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Optical-Tactile Sensor for Lump
Detection Using Pneumatic Control
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" Department of Mechanical Engineering, Faculty of Engineering, University of Bristol, Bristol, United Kingdom, 2Bristol Robotics
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Soft tactile sensors are an attractive solution when robotic systems must interact with
delicate objects in unstructured and obscured environments, such as most medical
robotics applications. The soft nature of such a system increases both comfort and
safety, while the addition of simultaneous soft active actuation provides additional features
and can also improve the sensing range. This paper presents the development of a
compact soft tactile sensor which is able to measure the profile of objects and, through an
integrated pneumatic system, actuate and change the effective stiffness of its tactile
contact surface. We report experimental results which demonstrate the sensor’s ability to
detect lumps on the surface of objects or embedded within a silicone matrix. These results
show the potential of this approach as a versatile method of tactile sensing with potential
application in medical diagnosis.

Keywords: tactile sensing, soft sensors, pneumatic actuation, variable stiffness, medical diagnosis, medical
robotics

1 INTRODUCTION

Increasingly, there is demand for robotic systems to operate within variable unstructured domains,
such as in autonomous exploration or alongside humans (Zou et al., 2017). This requires continually
gathering detailed information about the local environment to facilitate executing the task in a safe
manner. Tactile sensing at the external interface of robotic end-effectors enables a direct feedback
loop to modulate applied force during interactions (Zou et al., 2017). The adaptability of soft tactile
sensors enables the contact surface to conform to the shape of objects and distribute any handling
forces over a larger contact area (He et al., 2020a).

In addition to the importance of tactile information when interacting within unknown
environments, physical touch becomes highly important when other sensory information is
unavailable (Tiwana et al., 2012). Despite research interest, commercial application of soft tactile
sensors has been extremely low (Tiwana et al., 2012; Zou et al., 2017). Zou et al. (2017) highlight the
high cost, low modularity and the advancements in micro manufacturing and software processing
necessary to implement research sensors practically as key challenges to their adoption. By tackling
these problems and working toward more generally applicable soft tactile sensor technology, we hope
to broaden the range of applications for which robotic systems can be utilized and enable tasks,
previously only possible with partial or total human intervention, to be completed autonomously.

A wide range of tactile sensing technologies has been developed with successful designs coming
from both close biomimicry as well as deviating from nature to incorporate additional capabilities
(Zou et al., 2017; Chi et al., 2018). One such deviation proposed in literature comprises adjusting the
effective stiffness of the soft tactile membrane via pneumatic actuation in order to allow for the
sensitivity and measurement range of the sensor to be adjusted, leading to a more generically
applicable sensor (He et al., 2020a; Jenkinson et al., 2020; Zhang et al.,, 2021). Previous studies
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FIGURE 1 | (A) The soft actuating tactile sensor. (B) A sectioned view demonstrating the sensor’s internal structure as well as its potential for active palpation.
Pressurizing the sensor achieves linear actuation (max of 7 mm) through expanding the soft tactile membrane, and thus additionally modifies its effective stiffness.
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exploring pneumatic actuation within soft tactile sensors have
applied this to reactive grasping (McInroe et al., 2018), shape
identification (Huang et al., 2019; Xiang et al., 2019), estimating
tissue elastic modulus (Gubenko et al., 2017) and an explorative
capsule capable of self-locomotion (Hinitt et al., 2015). Variable
effective stiffness tactile sensors have also been applied to emulate
nodules inside phantom organs to assist with medical diagnosis
training (He et al.,, 2020b).

A key challenge when incorporating sensors within soft
robotics systems is to not alter the overall compliance of the
robot’s external interfaces (Shintake et al., 2018). Optics-based
tactile sensing is common across soft actuated sensors, as all
electrical components can be physically separated from the tactile
membrane (Shimonomura, 2019). Among the pneumatically
actuated tactile sensors referenced above, only He et al
(2020a) and He et al. (2020b) use pneumatic variations as the
primary form of sensing; all other studies chose to implement
optics-based tactile sensing. These studies have focused on
detecting surface or bulk features of the stimulus that they are
sensing, where heterogeneity in the depth of the stimulus remains
under-exploited as a tactile cue.

