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There is a growing literature concerning robotics and creativity. Although some authors
claim that robotics in classrooms may be a promising new tool to address the creativity
crisis in school, we often face a lack of theoretical development of the concept of creativity
and the mechanisms involved. In this article, we will first provide an overview of existing
research using educational robotics to foster creativity. We show that in this line of work the
exact mechanisms promoted by robotics activities are rarely discussed. We use a
confluence model of creativity to account for the positive effect of designing and
coding robots on students’ creative output. We focus on the cognitive components of
the process of constructing and programming robots within the context of existing models
of creative cognition. We address as well the question of the role of meta-reasoning and
emergent strategies in the creative process. Then, in the second part of the article, we
discuss how the notion of creativity applies to robots themselves in terms of the creative
processes that can be embodied in these artificial agents. Ultimately, we argue that
considering how robots and humans deal with novelty and solve open-ended tasks could
help us to understand better some aspects of the essence of creativity.
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INTRODUCTION

Enhancing the ability to generate unique and useful ideas in both humans and artificial agents is a
crucial challenge for 21st-century problem solving. The ways in which humans and robots may
engage in the creative process and foster the development of creative productivity is a central research
question that interfaces psychology and technology. Robots have been a feature of modern culture
since the early pulp fiction stories and Isaac Asimov’s literary contribution. Interestingly, Robbie the
Robot was one of the stars of this early period, and finally became a featured “agent” in a 1956 classic
science fiction film, entitled Forbidden Planet. Robby the Robot, who was human-sized, possessed
artificial intelligence and was a problem solver who helped humans during space missions. More
recently, Robby the Robot has re-appeared, in a miniature format, as a toy that children can learn to
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program. Although the idea of incorporating robots into our
everyday lives might have seemed outlandish and flat-out
unrealistic some decades ago, the presence of robotics has well
expanded, even into classrooms.

The pedagogical motivation for connecting robots with pupils
is the hypothesis that creativity may be fostered through human-
machine interactive exchanges. The scientific literature highlights
a number of experiments of this type which seem to produce
positive effects on both children and machines. Thus, this article
seeks to 1) exemplify through a synthesis of the literature what
creativity-related aspects are covered by the field of educational
robotics, 2) present the mechanisms underlying creativity which
are potentially at work in these pedagogical situations and, thus,
3) understand better how children but also artificial agents can
develop their creative expertize from physically and socially
situated practices.

A SHORT OVERVIEW OF EDUCATIONAL
ROBOTICS

The term “educational robotics” refers to a field of study that aims
to improve student’s learning experiences through the creation
and implementation of activities, technologies, and artifacts
related to robots (Angel-Fernandez and Vincze, 2018). In
practice, these activities can involve the use of a physical
robot, may that be a modular system like LEGO Mindstorms,
or robots specifically constructed for the designated activities.

Such activities can be conceptualized for students from
elementary to graduate levels and may include design,
programming, application, or experimentation with robots.
Educational robotics activities usually consist of the use of a
robotics kit, with which children learn how to build and program
the robots for a given task (Jung & Won, 2018). These activities
can take the form of interventions, after-school activities,
voluntary classes, or an entire course module focusing on
robotics.

The theoretical foundations for the application of educational
robots are multiple, but the constructionist educational approach
has been the norm (Kafai and Resnick, 1996; Papert, 1981;
Danahy et al., 2014). Robotics kits provide a modular
approach regarding programming and building, often used as
creativity-enhancing interventions in the school context. In
working with these kits, students can exert engineering
competencies and creative1 solutions to a vast array of
problems, starting from making a robot move from point A to
B. Furthermore, principles such as problem-based learning and
gamification are guiding the implementation of educational
robotics interventions. The latter, gamification, describes the
use of game elements in non-game contexts to foster
motivation (Sailer et al., 2014).

The robots’ humanoid appearance may foster student
engagement (Zawieska et al., 2015). The characteristics of
robotic devices themselves can yield interesting effects as well.
In interviews with students who underwent a course including the
use of robotics, Apiola et al. (2010) found that the playful aspect
of robotics, partnered with the physical embodiment of learning
contents, had an important role in students’ engagement. An
exploratory qualitative study by Nemiro et al. (2017) emphasized
the role of robotics in creating an engaging classroom
atmosphere.

OVERVIEW OF EXISTING INTERVENTIONS
USINGROBOTICS TO FOSTERCREATIVITY

An early theoretical stance on creativity in children was
developed by Vygotsky (1967), who argued that creativity
would develop out of playful activities in which children
engage. During these play activities, not only past
experiences would be engaged, but a sort of combinatory
imagination would encompass newly formed impressions
stemming from new realities. Guilford (1950) asked why
schools do not engage more thoroughly in the fostering of
students’ creative abilities.

In 1972, Papert and Solomon published “Twenty Things to Do
with a Computer”, in which they proposed a further integration
of Information and Communication Technology into school
curricula. In the article, the authors presented a robot called
“Turtle”, which is an early example of an educational robotics
device (Papert and Solomon, 1972). This rather simplistic and
non-anthropomorphic robot was directed to move around via an
easy-to-learn programming language called “LOGO”. Papert and
Solomon described how “Turtle” could be programmed to draw
pictures on the surface on which it moved via a pen that was
located on the center bottom of the robot.

In the early 2000s, robotic toolkits gained an ever-growing
attention in the pedagogical context (Alimisis, 2013). Wang
(2001) described the use of a robotics course for engineering
students, stating that LEGO robotics would be “an excellent
medium for teaching design, programming and creativity”
(Wang, 2001, p. 5). However, this work focused mainly on
promoting engineering education content and did not include
a standardized creativity measure.

Adams et al. (2010) interviewed engineering undergraduates
who completed a voluntary robotics module. Among other
engineering problem-solving tasks, the module involved
programming a LEGO Mindstorms robot. After this module,
64% of participants stated that their creative thinking skills had
improved.

