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The paradigm of voxel-based soft robots has allowed to shift the complexity from the
control algorithm to the robot morphology itself. The bodies of voxel-based soft robots are
extremely versatile and more adaptable than the one of traditional robots, since they
consist of many simple components that can be freely assembled. Nonetheless, it is still
not clear which are the factors responsible for the adaptability of themorphology, which we
define as the ability to cope with tasks requiring different skills. In this work, we propose a
task-agnostic approach for automatically designing adaptable soft robotic morphologies in
simulation, based on the concept of criticality. Criticality is a property belonging to
dynamical systems close to a phase transition between the ordered and the chaotic
regime. Our hypotheses are that 1) morphologies can be optimized for exhibiting critical
dynamics and 2) robots with those morphologies are not worse, on a set of different tasks,
than robots with handcrafted morphologies. We introduce a measure of criticality in the
context of voxel-based soft robots which is based on the concept of avalanche analysis,
often used to assess criticality in biological and artificial neural networks. We let the robot
morphologies evolve toward criticality by measuring how close is their avalanche
distribution to a power law distribution. We then validate the impact of this approach
on the actual adaptability by measuring the resulting robots performance on three different
tasks designed to require different skills. The validation results confirm that criticality is
indeed a good indicator for the adaptability of a soft robotic morphology, and therefore a
promising approach for guiding the design of more adaptive voxel-based soft robots.
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1 INTRODUCTION

Traditionally, engineers have designed robotic systems modeled by connected joints made of rigid
materials. These rigid-body robots can be programmed to efficiently perform a single task in a
predictable way, but often with limited adaptability (Rus and Tolley, 2015).

Soft robots, on the contrary, are designed using soft materials, in order to mimic nature in the way
they interact with the environment. Since they are made of soft materials, soft robots are provided
with almost infinite degrees of freedom and thus are capable of more natural movements. This allows
a variety of different behaviors that were not possible with traditional robots and many new
opportunities for robotics, enabled by their greater adaptability (Lipson, 2014). Soft robotic bodies
are able to bend and twist with high curvatures, through deforming part of their body in a continuous

Edited by:
David Howard,

Commonwealth Scientific and
Industrial Research Organization

(CSIRO), Australia

Reviewed by:
A. E. Eiben,

Vrije Universiteit Amsterdam,
Netherlands

Sam Kriegman,
University of Vermont, United States

John Rieffel,
Union College, United States

*Correspondence:
Eric Medvet

emedvet@units.it

Specialty section:
This article was submitted to

Robot Learning and Evolution,
a section of the journal

Frontiers in Robotics and AI

Received: 26 February 2021
Accepted: 27 May 2021
Published: 17 June 2021

Citation:
Talamini J, Medvet E and Nichele S
(2021) Criticality-Driven Evolution of
Adaptable Morphologies of Voxel-

Based Soft-Robots.
Front. Robot. AI 8:673156.

doi: 10.3389/frobt.2021.673156

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6731561

ORIGINAL RESEARCH
published: 17 June 2021

doi: 10.3389/frobt.2021.673156

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.673156&domain=pdf&date_stamp=2021-06-17
https://www.frontiersin.org/articles/10.3389/frobt.2021.673156/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.673156/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.673156/full
http://creativecommons.org/licenses/by/4.0/
mailto:emedvet@units.it
https://doi.org/10.3389/frobt.2021.673156
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.673156


way (Mazzolai et al., 2012), and thus canmove in confined spaces.
Since they can adapt their body shape to the environment, soft
robots are thus able to manipulate objects, move on rough terrain,
and execute rapid and agile manoeuvres underwater. However,
due to the intrinsic complexity of their bodies, the design and
control of soft robots is a challenging task, which suggests that
traditional robotics techniques might not be effective.

Among the existing categories of soft robots, Voxel-based Soft
Robots (VSRs) are made of many elastic blocks called voxels,
defined by mechanical properties similar to those of biological
tissues, which allow them to expand or contract when controlled
by an external signal. A VSR is defined by a body (ormorphology),
which is simply an aggregate of voxels, and a brain, which is the
control algorithm responsible for actuating its body. Biological
inspired meta-heuristics such as Evolutionary Computation (EC)
have been extensively applied to the domain of VSRs (Hiller and
Lipson, 2011; Cheney et al., 2013; Cheney et al., 2015; Talamini
et al., 2019; Medvet et al., 2020a; Ferigo et al., 2021) and have been
shown to be a promising approach for both the design and
control of VSRs. However the optimization of these robots is
often oriented toward a specific task, e.g., a locomotion task,
which provides no guarantee on the effectiveness of the resulting
designs when subjected to a different task.

