-tracker and gauge their perception of the robot and engagement with it and the joint

task using questionnaires. Results disclose that aversion of gaze in a social chat is an

indicator of a robot’s uncanniness and that the more people gaze at the robot in a joint

task, the worse they perform. In contrast with most HRI literature, our results show that

gaze toward an object of shared attention, rather than gaze toward a robotic partner, is

the most meaningful predictor of engagement in a joint task. Furthermore, the analyses

of gaze patterns in repeated interactions disclose that people’s mutual gaze in a social

chat develops congruently with their perceptions of the robot over time. These are key

findings for the HRI community as they entail that gaze behavior can be used as an implicit

measure of people’s perception of robots in a social chat and of their engagement and

task performance in a joint task.

Keywords: perception of robots, long-term interaction, mutual gaze, engagement, uncanny valley

1. INTRODUCTION

An essential precondition for understanding the development of people’s perception of robots
in repeated interactions is the development of measurement techniques suitable for long-term
assessment. To date, the measurement of people’s perception of robots relies almost solely on
questionnaires and interviews. However, these have several limitations. First, they only capture
people’s perception at one specificmoment in time. Thismeans that while changes in perception can
be detected between the different points of measurement, it is not possible to relate these changes to
particular events within the interaction. Second, in order to capture changes in people’s perception
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over time as accurately as possible, multiple points of
measurement are required. However, filling out questionnaires
interrupts people’s interactive experience and hence has a high
potential for decreasing the involvement with the robot and
the task they perform with it. Finally, measures of self-report
are prone to bias. Repeatedly filling out the same questionnaire
may cause people to remember previous answers, which can
decrease the accuracy of the measurement due to response
fatigue, and reveal the purpose of the experiment due to learning
and hypothesis guessing (Choi and Pak, 2005). To accurately
study peoples’ perception of robots in repeated interactions and
relate changes in perception to specific actions of the robot,
it is thus important to develop more implicit and continuous
measurement techniques. In this paper, we explore gaze patterns
as a potential continuous method for capturing people’s perception
of robots.

Previous studies in Social Psychology investigating the
relationship between gaze behavior and people’s perception of a
human partner came to conflicting results. Indeed, people gaze
more at each other when they share feelings of warmth and liking
and when seeking friendship (Kleinke, 1986; Wirth et al., 2010;
Cui et al., 2019). However, they show similar behavior patterns
(i.e., longer fixation) when interacting with unconventionally-
looking people, for instance, those carrying a facial stigma
(Madera and Hebl, 2012, 2019). This is because a stimulus that
does not match prior knowledge and expectations captures more
attention than a stimulus that perfectly matches them (Langer
et al., 1976; Bless and Greifeneder, 2017). Transferring this to
human-robot interaction (HRI), we can expect people to look
more often to robots that they like, as well as to stare longer
at unconventional robots, such as realistic androids eliciting
uncanny feelings (Mori et al., 2012). Indeed, when presented
with uncanny robots, people have sometimes avoided looking
at them (Strait et al., 2015) and other times stared at them
longer (Minato et al., 2004; Thepsoonthorn et al., 2021). In social
robotics, experiments on themeaning of mutual gaze have almost
solely focused on uncanny robots and still images. In this paper,
we hence aim to discover whether findings from non-interactive
scenarios translate to real face-to-face interactions with robots
and whether mutual gaze in a social chat can be an implicit
measure of people’s perception of robots, in particular of likability
and uncanniness.

In the literature, the few experiments that tracked gaze toward
a robot in actual interactions between a human and a robot
mainly used joint tasks involving multiple objects of attention
(e.g., touchscreen) as a test-bed (e.g., Castellano et al., 2009;
Kennedy et al., 2015; Papadopoulos et al., 2016). We argue that
in these contexts, the gaze toward the robot has a meaning
distinct from the one it has in a face-to-face social conversation,
as the robot and the objects involved in the joint task compete
for the same attentional resources. The second focus of this
paper is thus to understand whether the gaze participants allocate
to the robot in a joint task is related to engagement and task
performance and what is the meaning of the gaze people direct
to the other objects involved in the joint task. Previous long-term
HRI studies on gaze exclusively focused on how the gaze toward
the robot developed over multiple sessions of the same activity

(e.g., Serholt and Barendregt, 2016; Ahmad et al., 2017; Ahmad
and Mubin, 2018). In this experiment, we also investigate how
the gaze toward other foci of attention in the joint task varies
over time and whether participants’ mutual gaze in a social chat
preceding and succeeding the joint task changes across repeated
interaction sessions.

This paper presents an exploratory study in which participants
were involved in three interaction sessions with the blended
robotic head Furhat (Al Moubayed et al., 2012) occurring
with multiple days of zero exposure in between. To achieve
meaningful variations in the robot’s perception, we manipulated
its humanlikeness by applying three facial textures with different
anthropomorphic features. Each interactive session was divided
into a geography-themed cooperative game with the robot
(serving as a joint task) and a face-to-face social chat before and
after the game. To track and analyze gaze patterns, participants
wore eye-tracking glasses throughout the interactive session. At
different points in the sessions, they were asked to self-report
their perception of the robot and their engagement with it and the
collaborative game. The questionnaires were used to gain novel
insights into the suitability of gaze patterns as an implicit measure
of people’s perception of a robot and of their engagement and
performance in a joint task. The multiple sessions of interaction
enabled us to track the progression of gaze within and between
interactions and understand if and how gaze patterns change
over time.

2. RELATED WORK

2.1. Mutual Gaze and Liking
Goffman (1964) was one of the first to state that the direction
of gaze plays a crucial role in the initiation and maintenance
of social encounters and can be an indicator of social attention.
Exline et al. (1965) showed how the amount of mutual gaze
increases when a person is drawn by another individual, either
in an affiliative or competitive way. It is through the mutually
held gaze that two people commonly establish their openness to
another’s communication, and the aversion of the eyes in a face-
to-face interaction can be read as a cut-off act as well as a sign of
dislike (Kendon, 1967; Ray and Floyd, 2006).

Studies on mutual gaze in HRI mostly focused on how the
implementation of such nonverbal behavior on a robot influences
users’ perception (Mumm and Mutlu, 2011; Kompatsiari et al.,
2017). A 2017 review identified three main lines of gaze research
in HRI: (1) human responses to robot’s gaze, (2) design of gaze
features for robots, and (3) computational tools to implement
social gaze in robots (Admoni and Scassellati, 2017). The first
attempt to use gaze as a mean to assess interest, liking, and
engagement in HRI was made by Sidner et al. (2005) who
involved participants in a demo interaction with the penguin
robotMel and used gaze to understand whether themanipulation
of the robot’s behavior influenced the amount of mutual gaze
it attracted. Lemaignan et al. (2016) measured the direction
of gaze of children involved in a collaborative task with the
NAO robot (i.e., teaching handwriting skills to a robot) and
used it to compute their with-me-ness, the extent a human is
with the robot over the course of an interactive task. They
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obtained a with-me-ness value by comparing the child’s focus
of attention at a certain point in time with a set of expected
attentional targets for that moment of the interaction. Kennedy
et al. (2015) found children interacting with a physical robot
to gaze significantly more often to the robot than children
interacting with a virtual one, and that they spent significantly
more seconds per minutes gazing at the robot in the real robot
condition than in the virtual one. Similarly, Papadopoulos et al.
(2016) used gaze to estimate the social engagement with the
robot of adults in a memory game with the NAO robot, and
Castellano et al. (2009, 2010) of children in a chess game with
the iCat robot.