Cavas et al. (2012) investigated the effect of a LEGO
Mindstorms robotics course on student’s scientific creativity.
The sample consisted of 23 twelve-to thirteen-year-old
students, attending a Turkish private school. During the
course, the students were introduced to building and
programming robots. The authors did not specify their
measure of scientific creativity but stated that it increased in
students after the program.

1In this article, the term “creative” refers to a response that is: adapted to the
problem situation and has not been taught in class (children), adapted to the
problem situation and has not been previously programmed for (robot).
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Álvarez and Larrañaga (2013) examined how a robotics
intervention using LEGO Mindstorms affected student’s
motivation and their improvement in algorithm coding
abilities. Via short self-report questionnaires, the authors
established an increase in the student’s motivation and course
interest.

Huei (2014) implemented a five-week program in which
freshmore students were introduced to a programming
language for coding robots. After the program, 93.25% of the
74 participants agreed or strongly agreed that the mini-project
had enhanced their creativity, research and problem-solving skills
(Huei, 2014). Jagust et al. (2017) presented the results of
workshops for gifted elementary students using LEGO
Mindstorms robotic sets. Although the authors did not
psychometrically assess creativity, their qualitative analysis
concluded that the children were “creatively productive”
(Jagust et al., 2017).

In the context of educational robotics, the term
“programming” applies also to younger pupils, considering
that simple, visual programming interfaces are widely
available. Using these already available or self-designed
robotics kits, students are often given a specific problem to
solve. Sullivan and Bers (2018) provide an example of this
kind of intervention; in their study, the children were asked to
program a robot to move in accordance with a given dance.
During the curriculum, the researchers used Positive
Technological Development checklists for observing the pupil’s
behavior during the intervention. Sullivan and Bers (2018) stated
that the frequency of creative behavior observed during the
curriculum was “relatively high” (Sullivan and Bers, 2018).
Creative behavior was associated with the use of a variety of
materials or with using affordances of the materials in
unexpected ways.

In some studies, the effects of educational robotics on
student’s creativity were examined using standardized
creativity measures. Alves-Oliveira (2020) investigated
whether scholastic activities with robots would enhance
children’s creativity. Children’s creativity levels were
assessed in three conditions. In the first condition, children
performed STEAM activities by learning how to code robots.
In the second condition, children performed these activities by
learning how to design robots. The third, control, condition,
was comprised of children engaging in a music class. The
pretest-to-posttest evolution in creativity was assessed with the
Test for Creative Thinking-Drawing Production–TCT-DP
(Urban and Jellen, 1996). In the TCT-DP, the examinee
must finalize an unfinished drawing, and several variables,
including new elements added, are evaluated. Results showed
that creativity levels were boosted after each intervention.
When examining the change in overall creativity scores,
associated with each condition, the coding condition yielded
a larger effect size than the control and the design condition.
The TCT-DP assesses two creativity dimensions, namely:
adaptiveness and innovativeness (Lubart et al., 2010). The
effect of the design intervention on children’s creativity was
mainly explained by an increase in scores on the TCT-DP
innovativeness dimension, which is related to unconventional

ways of thinking. According to Alves-Oliveira (2020), this
dimension is associated with divergent thinking.

Alves-Oliveira (2020) argued that the nature of the coding
task, which involved learning via trial and error, stimulated non-
conventional thinking in the children. More specifically, in the
coding condition of this study, the children learned how to use
“Scratch language” (Resnick et al., 2009 in Alves-Oliveira, 2020).
The young participants were divided into groups of 3–4
participants. Each group was appointed to program a mail-
delivery robot. The robot was directed by simple codes written
by the pupils, which made the robot move from one place to
another. According to Alves-Oliveira (2020), this fostered a
strong effect of the coding condition on the “stimulation of
non-conventional ways of thinking”. The author argued that
the nature of the coding task explained the larger effect size
on children’s “innovativeness”, observed in the coding condition;
the children were forced to experiment and explore during the
coding tasks and learned by trial and error. Alves-Oliveira (2020)
concluded that this learning via trial and error stimulated non-
conventional thinking.

Eteokleous et al. (2018) conducted a study in which 32 primary
school students between 5 and 12-years old participated in a 1-h
non-formal robotics curriculum once per week. In order to assess
the effects of the curriculum on student’s creativity, the Torrance
Test of Creative Thinking, TTCT (Torrance, 1974), was
administered before and after the 36-week intervention.
Comparisons of the creativity scores before and after the
intervention indicated a significant improvement in children’s
creative abilities (Eteokleous et al., 2018).

Badeleh (2019) examined the effects of a robotics construction
course on 120 student’s creativity and physics learning. A
constructivist robot learning approach was used, which means
that the learning outcomes were mainly acquired through the
construction and testing of a robot with the use of a prepared
manual. Badeleh (2019) implemented a study design, which
included an experimental and a control group. The control
group received traditional physics classes. The Torrance
Creativity Questionnaire (Torrance, 1974 as cited in; Badeleh,
2019), assessing the dimensions of fluidity, flexibility, innovation,
and detailed explanation, was administered to both groups before
and after the intervention. The results showed that the
constructionist robotics training had significantly increased
student’s global creativity.

Hendrik et al. (2020) examined whether the use of robotics as
learning tools has a positive effect on Figural Creativity (FC) in 40
elementary school students. The educational robotics
intervention consisted of seven weekly lessons of 2–3 h. After
the first introductory lesson, students participated in robot
designing projects. To assess possible changes in FC, Hendrik
et al. (2020) used the Torrance Figural Creativity Test (Torrance,
1974) before and after the intervention. Hendrik et al. (2020)
defined the purposes of each lesson beforehand, and which of the
four dimensions (fluency, flexibility, originality, elaboration) of
the Torrance Test would be targeted each time. In one lesson,
students were asked to construct an anthropomorphic robot,
using LEGOMindstorms sets. According to Hendrik et al. (2020),
an important outcome of this lesson was to raise the student’s
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attention to the fact that different types of robots (humanoid and
non-humanoid) could be built with the same robotics kit. The
pretest-to-posttest comparisons of global FC scores indicated that
they had increased in the intervention group. Therefore, Hendrik
et al. (2020) advocated the inclusion of robotics classes in school
curricula.