In this work, we explore the potential of pneumatically
actuated soft tactile sensors though the development and
experimental characterization of a novel sensor. We investigate
the usefulness of varying the effective stiffness of the sensor’s
tactile membrane when identifying nodules embedded in a soft
medium, coarsely imitating the manual palpation tasks required
for clinical breast examinations (CBEs).

CBEs serve a vital role in monitoring breast health and
reducing the number of patient referrals to the more costly
procedures of MRI or X-ray mammography, where many
users report an unpleasant and painful experience (Bickley
et al., 2013; Whelehan et al., 2017). These procedures are the
current gold standard for medical diagnosis but are
uncomfortable and their relatively high rate of malignant
diagnosis of benign tissue (false positives), especially in
younger women, can lead to patient anxiety and further
unnecessary invasive treatment (Bickley et al,, 2013). If data-
led CBEs were to become a frequent and automated process,

monitoring of breast health over time could be streamlined and
anomalies identified through tactile sensing and machine
learning. However, an automated breast examination system
would require tactile sensitivity at least comparable to that of
a trained healthcare professional performing CBE in order to
achieve this (Tiwana et al., 2012).

Figure 1 depicts the proposed sensor along with its internal
structure. The soft external membrane of the sensor deforms in
response to tactile stimuli, as the internal pressure and motion of
embedded tracking pins are monitored and analyzed. The tactile
information is represented with the use of Voronoi diagrams as
per the work of Cramphorn et al. (2018). We show that this
approach is capable of resolving a broad range of tactile stimuli.
We validate the sensor’s ability to distinguish surface lump of
varying size and then characterize the sensor’s performance at
detecting lumps embedded within a silicone matrix as the
effective stiffness of the tactile membrane is adjusted.

The following sections focus on the design and fabrication of
the compact, low-cost soft tactile sensor incorporating pneumatic
actuation (Sections 2.1 and 2.2) and its characterization (Section
2.3). Section 3.1 presents a machine learning approach for
identifying the presence of lumps utilizing features derived
from Voronoi tessellation. The results demonstrate that the
sensitivity of the sensor to identify lumps in a CBE-inspired
task can be improved by pneumatically tuning the effective
stiffness of the tactile membrane (Section 3.2). Section 4
discusses the results and makes recommendations for
future work.

2 MATERIALS AND METHODS

Incorporating pneumatic actuation within an optical based tactile
sensor poses restrictions on the form the device may take: the
sensor’s cavity needs to be pressurized and the image sensor must
have unobstructed view to the tactile membrane. McInroe et al.
(2018) tackled these same restrictions in the design of their
sensor. Figure 2 shows a high level system diagram of such a
system.
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FIGURE 2 | High level system diagram for an optical based tactile sensor incorporating pneumatic actuation.

FIGURE 3 | (A) Two step molding process to form the tactile membrane using 3D printed molds. The clear negative mold, formed in the first stage, is used in the
second stage to form the inverted tactile membrane. (B) Lastly, the membrane is flipped ‘inside-out’ and the pin tips are painted white.

2.1 Design and Fabrication
2.1.1 Tactile Membrane

The tactile membrane serves to conform to surfaces the sensor
comes into contact with so that the tactile stimuli can be
converted to a form which the internal sensors can detect.
It is manufactured using a silicone molding methodology
resembling that depicted by Winstone et al. (2012) and
common across the early sensors within the TacTip sensor
family (Ward-Cherrier et al., 2018). Figure 3 depicts the two-
stage molding process.