These related studies seem to suggest that themost compelling
interaction conditions are those that elicit the longest gaze toward
the robot, partially supporting the positive mutual gaze-liking
relationship in the context of HRI. However, only a few of these
studies specifically related participants’ gaze toward the robot
with metrics of likability and used it as an implicit measure of
participants’ perception of a robot (Sidner et al., 2005). Moreover,
most of the reviewed studies focused on the allocation of gaze
toward a robot during a task (e.g., a chess game). In such a
context, the robot and the task at hand compete for the same
attentional resources, hence gaze toward the robot is not anymore
a precise measure of the robot’s likability and of participants’
social syntony with it because it is hindered by participants’
willingness to complete the task (Corrigan et al., 2013, 2015;
Perugia et al., 2018, 2020). In this study, we thus examine robot-
directed gaze in two separate situations: during a collaborative
game, but also in a face-to-face social chat between the participant
and the robot occurring before and after the game interaction.
In the former, we focus on the mutual gaze that the robot
attracts and use it as a predictor of participants’ perceptions.
In the latter case, we focus on participants’ gaze patterns and
examine whether these can predict task performance, perceived
involvement with the robot, and with the game. This is with
the aim to understand whether mutual gaze in a face-to-face
social chat increases with the robot’s likability and which gaze
patterns are related with task performance and engagement in the
joint task.

2.2. Stigma, Staring, and the Uncanny
Valley
Staring is defined as gaze that persists regardless of the behavior of
the other person (Kleinke, 1986). The novel stimulus hypothesis
posits that behavioral avoidance of people that appear as
physically different (e.g., pregnant) is mediated by a conflict over
a desire to stare at novel stimuli and a desire to adhere to a norm
against staring when the novel stimulus is another person (Langer
et al., 1976). Langer and colleagues discovered that, when staring
is not negatively sanctioned, it varies as a function of the novelty
of the observed subject, whereas, when the norms against it are
instated, staring is inhibited. In line with this, Kleck (1968) found
out that participants looked at a research confederate carrying
a physical stigma significantly more than at one not carrying it
and Madera and Hebl (2012) found that interviewers of facially
stigmatized interviewees (i.e., port stain) spent considerablymore

time looking at the specific location of applicants’ stigma than
interviewers evaluating non-stigmatized applicants.

In HRI, it is known that the likability of a robot increases
with its humanlikeness up to a point where it drops abruptly.
This drop in likability, known as the uncanny valley, is reached
when a robot is almost indistinguishable from a healthy human,
but some of its features still point to its artificiality and hence
elicit eeriness (Mori et al., 2012). In their 2015 review on research
related to the uncanny valley, Kätsyri et al. (2015) found extensive
empirical evidence for the existence of the uncanny valley effect
in at least some humanlike robots and outlined two competing
explanatory theories behind the effect. On the one hand, the
perceptual mismatch theory states that any conflicting cues in
an agent’s appearance can lead to uncanny feelings. On the
other hand, the categorical ambiguity theory claims that only
robots with conflicting cues leading to uncertainty about their
categorical affiliation lead to uncanny feelings. As uncanny robots
often feature atypical cues in their appearance, they might be
perceived as more novel and the eeriness they generate might
be equated to that elicited by a stigma. In this sense, one
can hypothesize that robots perceived as uncanny elicit higher
staring than robots that are not perceived as such. However,
in line with the extant literature on the positive relationship
between liking and mutual gaze, one can also posit that uncanny
robots attract less direct gaze, as they are less likable and elicit
more discomfort.

Minato et al. (2004) were the first to investigate whether
the uncanniness of an android robot could have an effect
on people’s gaze behavior. They gauged the direction of gaze
of people involved in a face-to-face conversation with three
interlocutors: a human girl, a motionless android robot shaped
as a girl, and the same android robot with a moving head,
eyes, and neck. They found people to look significantly more
at the eyes of the android robots than at those of the human
girl and consequently suggested fixation time to be an implicit
measure of uncanniness. Strait et al. (2015) exposed participants
to pictures of real humans and robots varying in humanlikeness
(low, medium, high) and found participants to fixate highly
humanlike robots less than the other agents when the whole
body was taken into account, and more than the artificial
agents when the head and the eyes were considered. Smith
and Wiese (2016) studied the effects of a robot’s appearance
on delayed disengagement. They asked participants to orient
their gaze to a target dot appearing on the sides of a screen
after fixating an agent in the center of it and measured the
time it took for participants to reorient their gaze. Although
reaction times should increase when processing stimuli with a
negative connotation, their results did not disclose any significant
difference across agents varying in humanlikeness (e.g., non-
social, robot, robotoid, humanoid, human). A similar study
was carried out by Li et al. (2015), who investigated both
static and video stimuli. In the static image experiment, the
reaction times to the mechanical robot were slower than those
to the android robot and real human. In the video-based
experiment, on the contrary, the reaction times to the android
robot and the real human were slower than those to the
mechanical robot. Since these related studies are mostly focused
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on non-interactive stimuli and their results do not point to a
clear direction with respect to the two alternative hypotheses on
the meaning of mutual gaze, we further explore whether mutual
gaze in a face-to-face interaction with a social robot varying in
humanlikeness is related to its perceived uncanniness, and, if so,
whether this relation aligns with the mutual gaze-liking or novel
stimulus hypothesis.

2.3. Tracking Gaze Over Time
When it comes to the progression of gaze over time in interactive
scenarios with social robots, most of the related work is focused
on Child-Robot Interaction (cHRI). In this context, pivotal work
has been performed by Baxter et al. (2014) and Kennedy et al.
(2015) who focused on changes in gaze patterns within an
interaction session. Baxter and colleagues measured children’s
gaze behavior toward the robot during a joint task by calculating
a number of gaze metrics (i.e., mean length of gaze to the
robot and length of gaze to the robot per minute) within a
predefined time-window and comparing them with the same
metrics gauged in subsequent time-windows. By splitting the
interactions in three equal parts, they found that the gaze directed
to the robot decreased from the first to the final third of
the joint task and interpreted this result as a decrease in the
engagement with the robot over time. Kennedy et al. (2015)
used the same approach in a collaborative sorting task and
noticed that the gaze toward the robot significantly reduced
between the first and the second third of the interaction
and then stayed more or less constant. Similar to Baxter et
al., they ascribed this drop and subsequent stabilization to a
reduction of engagement over time due to the wearing-off of the
novelty effect.

Along this line, but with a stronger focus on long-term cHRI
is the work of Serholt and Barendregt (2016). They involved
30 children in three sessions of play with a NAO robot in a
map reading task and analyzed children’s behavioral reactions
to three implicit probes: a greeting, a feedback/praise, and a
question. One of the behavioral markers employed to assess
children’s reactions to the probes was the gaze toward the robot,
which they considered a sign of social engagement. Serholt and
Barendregt found that the most common response to the three
probes was directing the gaze toward the robot, and that over
time, this response decreased slightly. The authors suggested that
one way to counteract this decrease in children’s engagement
with the robot over time was to implement responsive robot
behaviors that could facilitate bonding. Ahmad and colleagues
moved in this direction by studying how different types of
robot adaptation to children’s states could influence social
engagement and learning (Ahmad et al., 2017, 2019; Ahmad
and Mubin, 2018). They ran several long-term studies (three
to four sessions) involving children in joint tasks with a NAO
robot (i.e., snakes and ladders game, mathematical learning
task, vocabulary learning task) and evaluated the effect of
different types of robot’s adaptation (e.g., memory and emotion
adaptation) on children’s engagement with it. They measured
children’s social engagement with the robot through a number
of behavioral metrics, among which the gaze directed to the
robot. As postulated by Serholt and Barendregt (2016), they

found that the gaze allocated to the robot during the joint task
increased across sessions when the robot behaved empathetically
(Ahmad et al., 2017; Ahmad and Mubin, 2018) and that children
learned significantly more over time when interacting with the
empathetic robot (Ahmad and Mubin, 2018) or when the robot
gave them positive and supportive feedback (Ahmad et al.,
2019).

The literature discussed above shows that gaze has been
consistently used to measure social engagement with robots over
time. However, in most cases, gaze has been manually annotated
(Baxter et al., 2014; Kennedy et al., 2015; Serholt and Barendregt,
2016; Ahmad et al., 2017, 2019; Ahmad and Mubin, 2018). While
several researchers have proposed automated methods to gauge
gaze allocation (Anzalone et al., 2015; Lemaignan et al., 2016;
Lala et al., 2017), only Del Duchetto et al. (2020) have used
such methods to assess the development of social engagement
with robots over the time of an interaction, and, to the best of
our knowledge, no one has used them to monitor the direction
of gaze toward different foci across repeated interactions. For
this study, we automatically annotate gaze with a deep learning-
based object detection algorithm utilizing YOLOv4 (Bochkovskiy
et al., 2020), and investigate how gaze patterns in a joint task
develop between three interaction sessions with multiple days of
zero exposure in between. We believe that automatic gaze tracking
holds promises for online assessment of engagement and could be
used for real-time reward estimation in co-adaptive scenarios in
the future.

