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Radar-to-Lidar: Heterogeneous Place
Recognition via Joint Learning
Huan Yin, Xuecheng Xu, Yue Wang* and Rong Xiong

Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China

Place recognition is critical for both offline mapping and online localization. However,

current single-sensor based place recognition still remains challenging in adverse

conditions. In this paper, a heterogeneous measurement based framework is proposed

for long-term place recognition, which retrieves the query radar scans from the existing

lidar (Light Detection and Ranging) maps. To achieve this, a deep neural network is

built with joint training in the learning stage, and then in the testing stage, shared

embeddings of radar and lidar are extracted for heterogeneous place recognition.

To validate the effectiveness of the proposed method, we conducted tests and

generalization experiments on the multi-session public datasets and compared them

to other competitive methods. The experimental results indicate that our model is able

to perform multiple place recognitions: lidar-to-lidar (L2L), radar-to-radar (R2R), and

radar-to-lidar (R2L), while the learned model is trained only once. We also release the

source code publicly: https://github.com/ZJUYH/radar-to-lidar-place-recognition.

Keywords: radar, lidar, heterogeneous measurements, place recognition, deep neural network, mobile robot

1. INTRODUCTION

Place recognition is a basic technique for both field robots in the wild and automated vehicles on
the road, which helps the agent to recognize revisited places when traveling. In the mapping session
or Simultaneous Localization and Mapping (SLAM), place recognition is equal to loop closure
detection, which is indispensable for global consistent map construction. In the localization session,
place recognition is able to localize the robot via data retrieval, thus achieving global localization
from scratch in GPS-denied environments.

Essentially, the major challenge for place recognition is how to return the correct place
retrieval under the environmental variations. For visual place recognition (Lowry et al., 2015),
the illumination change is the considerable variation across day and night, which makes the
image retrieval extremely challenging for the mobile robots. As for lidar (Light Detection and
Ranging)-based perception (Elhousni and Huang, 2020), the lidar scanner does not suffer from
the illumination variations and provides precise measurements of the surrounding environments.
But in adverse conditions, fog and strong light etc., or in highly dynamic environments, the lidar
data are affected badly by low reflections (Carballo et al., 2020) or occlusions (Kim et al., 2020).
Compared to the vision or lidar, radar sensor is naturally lighting and weather invariant and has
been widely applied in the Advanced Driver Assistance Systems (ADAS) for object detection. But
on the other hand, radar sensor generates noisy measurements, thus resulting in challenges for
radar-based place recognition. So overall, there still remain different problems in the conventional
single-sensor based place recognition, and we present a case study in Figure 1 for understanding.

Intuitively, these problems arise from the sensor itself at the front-end and not the recognition
algorithm at the back-end. To overcome these difficulties, we consider a combination of multiple
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FIGURE 1 | The sensor data collected at the same place but different time. These data are selected from the Oxford Radar RobotCar dataset. Obviously, every

sensor has its weakness for long-term robotic perception.

sensors desired for long-term place recognition, for example,
building map database in stable environments, while performing
query-based place recognition in adverse conditions. One step
further, given that large-scale high-definition lidar maps have
been deployed for commercial use (Li et al., 2017), a radar-to-
lidar (R2L) based place recognition is a feasible solution, which is
robust to the weather changes and does not require extra radar
mapping session, thus making the place recognition module
more applicable in the real world.

In this paper, we propose a heterogeneous place recognition
framework using joint learning strategy. Specifically, we first
build a shared network to extract feature embeddings of radar
and lidar, and then rotation-invariant signatures are generated
via Fourier transform. The whole network is trained jointly
with the heterogeneous measurement inputs. In the experimental
section, the trained model achieves not only homogeneous place
recognition for radar or lidar, but also the heterogeneous task
for R2L. In summary, the contributions of this paper are listed
as follows:

• A deep neural network is proposed to extract the feature
embeddings of radar and lidar, which is trained with a joint
triplet loss. The learned model is trained once and achieves
multiple place recognition tasks.

