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The Coronavirus disease 2019 (Covid-19) pandemic has brought the world to a standstill.
Healthcare systems are critical to maintain during pandemics, however, providing service
to sick patients has posed a hazard to frontline healthcare workers (HCW) and particularly
those caring for elderly patients. Various approaches are investigated to improve safety for
HCW and patients. One promising avenue is the use of robots. Here, we model infectious
spread based on real spatio-temporal precise personal interactions from a geriatric unit
and test different scenarios of robotic integration. We find a significant mitigation of
contamination rates when robots specifically replace a moderate fraction of high-risk
healthcare workers, who have a high number of contacts with patients and other HCW.
While the impact of robotic integration is significant across a range of reproductive number
R0, the largest effect is seen when R0 is slightly above its critical value. Our analysis
suggests that a moderate-sized robotic integration can represent an effective measure to
significantly reduce the spread of pathogens with Covid-19 transmission characteristics in
a small hospital unit.
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INTRODUCTION

The Coronavirus disease 2019 (Covid-19) pandemic has had a devastating impact on global
healthcare and economy. The rapid global spread of the Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV-2) is owed to its high transmissibility (van Doremalen et al., 2020),
transmission prior to symptom onset (Tindale et al., 2020), and infectious spread through
asymptomatic carriers (Bai et al., 2020). These features have posed significant challenges in
various sectors, especially essential services such as the healthcare sector. Several measures are
taken to reduce infectious spread for patients and healthcare worker (HCW) protection while
maintaining healthcare services (The Lancet, 2020). Nevertheless, infection rates of up to 20% among
HCW are reported in certain countries (Remuzzi and Remuzzi, 2020). As of October 2020, 7,000
HCW have died of Covid-19 worldwide (https://www.amnesty.org/en/latest/news/2020/09/
amnesty-analysis-7000-health-workers-have-died-from-covid19/), of which 1,077 deaths and
almost 80,000 HCW positive cases have been confirmed within the United States (https://www.
washingtonpost.com/graphics/2020/health/healthcare-workers-death-coronavirus/), where various
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FIGURE 1 | Robotization scenarios and their impact on the probability of pathogen spread through the network and number of infected individuals (R0 � 4.4). The
networks on the left side depict sketches of the networks of close contacts at the geriatric ward under different scenarios. The colors indicate the categories: patients
(red), nurses (orange), doctors (blue), administration (dark blue), and robots (green). (A) In scenario (i) no robotic assistance is provided and the network of close contacts
remains intact. (B) Scenario (ii) is illustrated by a random nurse being replaced by a robot. (C) In scenario (iii) high-risk nurses are being replaced. (D) Scenario (iv) is
illustrated by the robotic replacement of a high-risk nurse and a random doctor. (E) In scenario (v) the robotization affects the interactions between nurses and patients.
The right side of each panel shows the distribution of prevalence of infection (percentage of individuals infected) under the different scenarios. All simulations were
repeated 100 times to obtain the distributions shown in the violin plots and percentile statistics. For each violin plot, the dashed black lines indicate the different quartiles
of the distribution while dashed color lines mark the mean. (A) In the absence of robotic intervention, the distribution of the number of infected cases is bimodal with 10%
of trials in which the infection does not spread. Across all trials, an average of 71% of the personnel and patients become eventually infected. In general, the nurses and
doctors are more vulnerable to becoming infected than patients and administrative workers. (B) Random replacement of five nurses increases the percentage of non-
spreading trials to 16%. This intervention has the effect of decreasing the average number of infected individuals (66%). (C) The situation improves further when the five
nurses are selected according to the number of contacts. In this case, the probability that the infection does not spread increases to 21% (more than doubling the case
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infection control measures including a lockdown, social
distancing and personal protective equipment (PPE) have been
implemented. In another study, 50% of HCW have reported their
work setting as the single source of exposure (Burrer et al., 2020).
Among patients, the elderly generation in geriatric units and
nursing homes has been primarily affected by the pandemic.
Prolonged close contact between patients and HCW, e.g.,
assistance in patient care and daily needs such as eating,
bathing, walking or lifting, are among the prevailing causes
that expose the elderly community and their caregivers to
increased risk of contamination (McMichael et al., 2020).