The main focus of long-term gaze studies has been
engagement. However, Strait et al. (2015) andMinato et al. (2004)
show how gaze can also be a meaningful predictor of a robot’s
uncanniness. From our previous work, we know that: (1) the
mere exposure to a robot changes people’s initial perceptions of it;
(2) progressively exposing people to the multimodal behaviors of
a robot improves people’s perception of it (Paetzel and Castellano,
2019); and (3) the perceptual dimensions that contribute to
people’s mental image of the robot stabilize over time (Paetzel
et al., 2020; Paetzel-Prüsmann et al., 2021). Hence, besides
investigating the role of gaze patterns in a joint task with a focus
on engagement, in this paper, we also focus on understanding how
mutual gaze in a social chat develops over time within and between
interaction sessions and how it relates to people’s perception of the
robotic interaction partner. Indeed, if mutual gaze was found to be
a meaningful predictor of people’s perception of robots, it could
be used to track the development of people’s mental image of a
robot over time. To the best of our knowledge, this approach has
never been attempted before.

3. RESEARCH QUESTIONS

This exploratory work aims to further our understanding of the
meaning of gaze in two types of interactions with robots: face-
to-face social chats and a joint task. In the former, we focus on
mutual gaze and attempt to understand whether it is related to
people’s perception of the robot. In the latter, we focus on people’s
gaze toward the robot and other objects involved in the game
and explore which gaze pattern is related to participants’ task
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performance, involvement with the game, and involvement with
the robot. Hence, we pose the following research questions:

RQ1 Is the mutual gaze directed to the robot in a face-to-face
social chat a predictor of people’s perception of the robot?

RQ2 Which gaze pattern in a joint task is predictive of people’s
engagement and task performance?

Extant literature has found that gaze toward a robot decreases
over the time of an interaction (Minato et al., 2004; Baxter et al.,
2014; Kennedy et al., 2015). Similarly, we attempt to understand
whether mutual gaze toward the robot reduces between two
equally long social chats occurring before and after a joint task.
Moreover, we explore whether it changes over three repeated
interaction sessions. This way, we aim to answer the following
research question:

RQ3 Does the mutual gaze directed to the robot change between
a pre- and post-game face-to-face social chat and across
repeated interactions?

Previous research has further discovered that the amount of gaze
directed to a robot in a joint task slightly declines across repeated
interactions (Serholt and Barendregt, 2016; Ahmad et al., 2017;
Ahmad and Mubin, 2018). As these works have overlooked the
gaze participants direct to other objects involved in the joint task
(e.g., tablet and touchscreen), it is difficult to establish whether
the decline in the gaze toward the robot they observe really
corresponds to the allocation of attentional resources elsewhere.
In this paper, we gauge both the gaze directed to the robot and the
gaze directed to the other objects involved in the game (e.g., tablet
and touchscreen) and attempt to understand how gaze as a whole
changes over repeated interactions. Thus, we pose the following
research question:

RQ4 Do gaze patterns in a joint task change across repeated
interactions?

Since it has been shown that a robot’s level of humanlikeness
affects the amount of gaze it attracts (Minato et al., 2004; Strait
et al., 2015), in this study, we vary the humanlikeness of the robot
with which participants interact. This way, we aim to answer the
following research questions:

RQ5a Does the level of humanlikeness of the robot affect the
amount of mutual gaze directed to it in a face-to-face
social chat?

RQ5b Does the level of humanlikeness of the robot affect
people’s gaze patterns during the joint task?

With respect to previous research which mainly focused on
android robots and compared them with less humanlike robotic
platforms (Minato et al., 2004; Strait et al., 2015), we keep
the robot’s embodiment constant across conditions by using a
blended embodiment, and manipulate the humanlikeness of the
robot exclusively by changing its facial texture.

4. METHODOLOGY

We designed an experiment involving participants in three
interaction sessions (within-subject variable) with a social

robot displaying three levels of humanlikeness (between-subject
variable): humanlike, mechanical, and a morph between the two
(cf. Figure 1). The interaction sessions had an average of 6.9 days
of zero exposure in between (S1–S2: M = 6.76, SD = 1.83; S2–
S3: M = 7.05, SD = 2.41). Each session was divided into three
phases: (1) a social chat with the robot, (2) a joint task to perform,
and (3) a final social chat.

4.1. Participants
As we suspected strong effects for the study, an initial check
using G∗Power (MANOVA: Repeated measures, within-between
interaction, alpha = 0.05, number of groups = 3, number
of measurements = 3), considering strong effects f(V) =

0.4, resulted in a sample size of 61 participants. Hence, we
recruited 60 participants from an international Master’s course
in Computer Science at Uppsala University to participate in the
experiment. Five participants were excluded because they had
previously interacted with the robot, two because they suspected
the robot to be remotely controlled, and one because of eye-
tracking failures occurring in all three sessions. The remaining
52 participants (M = 38; F = 13, 1 undisclosed) had an age
comprised between 19 and 50 years (M = 24.50, SD = 4.65).
Of them, 47 had valid gaze data for session 1 (Human: N = 14,
Mechanical: N = 16, Morph: N = 17), 46 for session 2 (Human:
N = 15, Mechanical: N = 16, Morph: N = 15), and 41 for
session 3 (Human: N = 17, Mechanical: N = 11, Morph: N =

13). The study was approved by the regional ethics board, and
participants were compensated with course credits for their time.

4.2. Scenario
Our experiment aimed to study people’s gaze patterns in a
face-to-face interaction and a joint task. We thus designed a
scenario consisting of two distinct parts: a geography-themed
collaborative Rapid Dialog Game (RDG) and a social chat. In
the collaborative RDG-Map game (see RDG-Map game video
demonstration1), the human and the robot were tasked with
identifying as many countries as possible on the world map
(Paetzel and Manuvinakurike, 2019). Participants had the role
of the tutor in this scenario. They saw a map with one country
highlighted as the target. Their goal was to verbally describe this
country to the robot, which acted as a learner with limited initial
knowledge about the world map. Once the robot gained sufficient
confidence about the described country, it made a guess about it
and showed it on a shared screen placed in between the human
and the robot. For each country correctly identified, the team
received 2 points if the robot could guess the country at the first
try and 1 point if it was able to guess it only at the second try. The
more countries the human-robot team could identify in a given
time of 10 min, the higher their score would be, and the larger
the robot’s knowledge base would become. The game score and
the time left to score points were displayed on the shared screen
positioned between the two players (for more details on the map
game dynamics, consult the Supplementary Material).

Before and after the game, the robot engaged the human
in a 2-min social chat. The chat’s content varied between
sessions but not between participants, and involved topics

1https://www.youtube.com/watch?v=U9TGrso1Am4
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FIGURE 1 | The Furhat robot with the humanlike (left), mechanical (right), and morph (center) facial texture applied.

FIGURE 2 | Schematics of the experimental setup during the interaction session, including the operator interface (top left), the Tutor’s screen on the iPad (bottom

left), the eye-tracker recording from the participant’s point of view with indicated center of attention and detected objects (top right), and recording from one of the

RGB cameras (bottom right).

such as favorite games, countries that the human and the
robot had visited, and future travel plans. In the second
and third sessions, the robot remembered a few countries
from the previous game interactions and facts from previous
social chats.

4.3. Robot Embodiment and Behavior
To alter the anthropomorphic appearance of the robot while
limiting confounding factors in the embodiment, we used a
Furhat V1 blended robot platform (Al Moubayed et al., 2012).
Furhat is a head-only robot with a semi-translucent mask on
which a virtual face is projected from within. Animating the
virtual face texture allows the robot to move its mouth in
sync with speech, perform facial expressions, and change gaze
direction. In addition, the robot’s two high-torque Dynamixel
servos can be used to change the head’s pitch and yaw. The
robot head follows the standard motion dynamics provided by

the IrisTK framework2 when its pitch and yaw is altered. Taken
together, the virtual animations of the face and the physical
head manipulations allow to accurately direct the robot’s focus
of attention so it can be detected by a human interaction partner
(Al Moubayed and Skantze, 2012).