The membrane features 72 pins (of the same material as the
membrane), 1.2mm long and of 1.25mm diameter, distributed in
radially offset concentric rings (Figure 3B). This arrangement
allows for simple parameterization of the silicone molding CAD
(Computer-Aided Design) models while maintaining an
approximately uniform marker distribution. With the
membrane inverted, the painted pin tips are spaced 1.75mm
apart with a maximum deviation between marker centers of
+ 0.12mm. The tactile membrane is a flattened dome, 10mm
high and with a diameter of 30mm (see Figure 1). The variable
internal pressure (implemented by pneumatic actuation, see
Section 2.1.3) allows for the curvature of the membrane to be
altered during operation. An initial profile flatter than a
hemisphere was chosen to enable manufacture with low cost
FDM (Fused Deposition Modeling) 3D printers and facilitate
removal of the soft tactile membrane and its ‘inside-out’ pins
from the silicone molds (see Figure 3).

The tactile membrane is moulded using DragonSkin 30
silicone (Smooth-On, Macungie, PA). We carried out Finite
Element Analysis (FEA) to determine the suitability of
DragonSkin 30 and subsequently tune the membrane
thickness and operating pressure for desired behavior. We
used Abaqus CAE to carry out nonlinear analysis by
approximating the dome geometry as a plane stress shell with
quadrilateral elements, fitting a polynomial to experimental
stress-strain data and using a third-order Ogden model of
hyperelasticity. A membrane thickness of 1mm proved
sufficient to achieve a 100% volume expansion across a
suitable working pressure range while remaining a safety
factor of two below the maximum tensile stress of the material.

The FEA model exhibited a cubic relationship between the
internal pressure of the cavity and the percentage volume increase
of the membrane for pressures between 0 — 1000mbar. Figure 4A
compares the FEA predictions to experimental data specifically
for internal pressure between 0 — 350mbar. Across this limited
range, the relationship appears approximately linear and close
agreement can be seen between the FEA model and experimental
data. However, no conclusions can be drawn about experimental
behavior at higher pressures. The experimental data were
captured by filming the sensor expanding, tracking the pixels
making up the side projection of the tactile membrane and
assuming axisymmetric behavior to calculate the volume of
revolution. This experiment was repeated three times and
averaged.
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FIGURE 4 | Experimental data points, linear fit of experimental data and FEA model using Abaqus for a 1Imm thick DragonSkin 30 membrane. (A) Volumetric
expansion against pressure predicted by the FEA model and found experimentally from the manufactured membrane. (B) FEA deformed mesh and stress distribution at
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FIGURE 5 | (A) Part list and exploded view of the sensor housing assembly. (B) Sensor underside with bulkhead adapter for connecting pneumatic tubing. (C)

Sensor internals with tactile membrane removed. (D) Inside of tactile membrane.

2.1.2 Embedded Sensing

A Raspberry Pi Zero camera module with a wide angle variable
focus lens is used to capture optical changes of the tactile
membrane, the underside of which is illuminated by a white
LED. A 2bar Honeywell ABP digital pressure sensor is positioned
in the pneumatic loop outside of the housing to record pressure
fluctuations. The wide field of view, 160°, and zero minimum
focal distance of the camera module allows the void space behind
the tactile membrane to be minimized, while a frame rate of 90 fps
enables marker motion to be tracked smoothly between frames.
The compact sensor housing along with short lengths of narrow
diameter tubing minimize the closed loop air volume such that
pressure readings are reactive to external stimuli without delay.

2.1.3 Actuation and Control
The internal pressure of the sensor may be altered to actuate the
membrane and alter its geometry while emulating different
stiffnesses. An Arduino serves to control the pressurization of
the sensor cavity and then isolate it such that pressure fluctuations
due to external stimuli on the tactile membrane can be detected.
The pneumatic system is actuated by manually depressing a syringe
while the Arduino monitors the internal pressure and closes the
solenoid valve once the desired cavity pressure has been reached.
A Raspberry Pi Zero coordinates the system and is used to
control the camera module and communicate with the Arduino
to collect pressure readings and set the trigger pressure at which
the solenoid valve is closed.
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displacement vectors calculated relative to the undeformed state.