• We conduct the multi-session experiments in two public
datasets, also with the comparisons to other methods, thus
demonstrating the effectiveness of the proposed method in the
real-world application.

The rest of this paper is organized as follows: section 2 reviews the
related works. Our proposed method is introduced in section 3.
The experiments using two public datasets are described in

section 4. Finally, we conclude a brief overview of our method
and a future outlook in section 5.

2. RELATED WORKS

2.1. Visual-Based Place Recognition
Visual place recognition aims at retrieving similar images from
the database according to the current image and robot pose.
Various image features have been proposed to measure the image
similarities, such as SURF (Bay et al., 2006) and ORB (Rublee
et al., 2011) etc. These features can also measure the similarities
between pre-defined image patches (Filliat, 2007; Jégou et al.,
2010). Based on these front-end descriptors, some researchers
proposed probabilistic approach to Cummins and Newman
(2008) or searched the best candidates in the past sequences
(Milford and Wyeth, 2012). But due to the limitation of
handcrafted descriptors, these visual place recognition methods
are sensitive to the environmental changings.

With the increasing development of deep learning technique,
more researchers build Convolutional Neural Networks (CNN)
to solve the visual place recognition problem. Compared to
the conventional descriptors, the CNN-based methods are more
flexible on trainable parameters (Arandjelovic et al., 2016) and
also more robust across the season changes (Latif et al., 2018).
Currently, there are some open issues to be studied in the vision
and robotics community, such as feature selection and fusion for
visual place recognition (Zhang et al., 2020).

2.2. Lidar-Based Place Recognition
According to the generation process of representations, the lidar-
based place recognition methods can also be classified into
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two categories, the handcrafted-based and the learning-based.
Bosse and Zlot (2013) proposed to extract the three-dimensional
(3D) keypoints from 3D lidar points and performed the place
recognition via keypoint voting. In Dubé et al. (2020), local
segments were learned from CNN to represent places effectively.
Despite the local representations, several global handcrafted
descriptors (He et al., 2016; Kim and Kim, 2018; Wang et al.,
2019) or matching-based methods (Le Gentil et al., 2020)
were proposed to solve the point-cloud-based place recognition.
These global descriptors are based on the structure of the
range distribution and efficient for place recognition. Similarly,
some learning-based methods first generated the representations
according to the statistical properties, then fed them into the
classifiers (Granström et al., 2011) or CNN (Yin et al., 2019;
Chen et al., 2020). In addition, some researchers proposed to
learn the point features in an end-to-end manner recently (Uy
and Lee, 2018; Liu et al., 2019), while these methods bring more
complexity for network training and recognition inference.

2.3. Radar-Based Mapping and
Localization
Compared to the cameras and laser scanners, radar sensor
has already been used in the automotive industry (Krstanovic
et al., 2012). With the development of Frequency-Modulated
Continuous-Wave (FMCW) radar sensor1, the mapping and
localization topics are studied in the recent years, for example
the RadarSLAM (Hong et al., 2020), radar odometry (Cen and
Newman, 2018; Barnes et al., 2020b), and radar localization on
lidar maps (Yin et al., 2020, 2021).

For radar-based place recognition, Kim et al. (2020) extended
the lidar-based handcrafted representation (Kim and Kim, 2018)
to radar data directly. In Săftescu et al. (2020), NetVLAD
(Arandjelovic et al., 2016) was used to achieve radar-to-radar
(R2R) place recognition. Then, the researchers used sequential
radar scans to improve the localization performance (Gadd et al.,
2020). In this paper, a deep neural network is also proposed to
extract feature embeddings, but the proposed framework aims at
heterogeneous place recognition.