The use of robotics as a shielding layer between patients and
caregivers is a promising approach to reduce infectious spread in
healthcare (Yang et al., 2020). While some hospitals have started
to use robotic technology to combat the pandemic and one ward
was entirely staffed by robots (O’Meara, 2020), modelling data in
real-hospital scenarios is lacking to investigate the efficiency and
timing of robotic implementation for reduction of pathogen
contamination (Heesterbeek et al., 2015). Here, we utilized a
temporally and spatially precise dataset of close personal contacts
of 29 patients and 46 HCW in a geriatric unit (Vanhems et al.,
2013). We identify nodes of high contact representing increased
contagion risk, replace these high-risk nodes and model
contamination rates. The model demonstrates that strategically
placed robotic assistance to high-risk HCW can significantly
reduce and delay the number of infections in a hospital unit
in diseases with similar transmissibility to Covid-19. In the
studied scenario, robotic integration is shown to be effective
across a wide range of reproductive number R0 from slightly
above 1 to at least 4.4.

RESULTS

Effects of Robotic Replacement of
Healthcare Workers
Robots can be utilized to assist HCW in a variety of tasks
(Supplementary Table S1) and hence, to reduce the number
and duration of interactions among different types of HCW and
patients. To effectively mitigate pathogen contamination and
operate cost-efficient, it is critical to determine high-risk
groups of individuals and interactions and deploy robotic
assistance specifically to these nodes. In a previous study,
nurse-to-patient interactions accounted for 21.1% and nurse-
nurse interactions resulted in 39.2% of the total number of close
contacts (>20 s and <1.5 m) in a geriatric unit (Vanhems et al.,
2013). Data from the same study shows that five nurses were
responsible for 36.1% of all close contacts with patients. Based on
these observations, we focused on replacing nurses with robots
and simulate pathogen transmission in a geriatric unit with a

model tailored to the state, transmissibility, and latency of SARS-
CoV-2 (Ivorra et al., 2020; Eguíluz et al., 2020). Infectious spread
was modelled under five scenarios: (i) no robotic assistance, and
four scenarios in which robots replaced five random nurses (ii),
the top five high-risk nurses (iii), the top 3 high-risk nurses and 2
randommedical doctors (iv) and finally, when robots replaced all
interactions between nurses and patients (v) (Figure 1). The
model was run for 100 trials, results were averaged. Each
simulation describes the pathogen spreading over the network
and timing of close contacts in a geriatric unit, while we collect
statistics of the transmission for the curse of an outbreak, which
often lasted more than 90 days. A non-spreading state was
defined when less than 10% of the individuals become infected
within a single trial, whereas a spreading state was defined when
more than 10% of individuals become infected. Without use of
robotic technology, only 10 of 100 trials (10%) resulted in a non-
spreading case. (Figure 1A). The probability of a non-spreading
dynamics is augmented by 6% (i.e. from 10 to 16%) if five random
nurses are replaced by robots (Figure 1B). In scenarios iii, iv and
v, a strategic process was used by first identifying the nurses with
the highest number of contacts (i.e. high-risk nurses) and
selectively replacing them with robots. When robots replaced
the five high-risk nurses (iii) (Figure 1C), the probability to
contain the virus was 22%, or in other words, the probability of
non-spreading dynamics increased by 110% when compared to
the baseline scenario (i) without any robotic assistance (from 10
to 22%). To compare the impact of the five high-risk nurses with
other medical staff, we replaced the top 3 high-risk nurses and 2
random medical doctors (MD) with robots, which resulted in a
21% probability to contain the virus (scenario iv, Figure 1D). In
the last scenario, robotic assistance was applied to all interactions
between nurses and patients, i.e., no nurse had direct contact with
a patient, but nurses can still interact with other staff. This
measure resulted in a 23% probability not to spread the
pathogen (Figure 1E). Detailed numerical results of these and
other measures of infection are collected in Supplementary
Table S2.