To summarize, a substantial amount of work dedicated to
Educational Robotics (ER) has been conducted. Although many
studies on ER include the notion of “creativity”, they refer mainly
to problem-solving abilities. At times, creative abilities were
exclusively assessed with self-report measures. Other studies,
which relied on standardized instruments, such as the TCT-
DP or the TTCT, observed increases in participant’s
Innovativeness (Alves-Oliveira, 2020), Closure and Creative
Strength (Eteokleous et al., 2018). In general, studies that
examined the effects of ER on creativity rarely made use of
clearly defined creativity constructs, and often did not provide
a detailed account of the revealed effects.

Future studies could explore the underlying cognitive aspects
of ER interventions, with reference to standardized creativity
measures. One line of work could investigate the specific impact
of ER interventions on ideational fluency, flexibility, and
originality. Another line of work could examine the
differential effects of specific types of ER activities, such as
differences between designing robots vs. programming robot
kits for a specific task. In practice, that could result in an
examination of cognitive outcomes related to either designing
or programming robots. However, in order to understand the
underlying cognitive processes of ER interventions, clearly
defined, operationalized and transferable theoretical
frameworks are necessary.

MULTIVARIATE APPROACH TO
CREATIVITY–CONFLUENCE MODEL

In the multivariate approach to creativity, the confluence model
(Lubart et al., 2015) considers how cognitive, conative, affective,
and environmental aspects synergistically interact with the
requirements of a particular field to give birth to a creative
product. Cognitive aspects refer to intelligence, knowledge,
and information processing abilities. Conative aspects refer to
personality traits and motivation. With regards to personality,
perseverance, tolerance of ambiguity, openness to new
experiences, and risk taking are particularly important for
creativity. The creative process does not unfold in a vacuum,
however. Environment plays an important role in the translation
of creative potential into a creative product.

Educational robotics provides an excellent opportunity to
study how real-world creativity emerges from student’s
interaction with their social, physical, and cultural
environment (Figure 1). In robotics activities, students learn
to use affordances and constraints of robotic construction kits
while engaging in collaborative problem solving in order to build
their authentic and functional robotic device. These activities
perfectly instantiate Glăveanu’s definition of creativity (Glăveanu,
2013, p.76), which is “the action of an actor or group of actors, in

its constant interaction with multiple audiences and the
affordances of the material world, leading to the generation of
new and useful artifacts”.

While recognizing the role of conative factors, in this work, we
will pay special attention to student’s cognitive processes and
strategies because we suppose that non-cognitive factors act upon
cognitive ones. In the following sections, we will consider
creativity as situated practice and explain the positive effect of
educational robotics on student’s cognitive mechanisms.
However, before considering the mental process involved in
robotics training, we will describe the creative process itself.

EXISTING MODELS OF CREATIVE
COGNITION

One of the first models of creative thinking was proposed by
Wallas (1926). His four-stage model comprised preparation
(problem finding, problem analysis, and acquisition of domain
skills and knowledge), incubation (putting the problem aside for a
while without consciously thinking about it), illumination (a
sudden burst of insight), and verification. Walla’s model not
only emphasized the role of meta-components such as problem
definition and evaluation but also stressed the role of
uncontrolled, unconscious processing in idea generation.
Although the model is intuitively appealing, it has been noted
that not all creative solutions arise from a spontaneous “Aha”! or
“Eureka” experience. The creative idea can also be a result of
deliberate problem-solving efforts (Weisberg, 1986; Finke, 1996;
Dietrich, 2004). As such, a comprehensive model should give a
more detailed account of cognitive operations underlying the
solution-finding process. Moreover, whereas the creative process
is described as linear, the real-life creative problem solving is
dynamic, has a loosely structured sequence, and does not
necessarily follow a linear structure (Mumford et al., 1991;
Schön, 1983; Corazza and Agnoli, 2018; Lubart, 2018). Despite
these drawbacks, the Walla’s model (1926) has had an enormous
impact on modern conceptions of the creative act and represents
the first account of the creative process as involving explicit and
implicit mechanisms.

Building on the model of Wallas, Amabile (1983) proposed to
make a distinction between 1) the problem identification and 2)
preparation stages. According to Amabile, during the former,
problem definition and construction take place, whereas the latter
is where reactivation of knowledge and search for task-relevant
information happen. Amabile has also replaced a black-box
illumination phase by 3) response generation phase and
defined it as seeking and producing potential responses. She
has suggested that the solution generation process represents a
flexible (sometimes even random) search of possible pathways
and exploring the environment’s characteristics. In other words,
this stage involves searching for productive heuristics, which are
defined as any principle or device that provides useful shortcuts
for solving novel problems. Amabile argues that the choice of
strategy (a set of heuristics) is crucial as it determines the level of
novelty of the final solution. This idea draws upon the
information-processing model of cognition by Newell and
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Simon (1972) and has received empirical support in creativity
research (Spiridonov, 1997; Gilhooly et al., 2007; Nusbaum and
Silvia, 2011). Newell and Simon hypothesized that people can
solve unfamiliar problems because they can choose among
alternative actions, anticipate the outcomes of these actions,
evaluate them, and vary the approach when needed. Newell
et al. (1962) called this process heuristic search through a
problem space. In this view, switching between search
strategies can account for the creative solution (Simon, 1986).
The final step in the creative process, according to Amabile, is 4)
response validation, which is similar toWalla’s verification phase,
and involves evaluating possible responses against factual
knowledge and other criteria, along with implementing and
testing the idea (Amabile, 1983; Amabile, 1996).

Concerning the incubation phase, there is evidence that some
insightful ideas arise when a complex problem is temporarily set
aside. Whereas some authors associated this process with the
ability to abandon unproductive search strategies,
i.e., “productive forgetting” (Simon, 1966; Finke, 1996), others
point to the role of defocused attention (Martindale, 1999;
Sarathy, 2018).