2.4. Multi-Modal Measurements for
Robotic Perception
Many mobile robots and vehicles are equipped with multiple
sensors and various perception tasks can be achieved via
heterogeneous sensor measurements, for example, visual
localization on point cloud maps (Ding et al., 2019; Feng et al.,
2019) and radar data matching on satellite images (Tang et al.,
2020). While for place recognition, there are few methods
performed on heterogeneous measurements. Cattaneo et al.
(2020) built shared embedding space for visual and lidar, thus
achieving global visual localization on lidar maps via place
recognition. Some researchers proposed to conduct the fusion
of image and lidar points for place recognition (Xie et al., 2020).
Similarly, in Pan et al. (2020), the authors first built local dense
lidar maps from raw lidar scans, and then proposed a compound
network to align the feature embeddings of image and lidar

1https://navtechradar.com

maps. The proposed framework was able to achieve bi-modal
place recognition using one global descriptor. In summary, we
consider the matching or fusion of multi-modal measurements
as a growing trend in the robotics community.

3. METHODS

Our proposed framework is presented in Figure 2. There are
several pipelines, including building lidar submaps, generation of
the learned signatures, etc. Finally, the learned model generates
low-dimensional representations for place recognition task in
this paper.

3.1. Building Lidar Submaps
Generally, the detection range of radar is much longer than
lidar. To reduce the data difference for joint learning, we set the
maximum range as rmax meters in radar and lidar data. The 3D
lidar also contains more height information compared to the 2D
radar, and therefore we remove the redundant laser points and
only keep the points near the radar sensor on Z-axis.

Despite the above difference, the lidar points are more sparse
and easily occluded by other onboard sensors, and also by the
dynamics on road. In this paper, we follow the experimental
settings in Pan et al. (2020) and propose to build submaps by
accumulating the sequential lidar data. Then, the problem turns
to how many poses or lidar scans should be used for submap
building. Suppose the robot travels at a pose pt , and we use the
poses from the start pose pt−t1 to the end pose pt+t2 , where t, t1,
and t2 are time indexes. In order to keep the consistency of lidar
submap and radar scan, we propose to achieve the t1 and t2 using
the following criteria:

• The maximum euclidean distance from pt−t1 to pt is limited to
rmax meters, guaranteeing the traveled length of the submap. It
is same for the maximum distance from pt to pt+t2 .

• The maximum rotational angle from pt−t1 to pt should not
be greater than θmax, which makes the lidar submaps more
feasible at the turning corners. The rotational angles formobile
robots and vehicles are usually the yaw angles on the ground
plane. Also, it is same for the maximum yaw angle from pt
to pt+t2 .

On the other hand, the lidar submap is desired to be as long
as radar scan. Based on the criteria above, we can fomulate the
retrieval of t1 as follows:

minimize
t1

t − t1

subject to
∥

∥pt − pt−t1

∥

∥

2
≤ rmax

∣

∣ 6 pt − 6 pt−t1

∣

∣ ≤ θmax.

(1)

where 6 is the yaw angle of pose. It is maximize operation for t+t2
to achieve the pt+t2 with similar constraints. Specifically, we use
a greedy strategy to search t1 and t2, and we use the retrieval of t1
as an example in Algorithm 1. With obtained boundaries t − t1
and t + t2, a lidar submap can be built directly by accumulating
the lidar scans from pt−t1 to pt+t2 , thus achieving a lidar submap
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FIGURE 2 | Our proposed framework to train the joint place recognition for radar and lidar data. The first and second rows indicate that the radar scan and the lidar

submap are collected from the same place, while for the last row, it is regarded as a negative sample in the learning stage.

Algorithm 1: Greedy search for t1 retrieval

Require:

The robot pose: t;
The maximum euclidean distance: rmax;
The maximum rotational angle: θmax;

Ensure:

t1 = 1
while

∥

∥pt − pt−t1

∥

∥

2
≤ rmax

and
∣

∣ 6 pt − 6 pt−t1

∣

∣ ≤ θmax do

t1 = t1 + 1
end while

at the robot pose pt . Note that we use ground truth poses for the
map building in this subsection.