To alter the perception of humanlikeness and the associated
feeling of likability, we used morphing, a common approach
in the literature on uncanny feelings toward artificial agents
(e.g., Hanson, 2006; MacDorman et al., 2009; McDonnell et al.,
2012). Three different facial textures with varying degrees
of anthropomorphic features were used in our experiment
(cf. Figure 1). The humanlike texture was based on the
photograph of a human face. Similarly, the mechanical texture
utilized a picture of a mechanical robot’s face with parts such
as screws visible in the texture. The morph texture was created

2http://www.speech.kth.se/iristk/
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TABLE 1 | The distribution of Furhat’s gaze between the human dialog partner, the shared screen and elsewhere, divided by interaction session, and the task-based

(game) and social chat (pre- and post-game dialogue).

Session 1 Session 2 Session 3

Social chat Task Social chat Task Social chat Task

Pre (%) Post (%) Game (%) Pre (%) Post (%) Game (%) Pre (%) Post (%) Game (%)

User 99.4 99.5 2.1 99.5 99.6 2.0 99.9 99.9 1.9

Shared screen 0.0 0.0 97.9 0.0 0.0 98.0 0.0 0.0 98.1

Somewhere else 0.6 0.5 0.0 0.5 0.4 0.0 0.1 0.1 0.0

FIGURE 3 | Overview of the study procedure over the three interactive

sessions. Note that Q2 in S1 measures the perception of the robot after the

first impression, while Q2 in S2 and S3 measures the recall of the robot

without imminent exposure to it.

by blending the humanlike and the mechanical face, keeping
features from both of them. The particular set of facial textures
utilized in this study is based on a interactive study we ran
with the Furhat robot where we found that the morph robot
elicited significantly higher discomfort than both the humanlike
and the mechanical texture (Paetzel and Castellano, 2019). In
previous work, we additionally validated the blending technique
on another set of humanlike and mechanical textures and
found some of the corresponding morphs to elicit significantly
higher feelings of discomfort in participants compared to the
original humanlike and mechanical textures (Paetzel et al.,
2018).

The robot’s verbal and non-verbal behavior in the interaction
sessions was remote-controlled by a researcher, who followed
detailed instructions to select the robot’s verbal responses from
a set of utterances provided by an interface (cf Figure 2 top
left, for more details, consult the Supplementary Material). The
researcher was trained during 50 online sessions to ensure that
the behavior of the robot was comparable between participants.
The gaze behavior of the robot differed between the social
chat and the collaborative game (cf. Table 1). In the social
chat, the robot autonomously tracked the participant’s head
and kept eye contact. In the game, instead, the robot focused
its gaze on the shared screen. To ensure that the behavior
of the robot was perceived as natural as possible, the human
controller occasionally directed the gaze of the robot to the
bottom left or right to simulate thinking during the social
chat. Similarly, in the joint task, the human controller directed
the gaze of the robot toward the human game partner in
case long periods of silence occurred. This means that, in
the game context, the shared screen acted as an object of

shared attention and the iPad as an object of exclusive attention
for the participants (cf. Figure 2). Moreover, it also entails
that, while in the social chat participants’ gaze toward the
robot could be considered mutual (i.e., when the participants
looked at the robot, they made eye-contact with it), in the
joint task it cannot, as the robot only rarely gazed at the
participants (cf. Table 1).

4.4. Questionnaires and Recordings
To measure participants’ perception of the robot and their
engagement with it and the game, we asked them to complete
a series of questionnaires. Before their first interaction with
the robot they filled out a demographic questionnaire (Q1).
The second questionnaire (Q2) was used to capture people’s
perception of the robot. It contained questions about the robot’s
perceived anthropomorphism (5 items on a 5-point Likert scale
from the Godspeed questionnaire, α = 0.91; Bartneck et al.,
2009), likability and threat (5-point Likert scale, likability: α =

0.83, perceived threat α = 0.89; Rosenthal-von der Pütten and
Krämer, 2014), as well as its perceived warmth, competence, and
discomfort (Robotic Social Attributes Scale; 18 items on a 7
point Likert scale; warmth: α = 0.92; competence: α = 0.95;
discomfort: α = 0.90; Carpinella et al., 2017). In the first session,
Q2 was filled out immediately after the social chat with the
robot to collect people’s first impression of it. In the second and
third session, it was instead completed before the first social
chat to understand participants’ recall of the robot’s perception
before seeing it again (cf. Figure 3). The final questionnaire (Q3)
was filled out after the post-game social chat. It contained the
same questions of Q2, but also additional scales to measure
participant’s involvement with the robot and with the game (User
Engagement Questionnaire; 9 items on a 5 point-Likert scale:
involvement: α = 0.71; O’Brien and Toms, 2010).

Participants were equipped with Tobii Glasses 2 (cf. Figure 4),
which recorded the experimental session from a first-person view
with a full HD wide-angle camera. These glasses also tracked
the participants’ gaze direction with a sampling rate of 100
Hz. Further processing of gaze data is described in section 5.
Following the Ethographic and Laban-Inspired Coding System
of Engagement (ELICSE) proposed by Perugia et al. (2017, 2018),
we focused on three foci of attention in the interaction: the robot,
the shared screen, and the tablet, and measured the percentage
of time participants gazed at each attentional focus during the
different phases of the interaction session (i.e., social chats and
collaborative game). To ensure the eye-tracker would not disturb
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FIGURE 4 | Participant wearing the Tobii glasses during the interaction

session.

participants in their interactions, we ran a pilot study with
six participants (three with and three without the eye-tracking
glasses). Neither the participants wearing the eye-tracker nor the
control group found the recording setup intrusive. Participants’
interaction with Furhat was further recorded using a close-range
Sennheiser microphone, two webcams, a Kinect, and a RealSense
camera. These recordings were used to answer different research
questions and are hence not discussed in this paper.

4.5. Experiment Setup and Procedure
The interaction space was set up with a table on which the
shared touch screen, the Furhat robot, and the iPad were placed
(cf. Figure 2). Participants stood on one side of the table. The
robot was placed in front of them roughly at the height of their
eyes. The shared screen was positioned between the participant
and the robot. A professional lighting system ensured even
illumination for the video recordings and visibility for the robot’s
face texture.

During the first session (S1), participants were explained the
experiment and asked to give informed consent. Then, they
filled out Q1 on the iPad while the robot was still covered
with a blanket. The researcher leading the experiment removed
the blanket from the robot’s head before manually starting the
interaction. After the 2-min pre-game social chat, the robot asked
participants to fill out Q2 on the iPad; then it automatically
continued with the map game and the post-game social chat.
At the end of the session, the robot prompted the participant to
respond to Q3. The second (S2) and third sessions (S3) started
with the researcher asking participants to fill in Q2 based on
their memory from the previous session, before uncovering the
robot. The pre-game social chat, the game interaction, and the
post-game social chat were then performed without a break in
between. Hence, while Q3 was always filled out at the same time,
immediately after the post-game social chat, Q2 was completed
after the pre-game social chat in S1, and before it in S2 and S3
(cf. Figure 3). While participants responded to a questionnaire,

the robot displayed idling behavior that involved looking around
in the room and away from the human interaction partner.
Participants were fully debriefed about the purpose of the study
after the entire experiment was completed.

5. DATA PROCESSING

To understand what object participants were focusing on, we
developed an object detector for the first-person video stream
from the wearable eye-tracker. The implementation of the
object detector was based on the open-source neural network
framework Darknet, which uses the real-time object detector
YOLOv4 (Bochkovskiy et al., 2020). For the purpose of this study,
we used a version of YOLOv4 pre-trained on the MS COCO data
set consisting of objects such as cars, tv screens, and people (Lin
et al., 2014), and added 409 labeled images of tablets and the
Furhat robot. The resulting model achieved a mAP of 89.06%,
with the shared touchscreen, robot, and tablet having an AP of
85.07, 89.35, and 92.75%, respectively.