Temporal Evolution of Infectious Spread
The temporal evolution of the infectious spread is also a key
aspect for the management of an outbreak. For example, the
speed of propagation and the peak number of active infected cases
are important challenges to the limited reaction time and capacity
for a response to the outbreak. Here, we focus on how pathogen
contamination propagates across the network in the geriatric unit
and describe how the different robotic assistance scenarios affect
the temporal dynamics of the infectious spread. We measured the
number of days from outbreak onset until the 10th infection
occurs (T10), and the number of infections on the 30th day from
outbreak onset (I30). As observed in Figure 2, no robotic

FIGURE 1 | without robotization). Patients and nurses benefit from the targeted intervention with an increase in the number of non-infected cases when the infection
spreads. On average, the fraction of infected individuals decreases to 57%. (D)Replacement of high-risk nurses and randomdoctors resulted in a similar probability of no
propagation through the network (22%), while resulting in an average of 60% infected individuals. (E) Interaction replacement led to a probability that the infection does
not spread in 23% of the trials, and an average of only 47% of individuals being infected. For patients the impact is most significant with the majority of simulations
predicting that less than 25% of patients of the geriatric unit become eventually infected.
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assistance leads to the highest and earliest peak in the number of
infected cases, with T10 � 10.1 ± 0.7 days (average ± s.e.m., n � 100),
and I30 � 32.5 ± 0.8 active infected cases (average ± s.e.m., n � 100).
Robotic replacement of the top five high-risk nurses leads to a
significant delay of 1 week to reach the 10th infection in the
population (T10 � 17.1 ± 0.8 days, n � 100; pval � 0, permutation
test for statistical difference with T10 without robotic assistance), and
also results in a significant reduction of the number of active infected
cases by day 30 (I30 � 19.2 ± 1.0 cases, n � 100; pval � 0, permutation
test for statistical difference with I30 without robotic assistance).
Strikingly, this scenario shows both, the slowest initial growth of
infection propagation and the slowest final decay, and hence it
produces the largest flattening of the curve of active infections
(Figure 2, green line). Robotic replacement of all nurse-patient
interactions results in the earliest termination of the outbreak,
while its rise time is not significantly different from the baseline
scenario without any robotic implementation (Figure 2, red curve; T10
� 12.0 ± 0.7 days, pval � 0.074, permutation test). Table 1 and
Supplementary Table S3 contain more details on the temporal
evolution of active infections for each robotic scenario.

The Impact of the Basic Reproductive
Number R0
Another important factor for infectious spread prediction is the
basic reproductive number R0. During the first wave of Covid-19,
R0 ranged between 2 and 6 considering all countries (Sanche et al.,
2020), values of 3.2–3.4 were reported for China (Alimohamadi
et al., 2020), Austria, Switzerland (Karnakov et al., 2020), Italy,
Korea (Zhuang et al., 2020) and Germany (Dehning et al., 2020).
Measures including the use of personal protective equipment
(PPE), social distancing and frequent sanitization have reduced
the basic reproductive to values as low as 0.6 (Fisman et al., 2020).
After investigating the role of robotic integration for pathogen
spread, we analyzed how different reproductive numbers R0 affect
these measures. To this end, we simulated the virus spread in the
above-mentioned scenarios for different R0 values. R0 values
around 3.15 were reported in a meta-analysis from China (He
et al., 2020). R0 values around 1.1–1.2 are estimated after the first
wave of Covid-19 infections (Karnakov et al., 2020) (Figure 3).
Basic reproductive numbers between 1.2 and 0.6 have also been
used to model the effect of using personal protective equipment,