FIGURE 6 | (A) Marker detection with SimpleBlobDetector algorithm tuned to identify white circular blobs against a black background. (B) Individual trackers
generated for groups of pixels in a bounding box around each marker and tracked across frames using the TrackerKCF algorithm. (C) Voronoi diagram and marker

2.1.4 Sensor Housing

Figure 5 shows an exploded view of the housing assembly along
with images of the assembled sensor. The housing is 3D printed
and split into a base section to mount the bulkhead adapter and
camera module, and a tip section to mount the tactile membrane.
An air-tight seal is achieved through threading the bulkhead
adapter with PTFE tape and linking the PLA components with
silicone gaskets under a high clamping force. A latex band
attaches the tactile membrane to the removable tip section of
the housing along a shallow groove. This makes the tactile
membrane a modular component which can be removed and
replaced due to wear or sanitary constraints, e.g. in a medical setting.

2.2 Tactile Signal Processing
Figure 6 shows the stages of image processing carried out on
each frame using functions from the OpenCV library (Bradski,
2000). The center point of each marker is used to construct a
Voronoi diagram (Figure 6C) using the SciPy library spatial.
Voronoi function (Virtanen et al, 2020) and calculate
displacement vectors from the initial non-deformed state.
Calculating Voronoi diagrams from marker based tactile data,
as proposed by Cramphorn et al. (2018), enables the divergence of
markers away from each other to be quantified and visualized as
the area change of the Voronoi region associated with each point.
The pressure signal is filtered to remove noise, synced with the
image sequence and averaged over each frame interval to allocate
each frame a single pressure sample point. Lastly, regions within
the Voronoi diagram are uniquely numbered based on the angle
and radius of each tracked point from the point cloud centroid.
This allows regions to be indexed consistently across frames and
monitored over time.

2.3 Sensor Characterization

Figure 7 qualitatively depicts the sensor’s response to a range of
stimuli. The color of each region corresponds to its percentage
area change (expansion/contraction). The responses are distinct
and display the sensor’s ability to resolve tactile information. The
area change and vector displacement of the Voronoi regions
encode different tactile information and hence provide a more
complete representation of the stimuli when combined.

Figure 8 shows the effect of pressure change on the marker
distribution. Despite the membrane geometry changing
significantly, Figure 8B demonstrates how the observed
distribution of markers is near invariant of pressure. This
invariance means that internal pressure need not be accounted
for during image processing.

The tactile membrane can be inflated and deflated by the
pneumatic control system described in Section 2.1.3. Additional
indentation into the membrane (due to contact with a surface/
lump) will further increase this pressure. The relation between
internal pressure and an external force applied through a flat plate
normal to the membrane is shown in Figure 9 for different
baseline pressures of the sensor’s cavity. Increased baseline cavity
pressure results in increased effective stiffness of the membrane,
i.e., how much it will resist deformation in response to a given
force. In addition to the baseline cavity pressure, applying further
force to the sensor increases the internal pressure, and therefore
the effective stiffness. Over the investigated force range of the
sensor, the relationship between the applied normal force and the
resulting pressure variation appears approximately linear.
However, over a larger force range, the curve for each baseline
pressure would visibly flatten as the membrane stiffens
(Jenkinson et al., 2020). By fitting a curve to this relationship,
the pressure sensor could be used to approximate a normal force
applied to the membrane, given that the baseline internal pressure
is known.