To run the analyses on gaze, we extracted the percentage
of gaze directed to the robot, screen, and tablet from each
interaction phase. We then compared every frame of the gaze
coordinates provided by the Tobii eye-tracking system with
the objects detected in the video stream and labeled them
as either inside of the bounding box of the robot, screen
or tablet, or “somewhere else.” The Tobii system failed to
detect participants’ pupils on average on 11.55% of the frames
(SD = 8.9%), in which case the frame was annotated as “Not
applicable.” Interaction phases containing more than 50% of
undetected frames were excluded from the analysis. To correct
for inaccuracies due to the inexact positioning of the bounding
boxes in the first person video, we applied a filter to the
resulting object annotations. The filtering algorithm detected
one or two consecutive frames labeled as outside the bounding
box of an object occurring in the middle of a larger block of
frames detected as inside the bounding box of that object. If
the distance between the frames labeled as outside and those
labeled as inside the bounding box was lower or equal to 110.14
pixels (5% of the max. video distance), we changed the original
label of the outlier frames to the label of the surrounding block
of frames.

Two annotators manually labeled three of the videos frame-
by-frame using the software ELAN 5.9. The inter-rater agreement
between the two annotators, which was calculated on one video,
was excellent (κ = 0.98; Holle and Rein, 2015). When comparing
the automated annotations to the manual ones, the system
achieved a similarly excellent average κ of 0.97.

6. RESULTS

In the following, we use: (i) perception of the robot to refer
to the subscales anthropomorphism, perceived threat, likability,
warmth, competence, and discomfort; (ii) engagement to refer
to the subscales involvement with the game and involvement
with the robot; and (iii) task performance to refer to participants’
game score. Moreover, when it comes to gaze metrics, we use:
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(a) mutual gaze to refer to the percentage of gaze directed
to the robot during the pre- and post-game social chats; and
(b) gaze patterns in the joint task to refer to the percentage
of gaze toward the robot, screen, and tablet during the game
interaction. All dependent variables used for the statistical
analyses were normally distributed and met the equality of
variance assumption. The subscales related to participants’
perception of the robot and their involvement with the game and
the robot were always used in their original form.

To correct for multiple testing in the univariate tests and
between-subjects effects following up a MANOVA, we opted for
a Holms-Bonferroni correction (Holm, 1979). Holm’s method
enabled us to control family-wise error rates (FWER) while at
the same time keeping an optimal statistical power (Haynes,
2013). To adjust the p-values of post-hoc pairwise comparisons
following the univariate and between-subjects effects, instead,
we used a Bonferroni correction (Bonferroni, 1936). This more
conservative approach was meant to compensate for the further
iteration of analysis. In the classical Bonferroni test, the alpha
levels obtained from the statistical analyses are compared to
the one resulting from the following correction: α

n , where
n is the number of tests performed, and α is usually 0.05
(Bonferroni, 1936). In the Holm-Bonferroni correction, or
sequentially rejective Bonferroni test, instead, the obtained alpha
levels are first ranked and then sequentially compared to the
values resulting from the following equations (Holm, 1979):

α

n
,

α

n− 1
,

α

n− 2
, ...,

α

1
(1)

6.1. Manipulation Check
In order to check whether we succeeded in manipulating the
robot’s humanlikeness, we carried out a repeated measures
MANOVA with humanlikeness as between-subject factor
(humanlike, mechanical, and morph), interaction session as
within-subject factor (S1, S2, and S3), and perception of the robot
(Q3) as dependent variable (i.e., anthropomorphism, likability,
warmth, competence, threat, and discomfort). The results did
not disclose a significant main effect of humanlikeness on the
linear composite of the six dependent variables [F(12, 72) = 1.475,
p = 0.154, ηp2 = 0.197] nor a significant interaction effect
of humanlikeness and interaction session [F(24, 60) = 0.678,
p = 0.853, ηp2 = 0.213]. However, they showed a significant
main effect of interaction session on the composite of the
dependent variables [F(12, 29) = 4.726, p < 0.001, ηp2 = 0.662].

Considering a Holm-Bonferroni correction (cf. Table 3), the
univariate analyses disclosed a main effect of interaction session
on perceived threat [F(2, 80) = 4.984, p = 0.009, ηp2 = 0.111],
and discomfort [F(2, 80) = 12.920, p < 0.001, ηp2 = 0.244],
but not on anthropomorphism [F(2, 80) = 0.179, p = 0.837,
ηp2 = 0.004], likability [F(2,80) = 3.897, p = 0.024, ηp2 =

0.089], warmth [F(2, 80) = 1.533, p = 0.222, ηp2 = 0.037],
and competence [F(2, 80) = 2.968, p = 0.057, ηp2 = 0.069]. In
line with previous work (Paetzel et al., 2020), Post-hoc analyses
with a Bonferroni correction showed that perceived threat and
discomfort did not stabilize over time. Perceived threat decreased
between S1 and S3 (p = 0.038; S1–S2: p = 0.377; S2–S3:

TABLE 2 | Mean (M) and standard deviation (SD) of the different perceptual

dimensions (Q3) per session.

Manipulation check: descriptive statistics (session)

Session 1 Session 2 Session 3

M SD M SD M SD

Anthropomorphism 3.335 0.671 3.330 0.818 3.297 0.865

Likability 3.163 0.770 3.354 0.821 3.316 0.786

Warmth 4.132 1.165 4.287 1.314 4.140 1.438

Competence 4.919 1.079 5.128 1.041 4.861 1.263

Threat 1.870 0.638 1.772 0.555 1.6744 0.529

Discomfort 2.019 0.705 1.771 0.595 1.643 0.573

p = 0.101), and discomfort between S1 and S2 (p = 0.006) and
between S1 and S3 (p = 0.001, S2–S3: p = 0.054; cf. Table 2 for
the descriptive statistics).

The main effect of humanlikeness on the linear composite of
the six dependent variables (i.e., anthropomorphism, likability,
warmth, competence, perceived threat, and discomfort) was not
significant. Nevertheless, we proceeded to check the between
subjects effects. This was because the perceptual dimensions we
included in the MANOVA were in a complex relationship with
each other (anthropomorphism, likability, warmth, competence
are positively correlated with each other but negatively correlated
with perceived threat and discomfort), hence performing
analyses exclusively focusing on their linear composite could
have disguised crucial underlying effects. Between-subject effects
with a Holm-Bonferroni correction (cf. Table 3) highlighted a
significant main effect of humanlikeness on anthropomorphism
[F(2,40) = 6.986, p = 0.002, ηp2 = 0.259], likability [F(2,40) =

5.441, p = 0.008, ηp2 = 0.214], warmth [F(2,40) = 8.550,
p = 0.001, ηp2 = 0.299], and competence [F(2,40) = 8.694,
p = 0.001, ηp2 = 0.303], but not on perceived threat
[F(2,40) = 0.003, p = 0.997, ηp2 < 0.001] and discomfort
[F(2,40) = 0.013, p = 0.987, ηp2 = 0.001]. Post-hoc pairwise
comparisons with a Bonferroni correction revealed that no
difference in perception was present between the morph and
the mechanical robot (anthropomorphism: p = 1.00; warmth:
p = 0.942; likability: p = 0.833; competence: p = 1.00;
discomfort: p = 1.00; perceived threat: p = 1.00). However, they
disclosed that the humanlike robot was perceived as significantly
more anthropomorphic (p = 0.004), warm (p = 0.001),
likable (p = 0.008), and competent (p = 0.001) than the
morph (cf. Table 4 for the descriptive statistics) and significantly
more anthropomorphic (p = 0.020), warm (p = 0.021), and
competent (p = 0.015) than the mechanical robot (likability:
p = 0.142, cf. Table 4 for the descriptive statistics).

6.1.1. Discussion of Manipulation Check
In summary, perceived threat and discomfort, which should have
varied due to changes in the robot’s level of humanlikeness and
the presence of mismatching cues in themorph robot (see Kätsyri
et al., 2015), did not change as expected. Nevertheless, the results
of the manipulation check show that the robot’s humanlikeness
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TABLE 3 | Ranked p-values for the univariate analysis and between-subjects effects referring to the manipulation check with corresponding cut-off p-values due to

Holm-Bonferroni correction.