One might suggest that radar mapping should also be
considered. However, as shown in Figure 1, there exist false
positives and other noises in radar scans, resulting in inapplicable
representations after radar mapping. In this context, we
propose to build lidar submaps rather than radar submaps for
heterogeneous place recognition in this paper.

3.2. Signature Generation
With the built lidar submaps Lt and the radar scan Rt collected
at the same pose, we first use the ScanContext (Kim and Kim,
2018; Kim et al., 2020) to extract the representations SL and SR,
respectively. Specifically, for radar scan, the ScanContext is the
polar representation essentially. As for the lidar point clouds, we
follow the settings in our previous research (Xu et al., 2021), in
which occupied representation achieves the best performance.

Since the radar data are generated on 2D x − y plane, we use the
single-layer binary grids as the occupied representation, which
indicates that the height information is removed in this paper.

Then, we build network N to extract the feature embeddings
EL and ER. Specifically, SL and SR are fed into a shared U-
Net architecture (Ronneberger et al., 2015), and our hidden
representations EL and ER are obtained in the feature space
via feed-forward network. One might suggest that the networks
should be different for the heterogeneous measurements, but
considering that there are commons between radar and lidar, we
propose to use the Siamese structure to extract the embeddings.
We validate this structure in following experimental section.

Finally, we follow the process in our previous work (Xu
et al., 2021) and apply Fast Fourier Transformation (FFT) to the
polar bird’s eye view (BEV) representation. To make the process
more efficient, we only extract the informative low-frequency
component using the low-pass filter, and then signatures FL and
FR are generated in the frequency domain. Theoretically, the
rotation of vehicle equals to the translation of EL and ER in
the polar domain, and the magnitude of frequency spectrum is
actually, translation-invariant thus making the final signatures
rotation-invariant to the vehicle heading. Overall, we summarize
the processes of the signature generation as follows:

Lt ,Rt
ScanContext
−−−−−−−→ SL, SR

N
−→ EL,ER

FFT
−−→ FL, FR (2)

and the visualization of Equation (2) is presented in Figure 2.
Essentially, the final signatures F are the learned fingerprints of
places. If two signatures are similar, the two places are close to
each other and vice versa.

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2021 | Volume 8 | Article 661199

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Yin et al. Radar-to-Lidar: Heterogeneous Place Recognition

FIGURE 3 | (A) We split the trajectory of RobotCar dataset into training and testing session. (B,C) The trained model is generalized to the Riverside and KAIST of the

MulRan dataset for evaluation directly, which contain a driving distance near 7 and 6 km, respectively.

3.3. Joint Training
With the generated batch F = {FL, FR}, we propose to achieve
the heterogeneous place recognition using the joint training
strategy. Specifically, R2R, lidar-to-lidar (L2L), and R2L are
trained together under the supervision of one loss function. To
achieve this, we build the triplet loss andmix all the combinations
in it, which is formulated as follows:

L1 =
1

|F |

∑

F∈F

max(0,m+ pos(F)− neg(F)) (3)

wherem is a margin value. F is any combination in the set F , for
example, the combination of {anchor, positive, negative} samples
can be {radar, lidar, radar}, or {radar, radar, lidar}. The number
of these combinations for training is |F | = 23. pos(F) is the
measured Euclidean distance for a pair of positive samples, while
neg(F) for the anchor and negative sample.

In this way, the trained model achieves not only the single-
sensor based place recognition but also the homogeneous task
for R2L. Note that there are three place recognition tasks in
this paper, R2R, L2L, and R2L (or L2R), but we only train the
network once.

4. EXPERIMENTS

The experiments are introduced in this section. We first present
the setup and configuration, then followed the loop closure
detection and place recognition results, with the comparison
to other methods. Case study examples are also included for
better understanding of the result. Considering that most of the
existing maps are built by lidar in the robotics community, the
R2L task is more interesting and meaningful for heterogeneous
place recognition, compared to lidar-to-radar task. Therefore,
we only perform R2L to demonstrate the effectiveness of our
proposed framework.