3 LUMP DETECTION

CBEs aim to identify anomalous hard lumps within a search
domain of breast tissue. In the next two sections, we characterize
the relationship between the presence of an anomalous lump and
the area change and vector displacement of the 51 regions of the
Voronoi diagram, in order to assess the performance of the
presented sensor for lump detection. First, we consider the
problem of detecting surface lumps, followed by considering
embedded lumps, in which case this mapping becomes
increasingly non-linear, due to the complex dynamics of
elastic deformation.
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FIGURE 7 | Tactile Voronoi diagram response corresponding to a range of stimuli. Voronoi regions are colored by increasingly dark shades of red or green to
display area expansion or contraction respectively. The red arrows from the centroid of each region show the vector displacement of regions from their non-deformed

increased from Ombar to 350mbar.

FIGURE 8 | (A) Marker distribution at Obar and 350mbar internal pressure. (B) Marker centers superimposed on top of each other as the internal pressure is
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FIGURE 9 | Internal pressure variation due an external force deforming

the tactile membrane. Each data series is recorded at a different baseline

internal sensor pressure.

3.1 Surface Lumps

Averaging Voronoi regions in rings maintains only a single
spatial dimension in the radial direction, thus making the
assumption that the response is axisymmetric. This
assumption is uniquely suitable for the application of detecting
anomalous lumps through central indentation as the stimuli itself
is approximately axisymmetric. Figure 10 shows how Voronoi
regions can be grouped by their radial position and how this

perspective illuminates clear differences in response when a
surface lump is present. As the indentation is positioned
centrally on the tactile membrane, Voronoi region area
increase is predominately in the inner rings, whereas the
vector displacement response is predominantly in the outer
rings as the membrane spreads out toward to fixed boundary.

The response of the sensor was captured for five sizes of
hemispherical surface lumps ranging in diameter from 1mm to
5mm using a modified Ultimaker 3D printer to serve as a
Cartesian robotic arm. Results were recorded at four different
internal pressures, ranging from Ombar to 200mbar in even
increments of 50mbar, to investigate how the effective stiffness
of tactile membrane impacts performance. Each unique pressure
and lump size combination was repeated twenty times. The
tactile membrane was gradually indented into each lump
sample up to a normal indentation force of 8N. A set of
digital scales were used to calibrate the palpations to ensure a
consistent indentation force.

In order to quantify the surface lump identification ability of
the sensor, a linear regression model was trained using Voronoi
diagram features to predict lump size. The scikit-learn library was
used to implement and evaluate the regression model (Pedregosa
etal.,, 2011). The model takes an input of ten features recorded at a
single instance in time: the Voronoi region area change and
vector displacements averaged around each of the five concentric
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rings. Region vector displacements are projected radially away
from the marker centroid before averaging to isolate radial
displacement from any lateral motion. Figure 11C shows the
design cross-section of the 3D printed test slab used to gather data
for the linear regression model. This data was partitioned into an
80/20 training/testing split and evaluated using 5-fold cross-
validation. Figures 11A,B are the graphs of the model’s
predictive performance on the testing data. Separate regression
models were trained on Voronoi diagram frames at set intervals
over the duration of each palpation so that performance could be
compared for different indentation forces into the sample.

Accurate surface lump diameter predictions can be observed
across the full range of internal pressures and lump sizes. The
sensor can clearly distinguish lumps as small as 1mm from a flat
surface. The range of predicted diameters for each lump are
distinct, all within + 0.5mm of the actual value, and have an
average standard deviation across all lump sizes and pressures of
0.13mm. The mean of the predicted diameters for each lump size
were all correct within 0.08mm of the true values. During contact
with a lump sample, the membrane must conform to the lump
shape in order for the response to be distinct and identifiable.
Higher internal pressures (and, therefore, higher membrane
effective stiffnesses) display a clear trend of prediction
accuracy increasing with indention force. While lower internal
pressures are preferable at low indentation forces, the Ombar and
50mbar pressurized cavities saw their prediction accuracy fall at
forces above 6N. This suggests that with a high enough indentation
force, the large scale deformation of the tactile membrane will
‘saturate’ the sensor and begin to mask the differences between
stimuli. An internal pressure of 100mbar results in the lowest
prediction error across all indentation forces and, hence, can be
considered optimal for this specific set of stimuli.