FIGURE 2 | Temporal evolution of infection spread across the network for difference scenarios.(R0 � 4.4). Number of active infected cases in five different scenarios
as a function of the days passed since the first infection in the population on day zero. No robotic integration (blue line) yields in the fastest onset and highest number of
active infected cases. In contrast, robotic replacement of the five nurses with the highest number of contacts with other Health Care Workers (HCW) and patients results
in the slowest increase and the overall lowest number of active cases (green line). Replacing five random nurses with robots leads to more peak active cases and a
steeper slope (orange curve). Replacing all nurse-to-patient contacts (red line) and the top three high-risk nurses and two randommedical doctors (purple line) resulted in
a similar peak for active cases.

TABLE 1 | Measures of the temporal evolution of infection spreading for a baseline case of R0 � 4.4.

Scenario R0 after intervention Individuals infected T10 I30

Reproductive number (R0 � 4.4)
No robotic assistance 4.4 ± 0.3 71 ± 2.4 10.1 ± 0.7 32.5 ± 0.8
Assist rand 5 NUR 3.8 ± 0.3 63 ± 0.7 11.9 ± 0.8 26.8 ± 1.0
Assist top 5 NUR 2.7 ± 0.2 54 ± 2.9 17.1 ± 0.8 19.2 ± 1.0
Assist top 3 NUR-Rand 2 MD 3.2 ± 0.3 57 ± 3.0 14.2 ± 0.7 24.3 ± 0.9
Assist all NUR-PAT contacts 3.1 ± 0.2 47 ± 2.5 12.0 ± 0.7 23.8 ± 0.7

The measures consist of the effective R0 for each robotic implementation scenario, the total number of individuals infected by the end of the outbreak, the number of days until the 10th
infection occurs (T10), and the number of active infections on the 30th day of the outbreak (I30).
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such as masks, depending on the compliance and viral reduction
rate provided. Therefore, in the model, we have focused on fitting
the basic reproductive numbers of 3.4, 1.2, and 0.6, respectively,
and studied the impact of robotic implementation under each of
these epidemiological conditions. For R0 � 3.4, the targeted
scenarios of replacing high-risk nurses or the interactions
between nurses and patients result in the largest non-
spreading probability (see Table 2 and Supplementary Figure
S1). These two scenarios also lead to the smallest number of
infected individuals by the end of the outbreak. The impact of
robots on R0 � 3.4 is thus qualitatively similar to that obtained
when R0 � 4.4. On the other hand, the benefit of robotic
integration is limited when R0 � 0.6 since the baseline case
(i.e. no robotic intervention) already results in 92% of non-
spreading trials. However, we note that in some robotic
scenarios the pathogen propagation can be stopped in 100% of
the trials. It is also important to note that when R0 < 1, each
infected individual infects less than 1 other individual on average
and therefore, pathogen spread is relatively well controlled.
Interestingly, basic reproductive numbers near the critical
value of 1, such as R0 � 1.2, provide the largest gain for
robotic scenarios, even more than for larger R0 that we have
considered (i.e., 3.4 and 4.4). The probability not to spread the

virus increased from 67% at baseline to 96% with targeted robotic
replacement. Overall, these results indicate that the qualitative
effects of robotic scenarios are robust across a range of basic
reproductive numbers with significant benefit occurring at
regimes with a relatively large value of R0, and specially with
R0 slightly above its critical value of 1.

DISCUSSION

Our model investigates whether robotic assistance to a moderate
number of HCW influences the pathogen spread rate in a
geriatric ward. We find that targeted robotic replacement of
nurses with the largest number of personal close contacts
results in the largest effect to control infectious spread. This
scenario not only decreases the probability of viral spread but
also slows down its outbreak. The most optimal R0 to integrate
robots into clinical use is when the reproductive number is
slightly higher than the critical value of R0 � 1, while
significant effects are still observed for relatively high values
(at least up to 4.4).