4.1. Implementation and Experimental
Setup
The proposed network is implemented using PyTorch (Paszke
et al., 2019). We set the maximum range distance as rmax = 80
m, and set θmax = 90◦. For the ScanContext representation,

TABLE 1 | Sequences for training and testing.

Dataset Date Length

(km)

Usage

Oxford Radar RobotCar 10/01/2019 9.02 Training and map database

Oxford Radar RobotCar 11/01/2019 9.03 Query data for test

MulRan-Riverside 16/08/2019 6.61 Map database

MulRan-Riverside 02/08/2019 7.25 Query data for test

MulRan-KAIST 23/08/2019 5.97 Map database

MulRan-KAIST 20/06/2019 6.13 Query data for test

we set the size as 40 × 120 and finally, achieve the 32 × 32
low-frequency signature. Some parameters have an influence on
the model performance, for example, bin sizes, and we follow
the experimental settings in Xu et al. (2021), which have been
demonstrated to be effective and efficient. In the training session,
there are more than 8,000 samples generated randomly and the
batchsize is set as 16.We run six epochs with the Adam optimizer
(Kingma and Ba, 2015) and a decayed learning rate from 0.001.

We conduct the experiments on two public datasets, the
Oxford Radar RobotCar (RobotCar) dataset (Maddern et al.,
2017; Barnes et al., 2020a) and the Multimodal Range (MulRan)
dataset (Kim et al., 2020). Both these datasets use the Navtech
FMCW radar but the 3D lidar sensors use different ones, double
Velodyne HDL-32E and one Ouster OS1-64. Our proposed lidar
submap construction is able to reduce the differences of the two
lidar equipments and settings on mobile robots. To demonstrate
the generalization ability, we follow the training strategy of our
previous work (Yin et al., 2021), in which only part of the
RobotCar dataset is used for training. In the test stage, as shown
in Figure 3, the learned model is evaluated on another part of
the RobotCar and also generalized to MulRan-Riverside and
MulRan-KAIST directly without retraining.

Despite the cross-dataset above, the multi-session evaluation
is also used for validation. Specifically, for RobotCar andMulRan
datasets, we use one sequence or session as a map database and
then select another session on a day as query data. The selected
sessions are presented in Table 1.
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FIGURE 4 | (A) The parameter sensitivity study of distance thresholds for evaluation. (B) The parameter sensitivity study of margin values for training. (C) The ablation

study of proposed framework and loss functions.

To better explore parameter sensitivity, we conduct
experiments using various distance thresholds and margin
values in L1. Firstly, we setm = 1.0 as a constant value and train
the proposed learning model. Then, we set different distance
thresholds d for evaluation on MulRan-KAIST, which means
a found pair of places is considered as true positive when its
distance is below d meters. Specifically, we use recall@1 to
evaluate the performance, which is calculated as follows:

recall@1 =
true positive samples

number of query scans
% (4)

As a result, the sensitivity of distance thresholds is shown in
Figure 4A. The higher threshold, the better performance of the
trained model. We select 3 m as the distance threshold for all the
following tests, which was also conducted in our previous work
(Yin et al., 2019). Furthermore, we change the margin values and
train models. The test result is shown in Figure 4, and our model
achieves the best R2L performance whenm = 1.

In this paper, we propose to extract feature embeddings
via Siamese neural network. One might suggest that the two
embeddings of lidar and radar should be achieved with two
individual networks. To validate the proposed framework, we
conduct ablation study for the framework structure. Firstly,
we abandon the Siamese network N and train two separate
encoder-decoders via joint learning and loss function L1.
Secondly, we propose to train this new framework with another
transformation loss function L2 together, formulated as follows:

L2 =
1

|F |

∑

F∈F

‖FR − FL‖ (5)

L1,2 = L1 + αL2 (6)

where FR and FL are generated signatures of radar and lidar, and
we set α = 0.2 to balance the triplet loss and transformation
loss. Figure 4C presents the experimental results with different
structures and loss functions. Although the framework with two
individual networks performs better than the Siamese one on
R2R and L2L, the shared network matches more correct R2L

for the heterogeneous place recognition. The transformation loss
seems to be redundant for the learning task in this paper. Based
on the ablation analysis above, we use the proposed method in
section 3 for the following evaluation and comparison.