In a line of work that focuses on the component cognitive
operations (Sternberg, 1986a; Sternberg, 1986b; Sternberg, 1988),
or “sub-processes” that compose complex cognition, the overall
creative process was examined in more detail (Lubart, 2000). The
first phase of the creative process (problem definition) includes
selective encoding which is responsible for updating relevant and
inhibiting irrelevant information (Benedek et al., 2014) and leads
to problem representation in working memory. Selective
comparison is responsible for 1) recalling relevant knowledge
from long-term memory, and 2) mapping the relations between
new and extant knowledge (Markman and Gentner, 1993).
Selective comparison allows discovering a new relationship
between new and already acquired information. Finally, novel
solutions during the idea generation phase arise from the
combination and recombination of knowledge in working
memory (Sternberg, 1988). Mumford et al. (1991) have further
addressed mechanisms of knowledge combination and proposed
that reasoning, analogy use, and divergent thinking account for
creative solutions. Sternberg (1986b) highlights also the role of
meta-components in problem finding, problem definition (and
redefinition), and strategy choice. Some theorists also refer to
these processes as executive functioning (Miller and Cohen,
2001).

Finke et al. (1992) developed the Geneplore model of creative
cognition and distinguished between generative and exploratory
phases of creative search. The idea generative phase comprises
strategies such as knowledge retrieval, synthesis, and categorical
reduction (see Gilhooly et al., 2007 for the description). The
generative phase results in the production of preinventive
structures—preliminary models which are characterized by
novelty and ambiguity. These characteristics of preinventive
structures afford numerous possibilities for the selective
combination of their properties during exploratory phase.
Strategies that allow further exploration of these structures are,
for example, searching for potential functions, attributes or
limitations, hypothesis testing, and conceptual interpretation.

As generation and exploration cycles repeat, the preinventive
structures could be partially modified or completely replaced by
the new ones.

Repetitions of Geneplore cycles and switching between generative
and explorative strategies may be accompanied by changes in
attentional focus. Indeed, there is evidence indicating that early
stages of the creative process may involve instances of defocused
attention, whereas later stages may require more focused attention
(Dorfman et al., 2008; Kaufman 2011; Zabelina et al., 2016).

Martindale (1999) proposed that creative people are
characterized by a better ability to shift between focused and
defocused attention as a function of task demands. This claim has
received empirical confirmation (Zabelina and Robinson, 2010).
In terms of the Geneplore model, it means that the effective
creative process may involve enhanced switching between
generative and explorative strategies.

In summary, drawing on the work by Sternberg (1986a; 1986b;
1988; 2012), Amabile (1993;1996), Finke et al. (1992), Beghetto
and Corazza (2019), we argue further that the creative process is a
multistage dynamic process which builds on existing knowledge
and is guided by a productive strategy search. This search is
characterized by alternation between generative and explorative
thinking. Importantly, generative and explorative cycles could
unfold on two levels: a strategy could be discovered by explicitly
reflecting on the task demands and previous problem-solving
experience, i.e., at a meta-level, but it could also happen on the
implicit level and be a result of trial and error search and
exploration of associations between task, actions, and
outcomes (Figure 2). This view is reminiscent of dual-process
models (system 1, system 2) of human cognition (Crowley et al.,
1997; Stanovich and West, 2000; Kahneman, 2011).

COGNITIVE COMPONENTS OF THE
PROCESS OF DESIGNING AND
PROGRAMMING ROBOTS
Drawing on principles of constructionism, Kolodner (2002)
introduced a learning model that incorporates design and

FIGURE 1 |Confluence model for educational robotics. Note: This figure
is adapted from Nemiro et al. (2017).
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inquiry activities organized in two interrelated cycles: the
“Investigate and Explore” cycle, where students acquire
knowledge and generate ideas, and “Design/Redesign” cycle,
where knowledge is applied. We can note that the model
instantiates the basic principle of the Geneplore model of
creative cognition (Ward et al., 1999), where the generative
search alternates with explorative processes. Given the
resemblance, it seems reasonable to apply existing models of
creative cognition to analyze mental processes that underlie
robotics activities.

The initial step in building and programming a robot is
presenting the problem to be solved. For example, students are
given a task to build a mobile robot and program its basic
movements. This could be, for example, a creation of a robotic
system that models a human heart (Cuperman and Verner, 2013),
or programming a mail-delivery robot (Alves-Oliveira, 2020). A
common feature of these robotic challenges is that they are poorly
structured, have multiple solution paths, i.e., could be solved
using different strategies, and do not have a single criterion for
evaluating the solution.

From a cognitive point of view, the first step in the process of
creating a robotic device is problem identification, in which a
problem solver has to elaborate a problem representation. In
terms of robotics, this implies analysis of the system’s
requirements and translation of these requirements into
design specifications (Pahl and Beitz, 2007). In information
processing terms, this step could be accomplished through
selective encoding, i.e., selecting relevant elements of a
problem and suppressing those that are not relevant for task
completion (Sternberg, 1988; Benedek et al., 2014). Another
important process is the retrieval of relevant information from
long-term memory (Smith, 1995). Presumably, this is done via
selective comparison (Sternberg, 1986a; 1986b), in which
problem solver aligns existing knowledge and previous
problem-solving experience with the characteristics of the
new challenge (Holyoak, 1984; Mumford et al., 1991). It
involves a comparison of critical elements such as goals,
procedures, and constraints encountered in similar
problems. In practical terms, with respect to generating
ideas for a robot’s design, students spend time thinking
about known solutions and how they might be reused in

the new task (Kolodner, 1994). This process helps learners
to identify the gaps in their existing knowledge. When
the problem is new and procedural and dispositional
knowledge is lacking, a great deal of learning takes place
(Amabile, 1983). For example, in the study of Cuperman
and Verner (2013), before building a robotic model of
the human heart students had to carry out investigations to
learn the principle of the heartbeat mechanism. If the domain-
relevant skills and knowledge are sufficient to afford a range
of possible pathways to explore, students immediately start
the process of building a robot after the problem has been
defined.