3.2 Embedded Lumps

Detecting hard lumps embedded within tissue is a more
challenging problem, as the surrounding tissue damps the
response and adds additional non-linearity. Consistent with
previous studies (Egorov and Sarvazyan, 2008; Gwilliam et al.,
2010; Mojra et al, 2012) that compared the performance of
commercial tactile sensors to human palpation, the response
of the proposed sensor is investigated for vertical indentation
into embedded lumps of different size and depth.

Figure 12 shows the embedded lump test slabs, manufactured
by encasing PLA lumps in DragonSkin 10 silicone. One test slab
includes five lumps varying in diameter (1 — 5mm), all embedded

at a depth of 1.5mm below the surface, while another test slab
includes five lumps of 3mm in diameter, embedded in varying
depths (1 — 5mm). Additionally, one test slab was manufactured
with no embedded lumps to evaluate the likelihood of false
positives. This experimental setup is similar to the silicone test
slabs in Gwilliam et al. (2010) but approximately 10 times firmer
than the medical breast phantom in Egorov and Sarvazyan
(2008). Nevertheless, we consider these test slabs to be
sufficient for an initial exploration of whether detecting hard
lumps embedded in a softer matrix is possible.

Data were recorded across internal pressures ranging from
Ombar to 200mbar. Fifteen repetitions were recorded for each
combination of test slab, internal pressure and indentation
force. For the detection of embedded lumps, the same ten
Voronoi diagram features were used to train a Bayesian
classifier model. The approach outlined by VanderPlas
(2016) was followed to implement a Gaussian kernel density
estimator (KDE) with Bayesian classification using the scikit-
learn library. By fitting multi-feature Gaussian KDE
distributions to each lump class within the training data set,
novel testing data can be assessed by calculating the likelihood
that it belongs within each of the learnt distributions. The data
set was partitioned and evaluated, as with the surface lump
linear regression model, using a 80/20 training/testing split and
5-fold cross-validation.

Figure 13 shows the sensor’s ability to distinguish various
embedded lumps from the surrounding silicone matrix and
correctly classify lumps by their depth or diameter. Increased
indentation force decreased the proportion of false positives in
trials where there was no lump present (improving specificity)
and increased the proportion of lumps whose presence was
successfully identified (improving sensitivity) and correctly
classified. The improvement in both identification and
classification ability from increasing indentation force is greater
for the variable depth trials, which demonstrates an increased need
for use of higher force when deeper lumps are considered. The
presence of lumps which are located closer to the surface and which
have a smaller diameter is easier for the sensor to detect. The tactile
signature from central indentation into a larger diameter lump is
distributed over a larger area and, due to the choice of features and
learning model, is more likely to be mistaken for the no-lump class.
Lumps that are identified but incorrectly classified are most
commonly mistaken for neighboring classes. This indicates that
the model has successfully learnt the ordered relationship
between the classes and provides an explanation for why the
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embedded lumps at either end of the investigated range appear
to be correctly classified with greater accuracy.

Unlike the tactile sensors of previous studies replicating
simplified CBE conditions (Egorov and Sarvazyan, 2008;
Gwilliam et al., 2010; Mojra et al, 2012), the proposed
sensor can change its effective stiffness by altering its
internal pressure. Figure 14 shows the average root-mean-