4.2. Single-Session: Loop Closure
Detection
Single-session contains one driving or traveling data collected by
the mobile platform. We evaluate the online place recognition
performance on a single session, which equals to the loop closure
detection for a mapping system. Generally, one single sensor is
sufficient to build maps considering the consistency of the sensor
modality. In this context, R2L evaluation is unnecessary, and we
perform R2R on MulRan-KAIST to validate the homogenous
place recognition.

We compute similarity matrix (Yin et al., 2017) and obtain
the loop closures under certain threshold. The black points are
marked as loop closures in Figure 5A, and the darker pixels
are with higher probabilities to be loop closures in Figure 5B.
It is clear that there are true positive loops in the similarity
matrix, and a number of loops can be found via thresholding.
In Figure 5C, the visualization result shows that our proposed
method is able to detect radar loop closures when the vehicle is
driving in opposite directions. Overall, the qualitative result of
online place recognition demonstrates that our proposed method
is feasible for consistent map building. While for the global
localization, multi-session place recognition is required, and we
conduct quantitative experiments as follows.

4.3. Multi-Session: Global Localization
In this sub-section, we evaluate the place recognition
performance on multi-session data. Specifically, the first
session is used as the map database, and the second session is
regarded as the query input, thus achieving global localization
across days.

The proposed joint learning-based method is compared to
other two competitive methods. First, the ScanContext is used for
comparison, which achieves not only 3D lidar place recognition
(Kim and Kim, 2018) but also 2D radar place recognition in
the recent publication (Kim et al., 2020). Secondly, the DiSCO
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FIGURE 5 | (A) The ground truth based binary matrix, where the black points are the loops. (B) The R2R based similarity matrix generated using the proposed

method. (C) The loops closure detection result under certain threshold, and the blue lines are the detected loops. Note that a growing height and a color-changing are

added to each pose with respect to the time for visualization.

FIGURE 6 | (A) The precision-recall curves of the RobotCar testing session. (B,C) The model trained from RobotCar dataset is generalized to MulRan-Riverside

and MulRan-KAIST.

TABLE 2 | Maximum F1 score of precision-recall curves.

Dataset
RobotCar-Test MulRan-Riverside MulRan-KAIST

L2L R2R R2L L2L R2R R2L L2L R2R R2L

ScanContext, Kim et al. (2020) 0.18 0.24 0.04 0.08 0.16 0.02 0.24 0.67 0.02

DiSCO, Xu et al. (2021) 0.33 0.56 0.02 0.20 0.20 0.00 0.59 0.63 0.01

Joint Learning 0.50 0.35 0.18 0.21 0.22 0.14 0.66 0.74 0.61

The bold values are the biggest number in each column respectively, which means that onemethod achieves better performance compared to the other twomethods for L2L, R2R or R2L.

method (Xu et al., 2021) is implemented as another comparison,
and the quadruplet loss term is used in the learning stage. DiSCO
is not designed for heterogeneous place recognition, so we train
two models for L2L and R2R separately and test the R2L using
the signatures from these models. On the other hand, DiSCO can
be regarded as the model without the joint learning in this paper.
Finally, for making a fair comparison, we use the lidar submaps
as input for all the methods in this paper.

Figure 6 presents the precision-recall curves, which are
generated from the similarity matrices compared to the ground
truth-based binary matrices. Since the computing of similarity
matrix is much more time consuming for ScanContext, we only
present the precision-recall curves for DiSCO and our proposed

method. In addition, we also provide maximum F1 scores in
Table 2, and recall@1 results in Table 3, which is based on
how many correct top-1 can be found using place recognition
methods. In Kim and Kim (2018) and Kim et al. (2020), the top-1
is searched with a coarse-to-fine strategy, and we set the number
of coarse candidates as 1% of the database.