Limitations and Shortcomings of the Model
The present model is limited in several aspects. First, it only
considers pathogen spread due to close personal contact.
However, growing evidence suggests that aerosol and fomite
transmission are additional routes of infection of Covid-19 (Lu
et al., 2020; Shen et al., 2020). Detailed models simulating the
physics of aerosol and fomite transmission have been applied to
hospital infrastructures during outbreaks of other diseases such as
influenza (Kraay et al., 2018; Wong et al., 2010), and could be
integrated to refine our basic model on the impact of robotic
scenarios on pathogen spread. Robots such as for example those
used as companion robots can be in frequent contact with several
patients and thus also be a source of pathogen contagion via
fomite transmission. Maintenance and cleaning of robots,

FIGURE 3 | Development of the basic reproductive number R0 in Germany. While R0 was at 1.3 on April 7th, 2020, it decreased below the critical value of R0 � 1
shortly after April 7th until June 21st, where it surged to 2.03. For the majority of time thereafter, R0 stayed above 1, at the time of writing it is 1.22. Source: Reprinted with
permission from Robert-Koch-Institute.

TABLE 2 | Results for the probability of pathogen spread across the network for
different reproductive numbers.

Scenario Reproductive number R0

4.4 3.4 1.2 0.6

Ratio of non-spreading trials
No robotic assistance 0.1 0.22 0.67 0.92
Assist rand 5 NUR 0.16 0.2 0.83 1.0
Assist top 5 NUR 0.22 0.28 0.96 1.0
Assist top 3 NUR-Rand 2 MD 0.21 0.24 0.96 0.99
Assist all NUR-PAT contacts 0.23 0.27 0.75 0.96
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including disinfection robots, are other potential sources of
transmission for healthcare and maintenance personnel. These
effects can also be modeled for an accurate balance of the effect of
robotic integration in the spread of infectious diseases with
surface contact as a major via of transmission. Second, our
spreading model runs on real proximity contact data obtained
from a geriatric unit during a non-pandemic state. While we
considered a range of values of the reproductive number that
occurred at different stages of the Covid-19 pandemics, it will be
necessary to also test the model with contact data obtained at such
stages. Third, detailed proximity contact data of HCW and
patients are not publicly available for larger healthcare
infrastructures such as entire hospitals. How the predictions of
the effects of robotic assistance scale to larger nursing homes and
geriatric units will require further data. Fourth, modeling a
specific robotic system integration within the real network of
proximity contacts would require a refined annotation of the
activity conducted during each contact to determine which
interactions can be replaced by specific types of robot and
tasks. Our model abstracted from the specific robotic system
including the network of specific personnel and patients, and
assumed that robotic integration operated at the level of an
effective number of node replacement or removal of interactions.

Overall, we believe that the present model is a step in modeling
the potential impact of robotic assistance in pathogen spread, and
that new data will make possible models tailored to specific
situations and robotic systems.

Yield, Timing and Cost of Robotic
Integration Into Clinical Use
Robots have been utilized to assist humans in a variety of
hazardous tasks, including visual aid (Xing et al., 2017) for
firefighters (Tuffield and Elias, 2003), in nuclear environments
and in mountain rescue (Sugiyama et al., 2013). The use of robots
for infectious diseases has come into the spotlight with the Covid-
19 pandemic. Acquisition of new robotic technology considers
two major factors for hospital administrations: Yield and cost.
Our study suggests that robots can significantly reduce infectious
spread to protect healthcare workers and patients. Our data
points out that the determination of HCW with a high
number of contacts and targeted replacement of these HCW
yields the most effective reduction in pathogen spread. While
robots have been used during Covid-19 to employ an entire unit
of a hospital (https://hbr.org/2020/04/how-hospitals-are-using-
ai-to-battle-covid-19. https://www.medicaldevice-network.
com/features/coronavirus-robotics/), our results demonstrate
that integration of a smaller number of robots focused on high-
risk HCW can significantly reduce cost and effectively decrease
spreading probability. The basic reproductive number R0 also plays
an important role in the efficiency of robotic implementation.
During times, when R0 is below the critical number of 1,
application of robots does not have a significant value,
whereas with R0 values just above one or higher, robots
can reduce infectious spread effectively. Thus, monitoring