The process of solution generation in robotics problems is
often paralleled with implementation, i.e., designing the robots.
As robotics problems are often ill-defined, finding possible
solutions for each design specification requires a search among
numerous potential alternatives within a space of possibilities
(Ball et al., 1997). There is evidence that generating few ideas at
this stage leads to the restriction of the search space and poor
designs, as students became “fixated” on concrete solutions too
early (Fricke, 1996).

The generation stage in robotics design involves mental and
physical synthesis of building components and creating
functional prototypes. Functional prototypes of robots that
result from initial generative processes may be viewed as
preinventive structures (Finke et al., 1992) that are assessed
for appropriateness and other criteria and are further modified
during the exploratory phase. Evaluation of the prototypes
naturally leads students back to the first stages of the creative
process—redefining the design specifications, as well as gathering
task-relevant information (Suwa et al., 1999). This iterative
process of perceiving an emerging design and making a
change to it allows to learn new affordances and often leads to
unexpected discoveries (Schön and Wiggins 1992; Kelly and
Gero, 2014).

The process of a robot’s design is followed by an iterative, trial-
and-error phase of programming the robot’s moves, testing, and
modifying its design and software code (Nemiro et al., 2017;
Alves-Oliveira, 2020; Chevalier et al., 2020). In the later cycles of
the process of creation of the robotic model, students move
beyond a trial-and-error method and start developing their

FIGURE 2 | Two-level view of the creative process.
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own heuristic approach, which allows them to come up with
original technical solutions (Hayes, 1978; Altshuller, 1988;
Sullivan and Lin, 2012; Sullivan, 2017).

Barak and Zadok (2009) described three explorative strategies
that lead learners to inventive solutions in robotic tasks. The first
strategy the authors called “assigning a new function”, where
students find a new use for an already existing robot’s movement.
The second strategy involves the elimination of a component
from the system. This heuristic has been extensively described in
TRIZ (Altshuller, 1988). The third strategy consists of examining
physical objects available in the environment and trying to apply
them to solve a problem. Sullivan (2011) called this last strategy
“utilizing environmental affordances”. Attentional mechanisms,
and more specifically, diffused attention, may be important for
this strategy as it helps to notice some environmental cues leading
to the generation of novel ideas (Sarathy, 2018; Zabelina, 2018).

Sullivan (2011) described the process of constructing a robotic
model in terms of troubleshooting cycles and rapid prototyping
rounds, in which students fluently move between 1) writing code,
2) testing the robot, 3) analyzing problems, 4) proposing changes
to the model, and 5) testing the device again. The author’s
detailed analysis of the solution trajectory shows that each
troubleshooting round includes three key stages: 1) problem
identification, 2) idea generation and strategy choice, and 3)
reflections on the progression of the problem-solving process.
Sullivan (2011) described a case of a robotics programming
activity in which the solution process consisted of 17
troubleshooting cycles and was two-fold: first, an explorative
strategy was used to discover novel affordances of materials
and then the problem was redefined, i.e., meta-level reasoning
was applied.

To summarize, the process of building robotic models can be
characterized by a constant search and movement back and forth
between generative and explorative thinking (Figure 3). The
creation of a robotic model involves using generative
strategies, like memory retrieval (Sullivan, 2011),
brainstorming (Nemiro et al., 2017), mental synthesis, and
analogical transfer (Barak and Zadok, 2009; Cuperman and
Verner, 2013), as well as explorative strategies–attribute
finding, conceptual interpretation (Barak and Zadok, 2009;
Chan and Schunn, 2015), and utilizing the environmental
affordances (Sullivan, 2011). As our analysis suggests, the
search for a solution in a robot construction process involves
not only switching between generative and explorative strategies
but also switching between levels of thinking at which these
strategies operate. One may suppose that the practice of
alternating between two different modes of cognition,
generative and explorative, coupled with implicit and
metacognitive processes that work in parallel, could result in
better coordination between these components and promote
student’s cognitive flexibility. Recent instructional models for
teaching creativity via educational robotics also underscore the
role of generative, explorative, and meta-components (Chevalier
et al., 2020; Yang et al., 2020). Another possible explanation that
can account for the promotion of student’s creative potential by
robotics programs is that the process of engaging in collaborative
construction of robotic devices leads not only to novel physical

artifacts but also to the emergence of new mental tools–implicit
and meta ideational strategies. Thus, engaging in physically,
technologically and socially situated robotics problems could
lead to the development of creative expertize in students.

This rather brief analysis does not aim to provide an
exhaustive description of the process of robot building and
programming. Rather, we aimed to illustrate that the solution
trajectory in robotics problems could share parallels with the
creative process and could be described in cognitive processing
terms that are often cited in conceptions of creative cognition.

CREATIVE PROCESSES IN AUTONOMOUS
ROBOTS

In previous sections, we have described creativity as a socially and
materially situated practice that unfolds over time through
perceiving and exploring material and technological
affordances and generating novel artifacts. In addition to
student’s conative and cognitive factors, the confluence model
of creativity emphasizes the role of the environment in translating
the student’s creative potential into novel and useful products.
Evaluating such models of human creativity is, however,
challenging in natural settings due to ethical concerns and
difficulties in isolating hypothesized variables.

Modern machine learning algorithms allow roboticists to
develop autonomous agents able to learn by exploring their
environment. Contrary to computational creativity, research in
robotics using reinforcement learning is also situated, in the sense
that it uses methods applicable for embodied agents. In this
regard, the robot becomes a perfect tool to study and model the
emergence of creativity.

Up to this point, we have used the term “robot” in a passive
form and considered it as a tool to develop human creativity. In
this section, we will change our perspective to consider the robot
as a testbed to implement and verify our model of the creative
process. Implementing a model for physical experimentation
requires specifying all internal structures and processes
involved (Fong et al., 2002).