As a result, in Figure 6 and Table 3, our proposed method
achieves comparable results on R2R and L2L, and also on
R2L application, which is the evaluation result based on lidar
database and radar query. As for ScanContext and DiSCO,
both two methods achieve high performance on L2L and R2R,
but radar and lidar are not connected to each other in these
methods, resulting in a much lower performance on R2L. We
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TABLE 3 | Recall@1 (%) of multi-session place recognition.

Dataset
RobotCar-Test MulRan-Riverside MulRan-KAIST

L2L R2R R2L L2L R2R R2L L2L R2R R2L

ScanContext, Kim et al. (2020) 92.51 91.35 1.33 37.22 42.68 1.17 28.81 72.65 0.55

DiSCO, Xu et al. (2021) 89.68 93.01 1.66 42.19 44.08 0.99 66.77 70.86 0.33

Joint Learning 93.68 93.18 61.23 38.89 41.15 26.20 65.01 66.56 63.22

The bold values are the biggest number in each column respectively, which means that onemethod achieves better performance compared to the other twomethods for L2L, R2R or R2L.

FIGURE 7 | Case study examples on radar-to-lidar (R2L) place recognition, where the lidar database and radar query are collected in different days. We also present

ScanContext representations, feature embeddings, and final signatures. Some false positives by saturation are also marked in red boxes.

also note that ScanContext performs much worse with MulRan-
KAIST, in which many dynamical objects exist. The other two
learning-based methods are able to handle these challenging
environments. Overall, the multi-session place recognition
results demonstrate that our proposed method achieves both
homogeneous and heterogeneous place recognition, and our
model requires less training stage compared to DiSCO.

4.4. Case Study
Finally, we present several case study examples on the challenging
MulRan-Riverside, where many structural features are repetitive
along the road. As shown in Figure 7, the trained model results
in a failed case since the bushes and buildings are quite similar to
two different places, and in this context, the radar from the query
data is matched to the wrong lidar-based database. As for the two

correct cases, there exist specific features on the sides of streets,
corners, and buildings, etc., thus making the place recognition
model more robust in these challenging environments.

In Figure 7, it is obvious that the semantics near the roads
are kept in the feature embeddings, which are enhanced via the
joint learning in this paper. We also note that there are false
positive noises by saturation (in red boxes), but the noises are
removed in the learned feature embeddings, thus demonstrating
the effectiveness of the proposed joint learning paradigm.

5. CONCLUSION

In this paper, we propose to train a joint learning system for radar
and lidar place recognition, which helps the robot recognize the
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revisited lidar submaps using current radar scan. Specifically, we
first encode the radar and lidar points based on the ScanContext,
then we build a shared U-Net to transform the handcrafted
features to the learned representations. To achieve the place
recognition, we also apply the triplet loss as the supervision.
The whole system is trained jointly with both lidar and radar
input. Finally, we conduct the training and testing on the public
Oxford RobotCar dataset and also the generalization on MulRan
dataset. Compared to the existing place recognition methods,
our proposed framework achieves not only single-sensor based
place recognition but also the heterogeneous place recognition
of (R2L), demonstrating the effectiveness of our proposed joint
learning framework.

Despite the conclusions above, we also consider there
still remain several promising directions for heterogeneous
measurement-based robotic perception. Firstly, the submap
building is critical for the heterogeneous place recognition in
this paper, which can be improved with a more informative
method (Adolfsson et al., 2019). Secondly, we consider a
Global Positioning System (GPS)-aided or sequential-based place
recognition is desired for real applications, thus making the
perception system more efficient and effective in the time
domain. Finally, we consider the integration of place recognition
and pose estimator, Monte Carlo localization, for example (Yin
et al., 2019; Sun et al., 2020), which is a good choice for metric
robot localization.
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