Manipulation check: Holm-Bonferroni correction

Univariate analyses Between-subjects effects

Ranked scale p-value cut-off p Ranked scale p-value cut-off p

Discomfort *<0.001 0.008 Competence *0.001 0.008

Threat *0.009 0.010 Warmth *0.001 0.010

Likability *0.024 0.013 Anthropomorphism *0.002 0.013

Competence 0.057 0.017 Likability *0.008 0.017

Warmth 0.222 0.025 Discomfort 0.987 0.025

Anthropomorphism 0.887 0.050 Threat 0.997 0.050

The asterisk and bold type indicate the significant p-values after correction. The asterisk and italic type indicate the significant p-values before correction.

TABLE 4 | Mean (M) and standard deviation (SD) of the different perceptual

dimensions (Q3) per level of humanlikeness.

Manipulation check: descriptive statistics (humanlikeness)

Humanlike Morph Mechanical

M SD M SD M SD

Anthropomorphism 3.761 0.631 2.969 0.631 3.097 0.631

Likability 3.675 0.676 2.872 0.677 3.164 0.677

Warmth 4.993 1.068 3.444 1.067 3.872 1.067

Competence 5.654 0.891 4.368 0.891 4.675 0.891

Threat 1.773 0.540 1.764 0.541 1.779 0.541

Discomfort 1.824 0.577 1.791 0.577 1.816 0.577

significantly varied across conditions. This is indicated by the
significant differences in anthropomorphism between the morph
and the humanlike robot, and between the mechanical robot
and the humanlike one, but also by changes in perceptual
dimensions known to be related to a robot’s humanlikeness,
such as likability, warmth, and competence. The lack of proper
differentiation between the morph and the mechanical robot in
terms of anthropomorphism can be ascribed to the many facial
features the two robots had in common (cf. Figure 1). In the
future, the humanlike characteristics of the morph robot should
be strengthened to increase its recognizability and enhance its
ambiguity and hence its uncanniness. In conclusion, given that
the core independent variable of our study, the humanlikeness of
the robot, varied as expected, we did not consider that the lack of
significant differences in perceived threat and discomfort could
undermine the relevance of further analyses. Indeed, we consider
these two dimensions to be of further relevance to our analysis
because they were the only perceptual dimensions to significantly
change over time.

6.2. Preliminary Analyses: Engagement and
Task Performance
To understand the effects of our study design on engagement
and task performance, we conducted a repeated measure
MANOVA with the same independent variables (humanlikeness
as between-subjects factor; interaction session as within-subject
factor) and involvement with the robot, involvement with the

game, and task performance (i.e., score at the game) as dependent
variables. Results disclosed a significant main effect of interaction
session [F(6, 35) = 9.005, p < 0.001, ηp2 = 0.607] and a trend
main effect of humanlikeness [F(6, 78) = 1.936, p = 0.085, ηp2 =
0.130] on the linear composite of the three dependent variables.
No interaction effect between humanlikeness and interaction
session was present [F(12, 72) = 0.866, p = 0.584, ηp2 = 0.126].

Considering a Holm-Bonferroni correction (cf. Table 5), the
univariate analyses showed a significant main effect of interaction
session on task performance [F(2, 80) = 37.208, p < 0.001,
ηp2 = 0.482] but not on involvement with the robot [F(2, 80) =
0.576, p = 0.564, ηp2 = 0.014] and the game [F(2, 80) = 1.606,
p = 0.207, ηp2 = 0.039]. Post-hoc analyses with p-values adjusted
with a Bonferroni correction disclosed a significant difference in
task performance between S1 (M = 22.720, SD = 9.59) and S2
(M = 28.419, SD = 10.15, p < 0.001), S2 and S3 (M = 30.558,
SD = 10.24, p = 0.019), and S1 and S3 (p < 0.001). Interestingly,
albeit not significant, engagement was higher in the humanlike
robot condition compared to the morph condition, while task
performance was higher for the morph robot with respect to the
humanlike robot (cf. Figure 5).

6.3. Analyses of the Research Questions
6.3.1. Mutual Gaze as Predictor of Perceptions of

Robots (RQ1)
We ran a number of regression analyses using mutual gaze
in the post-game social chat as independent variable and the
dimensions of perception of the robot (Q3) as dependent
variables. Mutual gaze during the social chat was not a significant
predictor of anthropomorphism and competence (cf. Table 6).
However, it was a significant negative predictor of perceived
threat and discomfort, and a significant positive predictor of
likability and warmth (cf. Table 6). Hence, we can conclude
that the less people gazed at the robot during the social chat,
the less they liked the robot, and the more they perceived it
as uncanny.

6.3.2. Gaze Patterns as Predictors of Engagement

and Task Performance (RQ2)
To understand whether participants’ gaze patterns during
the joint task were predictors of their engagement and task
performance, we ran separate regression analyses using the
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TABLE 5 | Ranked p-values for the univariate analysis and between-subjects effects referring to the preliminary analyses with corresponding cut-off p-values due to

Holm-Bonferroni correction.

Preliminary analyses: Holm-Bonferroni correction

Univariate analyses Between-subjects effects

Ranked scale p-value Cut-off p Ranked scale p-value Cut-off p

Task performance *<0.001 0.017 Involvement Robot *0.037 0.017

Involvement game 0.207 0.025 Involvement game 0.075 0.025

Involvement robot 0.576 0.050 Task performance 0.131 0.050

The asterisk and bold type indicate the significant p-values after correction. The asterisk and italic type indicate the significant p-values before correction.

FIGURE 5 | Development of involvement with the game, involvement with the robot, and task performance (participants’ score at the game) over repeated sessions.

S1, Session 1; S2, Session 2; S3, Session 3.

percentage of gaze directed toward the robot, toward the screen,
and toward the tablet during the game interaction as predictors
and involvement with the robot and with the game, and task
performance as dependent variables.

The percentage of gaze directed to the robot during the game
was not a significant predictor of involvement with the robot, nor
of involvement with the game (cf. Table 7). However, it was a
significant negative predictor of task performance, meaning that
the more participants looked at the robot during the game, the less
they scored at the game.

The percentage of gaze directed to the screen during the game
was not a significant predictor of involvement with the robot.

However, it was a significant predictor of involvement with
the game and especially of task performance (cf. Table 7). This
indicates that the more participants focused on the object of shared
attention (the screen), the more they were engaged with the game
and the higher they scored at the game.

Finally, the percentage of gaze directed to the tablet during
the game was not a significant predictor of involvement
with the robot, but it was a significant predictor of involvement
with the game and task performance (cf. Table 7). As opposed to
the percentage of gaze directed the screen, the more participants
looked at the object of exclusive attention (the tablet), the less they
were engaged with the game and the lower they scored at the game.
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TABLE 6 | Results of the regression analyses performed for RQ1.

Regression analyses (RQ1): results

Predictor: mutual gaze

Dependent variable β t(132) p-value r2

Anthropomorphism 0.064 0.733 0.465 0.004

Likability 0.219 2.574 0.011 0.048

Warmth 0.172 2.000 0.048 0.030

Competence 0.015 0.177 0.860 <0.001

Threat −0.216 −2.534 0.012 0.047

Discomfort −0.221 −2.592 0.011 0.049

In bold, the significant regressions.

TABLE 7 | Results of the regression analyses performed for RQ2.

Regression analyses (RQ2): results

Predictor: gaze to robot

Dependent variable β t(130) p-value r2

Involvement robot 0.021 0.243 0.809 <0.001

Involvement game −0.041 −0.470 0.639 0.002

Task performance −0.249 −2.917 0.004 0.062

Predictor: gaze to screen

Involvement robot 0.128 1.466 0.146 0.016

Involvement game 0.192 2.220 0.028 0.037

Task performance 0.305 3.643 <0.001 0.093

Predictor: gaze to tablet

Involvement robot −0.118 −1.351 0.179 0.014

Involvement game −0.172 −1.983 0.049 0.030

Task performance −0.248 −2.907 0.004 0.061

In bold, the significant regressions.