of R0 (Figure 3) and selection of appropriate time windows is
a critical factor. Another important consideration is the use
of personal protective equipment (PPE). PPE shortage has
been a key concern during the Covid-19 pandemic, creating
competition between governments and prioritizing certain
countries over others. The integration of robots reduces the
need for PPE since less HCW work within the unit. This can
alleviate pressure during PPE shortage. In addition, robots
can serve at maximum capacity to meet the increased need
during extraordinary times.

METHODS

Simulation of Infectious Spread
For pathogen spread, we consider a model with six states
according to the disease status of the individual: Susceptible
(S), exposed (E), latent (L), infected undetected (Iu), infected
diseased (Id), and recovered (R) (Ivorra et al., 2020). See Figure 4
for the graphical depiction of the model and transitions between
states. The model is a recent variation of the well-established
Susceptible-Exposed-Infected-Recovered (SEIR) model, adapted
to the epidemiological characteristics of Covid-19, including the
latencies (Eguíluz et al., 2020; Flaxman et al., 2020; Bi et al., 2020;
Lauer et al., 2020) and the reported large fraction of
asymptomatic cases occurring in this disease (Ivorra et al.,
2020). All individuals start with a susceptible status. Upon
close contact with an infected or latent case, an individual in
susceptible state (S) will transition to the state of exposed (E) with
probability β, which controls the transmissibility of the disease.

FIGURE 4 | Model of Covid-19 transmission. Transition model used to
simulate the spread of infectious disease with epidemiological characteristics
of Covid-19 on a real sequence of contact data in a geriatric unit. Upon close
contact with a latent (L) or infected case (Iu and Id stand for infected
asymptomatic and diseased states, respectively), an individual in susceptible
state (S) will transition to the state of exposed (E) with probability β, which
controls the transmissibility of the disease. The individuals in the E state remain
in such a state for a time interval τE before entering into the latent state (L).
After a duration τL an individual in the latent state will transition with probability
α to an infected undetected (or asymptomatic) state (Iu), and with probability 1-
α to an infected diseased (Id) state. Each infected individual remains in its
infected state for latencies τIu and τId, respectively, before being effectively
removed from the spreading population after becoming removed or recovered
(R). The model operates until all individuals belong to either the S or R states,
the moment in which the local outbreak ends. All latencies are probabilistically
sampled from Gamma distributions fitted for the dynamics of Covid-19 (Lauer
et al., 2020).
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An individual will remain in the E state for a time interval of
duration τE before entering into the latent state (L). After a
duration τL an individual in the latent state will transition with
probability α to an infected undetected (or asymptomatic) state
(Iu), and with probability 1-α to an infected diseased (Id) state.
Each infected individual remains in its infected state for latencies
τIu and τId, respectively, before being effectively removed from
the spreading population after becoming removed or
recovered (R).

Under different scenarios, we quantify the infectious spread
occurring from a single individual. The model is based on a real
sequence of close proximity contacts obtained from a geriatric
unit as described in the section Proximity contact dataset.

The proximity contact network is critical to simulate the
model in a real setting and avoid the assumption of random
or homogeneous mixing of individuals in a population that is
characteristic of models used at larger scales. As the propagation
of Covid-19 takes longer than 4 days (duration of the recordings
of the real sequence of close contacts), we repeat the interaction
sequence in a loop when running the infectious spread model.