Building on the description of processes outlined in the
preceding sections, we argue that to be able to simulate the
creative process, autonomous agents should be able to:

1. Acquire new knowledge and learn.
2. Reactivate and reuse knowledge in a wide range of

environments.
3. Select and change problem-solving strategies.
4. Use meta-reasoning to define and redefine problems, evaluate

the process and artifacts.

A collection of automatic processes capable of producing
behavior that would be deemed creative in humans is called a
“creative system” by Wiggins. The Creative Systems Framework
(Wiggins, 2006) describes the creative system in terms of a search
process that goes through a conceptual space to generate artifacts.
This exploratory search is coupled with a metacognitive search
process that operates within all possible conceptual spaces.
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Linkola et al. (2020) attempted to apply the notion of Wiggins
exploratory search to learning agents. Drawing on concepts from
Markov Decision Processes (MDPs), the Creative Action
Selection Framework (Linkola et al., 2020) provides a formal
account of the agent’s action choice based on the value, novelty,
and validity of artifacts and concepts.

Several authors suggested that modern reinforcement learning
algorithms based on MDPs could allow simulation of the creative
process in autonomous agents (Vigorito and Barto, 2008;
Schmidhuber, 2010; Colin et al., 2016). Reinforcement learning
(RL) resembles the creative process as both involve interaction
between a decision-making agent and its dynamic, uncertain
environment, when the agent is searching for a solution to a given
problem. In reinforcement learning problems, an agent explores
the space of possible strategies and gets feedback based on the
results of its decision making. This information is used to deduce
an optimal policy (Kober et al., 2013). According to Colin et al.
(2016), the agent’s policy changes within hierarchical
reinforcement learning algorithms resemble the change in
strategies that happens during creative processes.

One of the challenges of reinforcement learning is the
dilemma between exploration and exploitation (Sutton and
Barto, 1998). To obtain more reward, a reinforcement learning
agent must choose actions that have been effective in the past. But
to discover such actions and make better action selection in the
future, the robot has to try actions that it has not selected before.
The creative process is also marked by the constraint between
new and already existing problem-solving strategies (Collins and
Koechlin, 2012) and by the necessity to build upon previous
experience and knowledge in order to extend or break with them
to generate novelty.

One way to address this dilemma is to introduce intrinsic
motivation in RL, i.e., modifying the reward function to improve
the performance of an agent (Singh et al., 2010). Whereas the
traditional approach to RL is to provide reward only in case of
task achievement, intrinsically motivated agents are also

encouraged by “cshaping” rewards for discovering novel,
surprising patterns in the environment (Ng et al., 1999).
According to Schmidhuber (2010), the discovery of these
novel regularities in curiosity-driven exploration would be
marked by an impressive reduction in computational resources.

Recent advances in reinforcement learning are associated with
the introduction of deep reinforcement learning, showcasing
agents learning to play games which have long been
considered as very complex for artificial agents (Mnih et al.,
2015; Silver et al., 2016; Schulman et al., 2017). One of the major
limitations of RL algorithms is, however, their high
computational cost to learn new environments. Although RL
has been successfully used to autonomously solve complex tasks,
learning to solve these tasks requires large time investments. This
is due to the fact that in order to converge on a good solution, RL
agents require a significant number of explorative interactions
with the environment.

Several approaches have been introduced to reduce
reinforcement learning time; these include learning through
other agent’s advice in a shared environment (Saunders, 2012;
Silva and Costa, 2019), and learning from human demonstrations
(Argall et al., 2009; Fitzgerald et al., 2018). Another way to
overcome the drawback of time-consuming exploration is to
enable machine learning algorithms with the ability to transfer
and reuse previously acquired knowledge across tasks using a
case-based reasoning approach (CBR) (Riesbeck and Schank,
1989; Kolodner, 2014).

CBR begins with a problem representation of the situation in
which the case can be used. Problem representation is compared
with cases stored in a case base using specified similarity
measures. If relevant cases exist, they are retrieved, adjusted,
and reused in the problem at hand (Aamodt and Plaza, 1994; De
Mantaras et al., 2005). Given that CBR has already been coupled
with TRIZ problem-solving strategies and showed its potential to
accelerate innovation design (Robles et al., 2009; Ching-Hung
et al., 2019), its application to speed up RL seems promising.

FIGURE 3 | Solution generation and exploration.
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Recent attempts to combine the advantages of reinforcement
learning with case-based reasoning can be found in Glatt et al.
(2020), Bianchi et al. (2018). Whereas Deep Case-Based Policy
Inference algorithm accelerates learning by building a collection
of policies and using it for a more effective exploration of a new task,
the latter, Transfer Learning Heuristically Accelerated
Reinforcement Learning algorithms (TLHARL), speeds up the RL
process using CBR and heuristics. Bianchi et al. (2018) have shown
that TLHARL improved significantly the learning rate in two
domains – robot soccer and humanoid-robot stability learning.

The success of a system using CBR techniques depends on the
ability of the system to retrieve, redefine, and reuse cases. To detect
reasoning failures, improve the similarity assessment measure and
the case adaptation mechanisms of the CBR system, meta-reasoning
techniques are used. Arcos et al. (2011) have described an
introspective reasoning model enabling a CBR system to learn
autonomously to improve multiple facets of its reasoning process.
The model performs five distinct functions: 1) monitoring the CBR
process; 2) assessing the quality of proposed solutions; 3) identifying
reasoning failures; 4) proposing goals; and 5) evaluating the impact
of proposed improvements. Enabled with meta-reasoning, the
system can identify and repair the sources of failures and thus
incrementally adapt to the new problem situation.

CBR systems have their limits as well, however. Whereas they
are effective when dealing with cases that bear resemblance to the
task that has already been experienced by the robot, CBR systems
have limited efficiency when they encounter novel problems.
Parashar et al. (2018) have introduced an architecture enabling an
agent to cope with novelty. The work addresses the issue raised by
Sarathy and Scheutz (2018), Konidaris et al. (2018) and combines
planning and reinforcement learning approaches. This
combination of top-down and bottom-up approaches makes
the work of Parashar et al. (2018) especially relevant for the
context of creative problem solving in robotics. The authors
proposed a three-layered agent architecture, with 1) object-
level reasoning acts based on the information encoded from
the environment; 2) deliberative reasoning, responsible for
plan construction and action based on object-level
information, and 3) a meta-reasoning layer responsible for
problem construction and re-construction based on object-
level and deliberative-level information and learning history.
Meta-level reasoning also allows to control switching between
object-level and deliberative strategies.