squared-error of the learning model as a function of internal
pressure when tasked with classifying lumps by depth and
diameter. The internal pressure, and therefore the effective
stiffness of the tactile membrane, influences the sensitivity of
the sensor. The minima present in the average error curves can
be understood by plotting curves for subsets of the lump trials.
Shallower lumps are more accurately identified with lower
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FIGURE 12 | Top and sectioned views of test slabs with varying embedded lump size and depth.
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FIGURE 13 | The proportion of trials where the presence of an embedded lump is correctly identified (light shading) and the proportion classified as lumps of the
correct depth or diameter (darker shading). For comparison, vertical lines are plotted at 16.7% to indicate the accuracy of a dummy classifier implementing uniform
random guessing across the six classes. Results are averaged across readings from all baseline internal pressures (0 — 200mbar) and shown across a range of
indentation forces up to 8N. The presence of smaller diameter lumps embedded at shallower depths are more easily identified. The depth and diameter
classification accuracy of identified lumps is low with light indentation force but improves as greater indentation force is applied.

internal pressure, whereas accuracy for deeper lumps continues 4 DISCUSSION AND FUTURE WORK

to improve as internal pressure increases. Accuracy for both

small and large diameter lumps improves with internal pressure ~ Our proposed tactile sensor outputs a Voronoi representation of
up until 150mbar, after which the accuracy for larger lumps  the contacted stimuli, which has a wide range of downstream
decreases. applications. In this work, we used features extracted from the
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identifying the size and depth of embedded lumps varies as the internal pressure of the sensor, and therefore the effective stiffness of the tactile membranes, is adjusted.
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Voronoi diagram as inputs to a statistical machine learning
model, trained for the task of lump detection. Experimental
results demonstrated the sensor’s ability to successfully identify
anomalous lumps located both on a flat surface and embedded
within a silicone matrix. These results highlight the potential for
this method of tactile sensing to be applied in medical diagnosis
and surgery, where versatile soft sensing and actuation is required
and use of harsher (e.g., x-ray) technology is not permitted. More
widely, there is scope for application in other robotic tasks
involving dexterous manipulation of delicate objects.

The sensor’s ability to resolve surface and embedded lumps
was investigated on lumps ranging from 1 to 5mm in diameter
and 1 to 5mm depth in a soft silicone matrix. The sensor was
capable of both detecting and evaluating the size and depth of
lumps across the full range of lumps tested. The ability of the
sensor to detect surface lumps was reasonably uniform across the
range of lump sizes, which suggests that satisfactory performance
could also be obtained outside of the tested range. Future work
will investigate the upper and lower bound of the sensor’s ability
to resolve surface detail. Lumps embedded within a silicone

matrix proved more difficult for the sensor to accurately
identify. Lumps located closer to the surface and with a
smaller diameter were easier for the sensor to distinguish.
With a thinner layer of silicone between the firm lump and
the tactile membrane, lumps embedded nearer to the surface
caused a greater change in the detectable deformation of the
membrane. When palpating smaller lumps, the change in
tactile membrane deformation was more localized, and
therefore easier to distinguish from the large scale
deformation due to the soft matrix. The observed reduction
in detection performance for larger diameter lumps is assumed
to be due to constraining the experiments to central
indentation. If a more complex surface scanning
methodology were adopted, the edges of larger lumps could
be detected as the surface is traversed. The accuracy
of identifying both surface and embedded lumps increased
with the normal indentation force exerted into the test slab.
This effect was more pronounced in the variable depth trials
than the variable diameter trials. This matches the assumption
that a greater force would be required to compress the soft
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silicone above a deeper lump before its geometry is clearly
identifiable.