6.3.3. Effect of Exposure, Interaction Session, and

Humanlikeness on Mutual Gaze (RQ3, RQ5a)
To understand how mutual gaze developed over time within
and between interactions, we performed a repeated measures
ANOVA with the robot’s humanlikeness as between-subject
factor (humanlike, mechanical, and morph), interaction session
(S1, S2, and S3) and game exposure (pre- and post-game) as
within-subject factors, and mutual gaze as dependent variable.
We found a significant main effect of game exposure [F(1, 30) =
23.515, p < 0.001, ηp2 = 0.439] and an interaction effect of game
exposure and interaction session on mutual gaze in the social
chats [F(2, 29) = 20.999, p < 0.001, ηp2 = 0.592]. However,
we did not find any significant main effect of interaction session
[F(2, 29) = 2.107, p = 0.140, ηp2 = 0.127] and humanlikeness
on mutual gaze [F(2, 30) = 0.320, p = 0.728, ηp2 = 0.021], nor
any interaction effect of interaction session and humanlikeness
[F(4, 60) = 0.806, p = 0.526, ηp2 = 0.051], game exposure and
humanlikeness [F(2, 30) = 0.146, p = 0.864, ηp2 = 0.010], and
interaction session, game exposure and humanlikeness [F(4, 60) =
0.958, p = 0.437, ηp2 = 0.060].

Post-hoc analyses with a Bonferroni correction showed a
general decrease in mutual gaze from the pre- (M = 0.714, SD =

0.126) to the post-game social chat (M = 0.630, SD = 0.144,
p < 0.001). Follow-up separate univariate analyses disclosed
that the mutual gaze toward the robot significantly decreased
[F(1, 44) = 48.985, p < 0.001, ηp2 = 0.527] from the pre-
(M = 0.729, SD = 0.123) to the post-game social chat in S1
(M = 0.575, SD = 0.157) and in S2 [F(1, 42) = 25.398, p < 0.001,
ηp2 = 0.377; pre: M = 0.723, SD = 0.126; post: M = 0.638,
SD = 0.147], but not in S3 [F(1, 38) = 0.002, p = 0.968,
ηp2 = 0.00; pre: M = 0.688, SD = 0.172; post: M = 0.679,
SD = 0.172, cf. Figure 6]. Interestingly, in the last session, the
amount of gaze toward the robot was almost same in the pre
and post-game social chats (cf. Figure 6). This might indicate
that the more participants interacted with the robot, the more they
habituated to it and the more their gaze patterns stabilized.

6.3.4. Effect of Interaction Session and

Humanlikeness on Gaze Patterns (RQ4, RQ5b)
To understand whether participants’ gaze patterns in the joint
task changed across repeated interactions, we performed a
repeated measures MANOVA with humanlikeness as between-
subject factor (humanlike, mechanical, and morph), interaction
session as within-subject factor (S1, S2, and S3), and gaze patterns
as dependent variables (i.e., percentage of gaze directed to the
robot, the screen, and the tablet). We did not find a significant
main effect of humanlikeness [F(6,58) = 0.422, p = 0.861, ηp2 =

0.042] nor an interaction effect of humanlikeness and interaction
session on the dependent variables [F(12,52) = 0.961, p = 0.496,
ηp2 = 0.182]. However, the results disclosed a significant main
effect of interaction session on the dependent variables [F(6,25) =
2.543, p = 0.046, ηp2 = 0.379].

Considering a Holm-Bonferroni correction (cf. Table 8),
further univariate tests showed a significant main effect of time
on the percentage of gaze directed to the screen [F(2,60) = 7.143,
p = 0.002, ηp2 = 1, 928] and the tablet [F(2,60) = 9.666, p <

0.001, ηp2 = 0.244], but not of the percentage of gaze directed
to the robot [F(2,60) = 2.202, p = 0.119, ηp2 = 0.068]. Post-
hoc analyses with p-values adjusted with a Bonferroni correction
revealed a significant decrease in the percentage of gaze directed
to the screen in the joint task from S1 (M = 0.423, SD = 0.185)
to S3 (M = 0.371, SD = 0.191, p = 0.023), and from S2
(M = 0.425, SD = .190) to S3 (p = .007), but not from S1 to
S2 (p = 1.00, cf. Figure 7). Moreover, they revealed a significant
increase in the percentage of gaze directed to the tablet in the
joint task from S1 (M = 0.374, SD = 0.172) to S3 (M = 0.458,
SD = 0.183, p = 0.004) and from S2 (M = 0.390, SD = 0.163) to
S3 (p = 0.002), but not from S1 to S2 (p = 1.00, cf. Figure 7).
This seems to suggest that the gaze patterns in the joint task
changed over time with a decrease in gaze toward the object of
shared attention making space for an increase in gaze toward the
object of exclusive attention.

7. DISCUSSION

7.1. Mutual Gaze and Uncanniness (RQ1)
In our experiment, mutual gaze in a social chat was a negative
predictor of uncanniness (i.e., perceived threat and discomfort)
and a positive predictor of likability (i.e., likability and warmth).
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FIGURE 6 | Development of percentage of mutual gaze in the pre and post-game social chats over repeated sessions. On the left, the development of mutual gaze in

the pre and post-game social chat for each level of the robot’s humanlikeness. On the right, the overall change. S1, Session 1; S2, Session 2; S3, Session 3.

TABLE 8 | Ranked p-values for the follow-up univariate analysis performed for

RQ4 with corresponding cut-off p-values due to Holm-Bonferroni correction.

RQ4: Holm-Bonferroni correction

Ranked scale p-value cut-off p

Gaze table *<0.001 0.017

Gaze screen *0.002 0.025

Gaze robot 0.119 0.050

In bold, the significant p-values after correction. The asterisk indicates the significant

p-values before correction.

The negative relation between mutual gaze and uncanniness and
the positive relation between mutual gaze and likability lend
support to the mutual gaze-liking hypothesis. Indeed, robots
perceived as uncanny seem to elicit gaze aversion, whereas robots
perceived as likable attract higher gaze allocation. In this sense,
our work extends previous findings on the relationship between
gaze and uncanniness to the context of face-to-face interactions
with robots. Moreover, it suggests that people’s mutual gaze in an
interaction with robots can be used as an implicit and continuous
measure of a robot’s uncanniness and likability. Future work
should corroborate this finding in a less exploratory way, by
exposing people to robots explicitly manipulated in their level
of uncanniness and likability and assessing whether our results
still hold.

7.2. Shared Gaze, Engagement and Task
Performance (RQ2)
Participants that gazed at the screen longer during the game
interaction felt a higher involvement with the game and
performed better. As the screen acted as the object of shared
attention in this study, these results entail that the more
participants shared the focus of their attention with the robot,
the more they felt involved with the game, and the better they
performed. This claim is further supported by the fact that

the gaze directed toward the object of exclusive attention (i.e.,
the tablet) negatively predicted involvement with the game and
task performance, and the gaze directed to the robot negatively
predicted participants’ performance. Overall, we can state that
gaze patterns in a joint task predict task performance and
involvement with the game and that in a joint task involving
tangible artifacts (e.g., the screen), shared attention signals higher
involvement with the task and can predict a better performance.
On the contrary, gaze directed to the robot and the object of
exclusive attention (e.g., the tablet) are markers of disengagement
with the task and poorer task performance.

In contrast with most HRI literature that employed gaze
toward the robot as one of the core metrics of social engagement
in a joint task, we did not find a relationship between gaze toward
the robot and participants’ perceived involvement with it. This
confirms our suspect that in a joint task, the gaze allocated to
the robot is not a precise measure of people’s syntony with it
because it is hindered by participants’ willingness to complete
the task. Combining this result with our findings on mutual
gaze, we posit that gaze toward the robot does indicate social
engagement, but only in interactions that do not involve the use
of tangible artifacts, for instance, in face-to-face social dialogs.
Joint tasks involving tangible artifacts call for the allocation
of attentional resources to the object where the activity takes
place (in our case, the shared screen) rather than to the agent
with which the activity is performed. Hence, we argue that, in
these tasks, one can feel involved with the robot at a subjective-
experiential level even without overtly expressing this involvement
at a behavioral level. Future work should focus on testing
these preliminary findings in further joint tasks and see if they
still hold.