In this section, we have outlined the techniques that could be a
possible starting point for modeling the creative process in
artificial systems. A tentative model of system architecture is
shown in Figure 4. A combination of these or similar techniques
(Augello et al., 2018; Edmonds et al., 2020; Goel et al., 2020) might
result in a hybrid approach for design agents capable of
addressing novelty and handling MacGyver-type problems
using affordances (Sarathy and Scheutz, 2018).

DISCUSSION

We began with the observation that whereas numerous studies
have shown a positive effect of constructing and programming

robots on creativity, little attention has been paid to the
mechanisms that can account for this effect. Educational
robotics has been considered as an inherently creative activity.
To address this gap, we have examined the process of designing
and programming robots with respect to existing models of
creative cognition. Our analysis resulted in a description of the
creative process as a multistage process, which builds on existing
knowledge and involves trial-and-error, generative, explorative,
and metacognitive components. Next, we reviewed some recent
techniques enabling robots to simulate the creative process and
proposed that a combination of reinforcement learning, case-
based reasoning, and meta-reasoning methods has the potential
to design robots that can address novelty and solve MacGyver-
type problems.

Many questions remain, however. First, as the confluence
model (Lubart et al., 2015) specifies, a combination of
cognitive mechanisms is a necessary condition for the creative
product to appear. Conative and environmental aspects must also
join to engage creative work. And yet, what is even more striking,
our current understanding of human creativity is far from
complete, as psychologists still do not know precisely how
these multiple factors interactively work together to influence
creative production. For example, what is the optimal level of a
person’s intrinsic motivation and tolerance to ambiguity to
achieve a creative outcome? Does intrinsic motivation enhance
the use of certain strategies? How do contextual variables, such as
resources or an uncooperative environment, modify the creative
process? Is there a threshold for the various creativity predictors,
under which creativity cannot arise? Can creativity occur if one
cognitive or conative feature is completely missing?

In the case of robotics, even though certain cognitive processes
have been emulated, it is still not clear how robots construct
problem representations, what is the nature of these
representations, or whether robots can autonomously find
problems to solve. Regarding the non-cognitive aspects of
Lubart et al.’s confluence model (2015), the question arises as
to which extent robots can be designed to incorporate conative
aspects.

In the light of conceiving robots that should act as social
agents, their potential “personality” moves into the spotlight. If
the genetic contribution to personality is lower than to cognition
(Loehlin and Nichols, 2012), it should theoretically be easier to
program robots that develop a certain “personality”, and this is
what some researchers have tried to do (Goetz and Kiesler, 2002;
Lee et al., 2006; Woods et al., 2007; Tapus et al., 2008), notably
regarding the introversion/extraversion trait (Goetz and Kiesler,
2002; Lee et al., 2006; Tapus et al., 2008). The important question
is to which extent robots can imitate the major creativity-related
traits, including perseverance, tolerance of ambiguity, openness
to new experiences, and risk-taking (Lubart et al., 2015).
Regarding openness to new experiences, which is viewed as
the most relevant personality trait for creativity (McCrae,
1987; Feist, 1998; Feist, 1999), no direct attempts have been
realized to program an “open-minded” robot. Agnoli et al.
(2015) found that attentional processing of apparently
irrelevant information (irrelevance processing) acts as a
moderator between openness and creative performance. It is
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imaginable that robots could be programmed for irrelevance
processing and, as such, embody a certain “openness”.

With respect to tolerance of ambiguity, creative performance
is favored by encouraging people not to be satisfied by hasty,
partial, or non-optimal solutions to complex problems (Lubart
et al., 2015). Re-interpreted as a metacognitive skill, ambiguity
tolerance refers to the “ability to cope with increasing
sensitization to novel features of a phenomenon in order to
redefine prior conceptual interpretations, contingent on trust
and motivation” (Lakhana, 2012, p. III). When defined in this
way, it is imaginable that robots could be programmed to display
ambiguity tolerance.

As far as motivation is concerned, most attention has focused
on intrinsic motivation as a positive condition for creative
engagement and achievement in humans (Collins and
Amabile, 1999). As described in the previous section, there are
currently attempts to create intrinsically motivated robots using
the reinforcement learning approach, especially regarding their
intrinsically motivated open-ended learning (Schmidhuber, 2010;
Santucci et al., 2020). The research is also marked with some
encouraging attempts (Parisi and Petrosino, 2010; Kashani et al.,
2012; Daglarli, 2020) to simulate robot’s emotional states.

When it comes to the environmental aspects fostering creative
performance, as we have mentioned in the previous section, there
are already robots that cooperate and transfer knowledge (Silva

and Costa, 2019). Projects like the Curious Whispers (Saunders
et al., 2010), which study the potential of artificial society’s
evolution within a human physical, social, and cultural
environment, are being investigated.

The possibility of comparing humans and robots in terms of
creativity has traditionally focused on the productions of both,
looking at whether humans and robots may produce similar or
different creative work. Questions concerning the relative
originality or productivity of humans and computers are
raised. In contrast, our focus has been process-oriented. Do
humans, who engage in a robot construction project, involve
specific types of cognition that foster the development of
creativity? Do robots, which instantiate artificial intelligence
algorithms, engage in creative processing as humans do
spontaneously? A robot may best be compared with a human
baby who is learning and making discoveries by exploring the
environment. As Smith and Gasser (2005), p.13 argued, “starting
as a baby grounded in a physical, social, and linguistic world is
crucial to the development of the flexible and inventive
intelligence that characterizes humankind.” We suggest that
full-fledged creativity is in a robot’s “zone of proximal
development” (Vygotsky, 1967): what a robot cannot reach
alone, it may reach with the help of a human teacher. As we
have seen, robots, even in their simplest form, could also aid
humans in their creative endeavors. Hence, humans and robots

FIGURE 4 | System architecture.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 66203010

Gubenko et al. Human and Robot Creativity

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


could fruitfully complement one another in the elaboration of
creative outcomes.