In our experiments, pressure data were synchronized with
image data and used to identify the frame corresponding to the
point of maximum membrane indentation. However, this is far
from the extent of the utility of the pneumatic subsystem
within the sensor. Our proposed sensor can actuate its contact
surface by varying its internal pressure, thereby changing the
effective stiffness. Experiments were carried out with the
internal pressure ranging from 0 to 200mbar. At 200mbar,
the volume of the tactile membrane increased by 60%. This
potential for actuation of the contact surface may facilitate the
use of other medical diagnosis techniques complementary to
an automated CBE, such as nipple aspirate fluid collection
(Shaheed et al., 2017). When detecting surface lumps,
performance at different membrane stiffnesses
function of indentation force. With light indentation force,
a low-stiffness membrane, able to readily deform to the lump,
performed significantly better than a high-stiffness membrane.
This disparity in sensing performance across the stiffness
range decreased as the indentation force was increased. At
the highest indentation forces, where a certain internal
pressure is required to resist larger scale deformation and
remain conformed to the shape of the lump, the lowest
membrane stiffnesses performed worse. The membrane
stiffness also affected the sensor’s ability to detect
embedded lumps. Noteworthy is the presence of minima in
the prediction error against internal pressure curves for both
the depth and diameter sensing tasks. This suggests that
depending on the sensing task and the nature of the stimuli
to be detected, different membrane effective stiffnesses can be
considered optimal. With knowledge of the stimuli of interest,
tuning the stiffness of tactile sensors could lead to improved
performance or in cases where the stimuli to be detected is
unknown, a methodology sweeping across effective stiffnesses
while repeating palpations may be favourable. In future work,
we will carry out further experimental investigation and look
to characterize how the effective stiffness of the tactile
membrane impacts sensing performance across a much
larger and more varied sample size of trials.

The primary motivating factor behind averaging features
axisymmetrically and constraining experiments to central
indentation was the limited experimental sample size of
approximately 4,000 observations for each experiment, which
was small for a complex machine learning task. It also informed
our choice of simple linear regression and Gaussian classifier
models, which are suitable for identifying broad trends in small
data sets while limiting overfitting. By increasing the size of the
data set and training a more complex model, capable of learning
the many non-linear behaviors inherent in soft body interactions,
the performance of the sensor would likely improve, with no
changes to the hardware. With more data and a more complex
model, the number of training features could also be increased to
remove the axisymmetric assumption. The additional spatial
dimension would reveal information about the position and
orientation of stimuli, and enable the modeling of more
complex tactile interactions. Deep convolutional neural

was a

Pneumatically Controlled Optical Tactile Sensor

networks have shown promising performance in combination
with raw optical tactile data (Lepora et al., 2018) and may provide
a research avenue for improving sensor versatility in future work.

To the best our knowledge, our prototype sensor’s novel
design combines optical marker-based tactile sensing with
variable pressure in a significantly smaller footprint than any
other device to achieve this in the literature. The sensor uses low
cost manufacturing techniques and allows for the tactile
membrane to be removed and replaced as a modular
component. This addresses common concerns surrounding
tactile sensors of high cost, low modularity, fragility and
incompatibility with medical applications that require
disposable contact surfaces (Tiwana et al, 2012; Zou et al,
2017). As the tactile membrane is modular and machine
learning algorithms can be trained to new stimuli, future work
will retain the proposed sensor design while investigating how
changes to the thickness and material properties of the tactile
membrane influence performance across different ranges of force
applicable for clinical use.

Where previous studies have used the combination of tactile
sensing and variable pressure in reactive grasping, shape
identification and stiffness evaluation tasks, we utilize our
control over internal cavity pressure to investigate the
potential of such a sensor against a simplified mock-up
inspired by the sensing requirements of CBEs. The mock-up
encapsulates the challenge of CBEs of detecting firm lumps
embedded within a softer matrix and as such provides a
starting point from which future work can expand on
exploring the role of variable compliance in CBE applications.
The consistency of breast tissue varies widely (Bickley et al,
2013), so while no single breast model can be perfectly
representative of all women, further experiments against a
range of realistic stimuli will enable comparisons to be drawn
between the sensor’s performance, human sensing ability and
the results of previous tactile sensing studies (Egorov and
Sarvazyan, 2008; Gwilliam et al., 2010; Mojra et al., 2012).
Future work will test performance using medical breast
phantoms involving non-flat surfaces, and followed by
clinical trials. Testing will also be expanded to investigating
stimuli other than lumps as well as exploring its potential in
actively actuated palpation.
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