For each scenario simulated, we randomly select one nurse to
become infected at day zero and run the spread model until all
individuals eventually belong to the S or R state. That is, the
spread and simulation stop when only susceptible and recovered
individuals remain. We repeat each simulation 100 times to
account for the variability of the spread dynamics (measured
by the standard error of the mean; s.e.m.) and collect averaged
statistics. The average computer running time for the 100 trials
was 8 h per scenario on Google Collab (on machines that use
single core hyper-threaded Xeon processors running at 2.3 GHz).
The simulations are implemented in python as interactive python
notebooks and can be found at the repository: https://github.com/
Mo-youssef/Robotic-Impact-Simulation.git.

Incubation Period and Latencies
The incubation period, which includes the E and L compartments, is
estimated at around 6 days (Bi et al., 2020) Specifically, the incubation
period considers an average latency of 2 days in exposed (E
compartment) and 4 days in the latent state (L compartment), in
which the infected person is undetected but still contagious. All
latencies are randomly sampled from Gamma distributions
(Flaxman et al., 2020). The Gamma distributions have a shape
parameter of 3, and we fit their scale parameter to adjust the
mean of the distribution to the reported values. All default model
parameters are described in Supplementary Table S4.

Proximity Contact Dataset
Infectious spread is modelled based on real data of personal
contacts among patients, as well as between patients and
HCW in a geriatric unit (Vanhems et al., 2013). The dataset
was obtained using unobstructive wearable badges
embedded with small active radiofrequency devices that could
exchange ultra-low-power radio packets when facing another tag
within a distance of 1.5m. The dataset includes proximity contact
data for 29 patients (PAT) and 46HCW.Out of these 46HCWs, there
are 27 nurses (NUR), eleven doctors (MD) and eight administrators
(ADM). A contact was recorded when two individuals faced each

other for more than 20 s. The contacts were recorded during
4 days and four nights. There was a total of 14,037 contacts in
this period, including contacts extending 20 s, for a total of
10,808 min of contact.

Scenarios
We study the effect of robotic assistance by simulating four
scenarios and comparing them to the case without robotics
intervention.
In total, the five scenarios are:

1. No robotic assistance.
2. Assistance to five random nurses.
3. Assistance to Top 5 high-risk nurses.
4. Assistance to Top 3 high-risk nurses and 2 random medical

doctors.
5. Assistance in all interactions between nurses and patients.

In all cases, it is assumed that the robotics assistance allows
interactions of the specific HCW being assisted to not be of a
close-contact type and hence, to not lead to contagion by personal
proximity with an infected individual.

Measures Used to Characterize the
Infectious Spread
R0. R0 is the basic reproduction number and is calculated as the
average number of people who are directly infected by one person
with the disease.

Number of susceptible cases. It refers to the number of
subjects remaining in the susceptible state, i.e. who have not
been infected by the end of the outbreak episode.

Propagating trials. We define the infection dynamics as
propagating when the spread is such that the fraction of
susceptible individuals by the end of the episode is less than
90% of the total population. For the scenarios described above, we
report the fraction of trials in which the spread dynamics are
propagating and the average percentage of infected individuals.

I30. I30 is calculated as the number of active infection cases
(individuals in states E, L, Iu or Id) on day 30 after the first
infection among the population.

T10. T10 is the number of days elapsed from the first to the 10th
infection in the population.

In all cases, we always report the values for these metrics as
their mean value over 100 trials together with their respective
standard error of the mean.

Calibrating the Probability of Disease
Transmission Upon Proximity Contact
The probability of disease transmission of disease upon close contact
(β) is the main parameter controlling the spread of infection in the
model. To determine a reasonable estimate for this parameter, we
scanned a range of values of β from 0.0001 to 0.0095 at steps of 0.001.
For each value of β, we repeat 10 simulations of the model for
50 days to determine the basic reproductive number. We determine
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that the range of β between 0.0001 and 0.0025 results in spreading
simulations displaying a basic reproductive number R0 in the most
frequent ranges reported along the pandemic for Covid-19 (Flaxman
et al., 2020).
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