CONCLUSION

In this work, we have described the creative process in
information and cognitive processing terms, suggesting that
computer science and cognitive psychology have had a mutual
impact on each other. This influence has led to the development
of a common language among psychologists and computer
science engineers. As our analysis suggests, creativity research
in psychology has accumulated a large set of empirical data and
theoretical knowledge on human creativity, which can be useful
for both an analysis of the benefits of robot design and
programming for students to develop their own creativity, as
well as the design of artificial agents, robots, who are themselves
capable of being creative. After providing models of human
creativity for machine design, psychology could gain new

insights from the implementation and verification of these
models in embodied agents. Interdisciplinary dialogue and
collaboration between psychologists and roboticists could
contribute toward better understanding of creativity and the
future development of both creative humans and creative robots.
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Tapus, A., Ţăpuş, C., and Matarić, M. J. (2008). User-robot Personality Matching
and Assistive Robot Behavior Adaptation for post-stroke Rehabilitation
Therapy. Intel Serv. Robotics 1 (2), 169–183. doi:10.1007/s11370-008-0017-4

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 66203013

Gubenko et al. Human and Robot Creativity

https://doi.org/10.1016/j.lindif.2010.02.006
https://doi.org/10.1006/cogp.1993.1011
https://doi.org/10.1037/0022-3514.52.6.1258
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1038/nature14236
https://doi.org/10.1080/10400419109534380
https://doi.org/10.1002/jocb.87
https://doi.org/10.1037/13117-003
https://doi.org/10.1016/j.intell.2010.11.002
https://doi.org/10.1017/s0269888918000279
https://doi.org/10.1017/s0269888918000279
https://doi.org/10.1177/1059712310388528
https://doi.org/10.3389/fnbot.2019.00115
https://doi.org/10.3389/fnhum.2018.00261
https://arxiv.org/abs/1704.08350
https://doi.org/10.1007/s12559-012-9131-x
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.1016/0142-694x(92)90268-f
http://arXiv:1707.06347
http://arXiv:1707.06347
https://doi.org/10.1613/jair.1.11396
https://doi.org/10.1613/jair.1.11396
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/0747-5632(86)90006-3
https://doi.org/10.1016/0747-5632(86)90006-3
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1162/1064546053278973
https://doi.org/10.2753/RPO1061-0405350266
https://doi.org/10.1017/s0140525x00003435
https://doi.org/10.1016/0160-2896(86)90001-2
https://doi.org/10.1007/s10798-017-9397-0
https://doi.org/10.1007/978-3-319-57786-9_9
https://doi.org/10.1007/s11370-008-0017-4
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Torrance, E. P. (1974). The Torrance Tests of Creative Thinking - Norms-Technical
ManualResearch Edition. Princeton, NJ: Personnel Press.

Urban, K. K., and Jellen, H. G. (1996). Test for Creative Thinking - Drawing
Production (TCTDP). Lisse, Netherlands: Swets and Zeitlinger.

Vigorito, C. M., and Barto, A. G. (2008). “Hierarchical Representations of Behavior
for Efficient Creative Search,” in AAAI Spring Symposium: Creative Intelligent
Systems (Palo Alto, CA: AAAI), 135–141.

Vygotsky, L. S. (1967). Play and its Role in the Mental Development of the Child.
Soviet Psychol. 5, 6–18. doi:10.2753/rpo1061-040505036

Wallas, G. (1926). The Art of Thought. London: J. Cape.
Wang, E. (2001). Teaching Freshmen Design, Creativity and Programming with

Legos and Labview, Proceedings of the 31st Annualal Frontiers in Education
Conference. 3. Reno, NV: Impact on Engineering and Science Education,
F3G–F11. doi:10.1109/FIE.2001.963943

Ward, T. B., Smith, S. M., and Finke, R. A. (1999). “Creative Cognition,” in
Handbook of Creativity. Editor R. J. Sternberg (Cambridge: Cambridge
University Press), 189–212.

Weisberg, R. W. (1986). Creativity: Genius and Other Myths. New York: Freeman.
Wiggins, G. A. (2006). A Preliminary Framework for Description, Analysis and

Comparison of Creative Systems. Knowledge-Based Syst. 19, 449–458. doi:10.
1016/j.knosys.2006.04.009

Woods, S., Dautenhahn, K., Kaouri, C., Boekhorst, R. t., Koay, K. L., andWalters, M. L.
(2007). Are Robots like People? Int. Studies. 8 (2), 281–305. doi:10.1075/is.8.2.06woo

Yang, Y., Long, Y., Sun, D., Aalst, J., and Cheng, S. (2020). Fostering Students’
Creativity via Educational Robotics: An Investigation of Teachers’ Pedagogical
Practices Based on Teacher Interviews. Br. J. Educ. Technol. 51, 1826–1842.
doi:10.1111/bjet.12985

Zabelina, D. L. (2018). “Attention and Creativity,” in The Cambridge
Handbook of the Neuroscience of Creativity. Editors R. E. Jung and

O. Vartanian (Cambridge, UK: Cambridge University Press), 161–179.
doi:10.1017/9781316556238.010

Zabelina, D. L., and Robinson, M. D. (2010). Creativity as Flexible Cognitive
Control. Psychol. Aesthetics, Creativity, Arts 4, 136–143. doi:10.1037/
a0017379

Zabelina, D., Saporta, A., and Beeman, M. (2016). Flexible or Leaky Attention in
Creative People? Distinct Patterns of Attention for Different Types of
Creative Thinking. Mem. Cogn. 44, 488–498. doi:10.3758/s13421-015-
0569-4
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