In this study, we found that: (1) the amount of mutual gaze
in the social chat was a negative predictor of uncanniness and a
positive predictor of likability, (2) the gaze directed to the robot in
the joint task was a negative predictor of task performance, and
(3) the percentage of gaze directed to the screen was a positive
predictor of task performance. Altogether, this seems to suggest
that robots that are perceived as less likable might be more suitable
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FIGURE 7 | Development of percentage of gaze toward the robot, the screen, and the tablet over the three sessions of the game interaction. S1, Session 1; S2,

Session 2; S3, Session 3.

for joint tasks, as they attract less attention and hence help the
player stay focused on the activity. It would be interesting to
understand whether we could leverage on a robot’s likability to
find a trade-off between engagement and task performance in
joint activities.

7.3. The Development of Mutual Gaze Over
Time (RQ3)
We found participants’ mutual gaze in the face-to-face
conversation with the robot to change over time. It decreased
between the pre- and post-game social chat in sessions 1 and 2,
but not in session 3. The descriptive statistics reveal that mutual
gaze in the third pre- and post-game chats stabilizes close to
the values of the pre-game conversations of session 1 and 2. In
line with the questionnaire results on the perception of robots,
which revealed that perceived threat and discomfort were the last
perceptual dimensions to stabilize over time, in this study, we
found that mutual gaze, a negative predictor of perceived threat
and discomfort, stabilized only at the third interaction session.
Consistent with self-reports from participants, which showed
that uncanniness reduced over time, we found mutual gaze, a
negative predictor of uncanniness, to increase across sessions.
These results seem to suggest that mutual gaze can be used to
monitor the development of uncanny feelings toward a robot
over time.

The decrease in mutual gaze between the pre- and post-
game social chats of sessions 1 and 2 might be related to the
robot’s novelty. Indeed, it seems to suggest that participants look
more at a robot when meeting it for the first time and after
a period of zero exposure and that they gaze progressively less
at the robot the more they become familiar with it. However,
the reduction in mutual gaze within the interaction session was
accompanied by an increase in mutual gaze across interaction
sessions. This makes it challenging to draw conclusions on the
role of the robot’s novelty on mutual gaze. Future research should
specifically investigate how the robot’s novelty affects the amount
of mutual gaze it attracts and how the interplay of novelty
and uncanniness influences mutual gaze within and between
interaction sessions.

7.4. The Development of Gaze Patterns in a
Joint Task Over Time (RQ4)
As opposed to previous work finding a decrease in the gaze
directed toward the robot over multiple sessions of a joint task
(Serholt and Barendregt, 2016), in our study, we found that the
percentage of gaze directed to the robot during themap game was
stable. This is in line with the results from the questionnaires (i.e.,
involvement with the robot). This result is positive as it shows
that the map game is interesting enough to sustain participants’
engagement with the robot over time. As gaze toward the robot
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during a joint task seems to be a significant predictor of poor task
performance, preventing an increase in the attention the robot
attracts across repeated interactions is crucial to ensure that the
educational game fulfills its pedagogical objectives.

In contrast with the gaze toward the robot, the percentage
of gaze directed to the screen or the tablet changed over
time, with the former decreasing and the latter increasing over
the last two sessions. This result is interesting. Indeed, the
progressive improvement in task performance across sessions,
the positive relationship between gaze toward the screen and task
performance, and the negative relationship between gaze toward
the tablet and task performance would have suggested an inverse
development of gaze patterns over time. Hence, we suppose that
this change in gaze patterns might capture the slight decrease in
involvement with the game shown by the questionnaires, which
eventually did not reach significance. However, it might also
indicate that, as participant grew more confident with the game
and settled for a strategy to score points in the last sessions,
they felt more comfortable in abandoning the main support tool
offered by the game (i.e., shared screen). Future research should
investigate more thoroughly how gaze allocation to the objects of
attention included in a joint task changes over time, especially
as a consequence of the progressive increase in participants’
task expertise.

7.5. The Effect of Humanlikeness on
Mutual Gaze in a Social Chat (RQ5a)
The three facial textures that we applied to the robot varied in
terms of positive perceptions but not in uncanniness. As mutual
gaze predicted only two perceptual dimensions (i.e., likability,
warmth) out of the four positive ones that varied, the lack of a
main effect of humanlikeness on mutual gaze does not surprise.
We assume that a less subtle manipulation of humanlikeness will
be more likely to influence the gaze allocation toward the robot
in a social chat, and strongly advise future research to move in
this direction. At the same time, we also recommend to keep the
embodiment features of the robot as consistent as possible across
conditions to limit the influence of other confounding factors.

7.6. The Effect of Humanlikeness on Gaze
Patterns in a Joint Task (RQ5b)
The significance values in Table 5 and the graphs in Figure 5

show a trend difference between the morph and the humanlike
robot in terms of involvement with the robot. However, we
did not find a significant difference between the humanlike
and the morph robot in terms of gaze allocation. This result is
particularly interesting as it corroborates our hypothesis that, in
joint tasks, the involvement with the robot might be felt at a
subjective/experiential level rather than expressed at a behavioral
level with gaze. This might be especially true for games with time
constraints. Indeed, in this context, the time pressure set by the
game and the pace that derives from it might leave little room for
participants to focus their gaze on the robot. Future work should
further investigate this line of thought by exposing participants to
joint tasks differing in time constraint and investigating at which

level of time pressure the engagement with the robot ceases to be
expressed behaviorally.

7.7. Limitations
While we highlight the contribution of the present exploratory
study on the usage of gaze as an implicit measure of robot
perception and task performance, we also acknowledge a number
of limitations. For instance, the manipulation of the robot’s
humanlikeness in our experiment did not work as expected.
Indeed, participants did not perceive the mechanical and the
morph robot as differing in anthropomorphism, and Furhat’s
facial textures did not vary in perceived uncanniness. To
overcome this drawback, we plan to add more anthropomorphic
features to the morph texture in the future. Another potential
limitation of the study lays in the remote-controlled nature of the
robot’s interactive capabilities. While participants were not aware
of the robot being controlled by a human until they were fully
debriefed, this might have set wrong (i.e., unrealistically high)
expectations on the robot’s abilities. We are currently working
on a fully autonomous version of the map game, which we
plan to deploy in future studies to confirm our findings. Third,
although we found a large effect size for all significant analyses,
future work would benefit from a larger and more heterogeneous
group of participants, both in terms of background and gender.
As most of the participants in this study identified themselves
as male and came from a computer science background, our
results might report the perspective of a limited group of users
and thus need replication. Moreover, the study we performed
was set in a lab environment, a context that grants a lot of
control over confounding variables. Further research should
focus on replicating this study in real-life scenarios where the
collection of gaze data is more complex and environmental
factors, such as light conditions, might intrude first-person
object-recognition and hence the automatic annotation of gaze.
Finally, albeit the participants involved in the pilot did not
perceive the Tobii eye-tracking glasses as intrusive, some might
have felt uncomfortable wearing them. Further research should
hence explore the feasibility of stationary eye-trackers in similar
scenarios and compare their accuracy in detecting gaze direction.

8. CONCLUSION

In this paper, participants took part in three interaction sessions
with a robot varying in humanlikeness. In each session, they
played a collaborative game with the robot and engaged in a
brief social chat before and after the game. We gauged their
gaze direction in both types of interaction and used regression
analyses to relate it with measures of perception and engagement.
Results suggest that mutual gaze toward a robot in a social chat
is related to perceptions of uncanniness, and the gaze directed to
the robot in a joint task is a predictor of poor task performance.
Moreover, they show that mutual gaze in a social chat changes
across repeated interaction sessions, and so do participants’ gaze
patterns in a joint task. These findings are crucial for the field of
HRI as they highlight that gaze can be used as an implicit measure
of people’s perceptions of robots in a face-to-face interaction, and
of engagement and task performance in a collaborative game.
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