In this work, we explore the possibility of automatically
designing adaptable soft-robotic bodies by means of EC, such
that the resulting bodies are able to successfully accomplish tasks
requiring different motor skills. A simple method to find such
bodies might consist in evaluating each candidate solution on all
the relevant tasks, and optimizing the body toward the
maximization of the overall performance. However, this
approach does not necessarily scale well, since as more and
more tasks are to be achieved the computation required to
evaluate the robot performances on all tasks may become not
practical. In addition, not all the possible tasks are necessarily
known in advance, and the definition of a new task would make
the results of the previous optimization process outdated.

A better approach may be to identify measures for soft-robot
bodies that may evaluate the potential richness of robot dynamics
(the potentially available robot behaviors), such that different
controllers may be able to successfully operate the robot on
different tasks. We propose here a task-agnostic approach for
automatically designing adaptable bodies without requiring any
information on the tasks, and instead based on the definition of
criticality (Bak et al., 1988).

A system in the critical state operates at the edge between two
qualitatively different types of behavior. Below the critical state a
system is said to be in a subcritical state, where the behavior is
highly ordered (static or oscillating between very few distinct
states). On the other hand, a system in a supercritical state shows
chaotic behavior (unpredictable). At a phase transition between
such regimes, a systems is typically able to efficiently respond to a
wide range of inputs. Langton (1990) has shown that Cellular
Automata at the transition phase, i.e., edge of chaos, are able to
efficiently transmit, store, and modify information, and therefore
are able to perform complex computations. Biological neural
networks and the brain are examples of systems that operate at
criticality (Shew and Plenz, 2013; Hesse and Gross, 2014; Heiney

et al., 2019). Criticality is typically measured by looking at how
activity propagates through the system, such as spike propagation
in neural networks. When a certain activity propagates through
the system, this is referred to as avalanche. Avalanches may have
different size and duration. When the avalanche distribution
follows a power law, the system is said to be at criticality. A
recent review on criticality and connectivity in relation to neural
computation is available at (Heiney et al., 2021).

A popular machine learning approach which relies on
dynamical systems computation is Reservoir Computing (RC)
(Jaeger, 2001; Maass et al., 2002). In RC, the dynamical system is
able to represent input signals in a high-dimensional temporal
state, which can be easily distinguished by a linear trained
readout. While RC has been implemented in several physical
dynamical systems (see Konkoli et al. (2018) and Tanaka et al.
(2019) for a recent review), including non-modular soft robots (Li
et al., 2012; Nakajima et al., 2013) and origami robots (Bhovad
and Li, 2021), it has been shown that the reservoir performs best if
the dynamic regime is in a critical state (Schrauwen et al., 2007;
Legenstein and Maass, 2007). A VSR body is a dynamical system
and may therefore be considered a reservoir computer.

Our hypothesis is that VSR bodies engineered or optimized to
perform robustly for a given task may show sub-critical behavior
due to their specific topology, i.e., a fairly static or oscillating
behavior that works particularly well for one single task. In other
words, the required computation is strongly embedded in the
body morphology. However, such robust behavior and topology
is not particularly adaptive to other tasks requiring very different
motor skills and consequently a radically different dynamical
behavior. On the other hand, a topology supporting a critical
behavior, i.e., a wide range of controllable dynamics, may achieve
sub-optimal performances on a wide variety of tasks requiring
different motor skills, while not being explicitly optimized for any
of them.

In this work we provide a criticality score value, based on the
fitting of the empirical avalanches distribution (Bak et al., 1988),
coming from the assessment of a body, with a target distribution.
Given this score, we evolve VSR morphologies that are optimized
for criticality, rather than for a single or a few tasks. The
morphology evolution is hence task-agnostic.

To validate the adaptability of the morphologies resulting
from the evolution, we design three reasonably different tasks:
a locomotion task on a plain ground, a jump task, and a task of
escape from a narrow cave-like environment, and we test the
bodies on these tasks by optimizing their controller on each task.
Figure 1 shows an overview of our approach and its experimental
evaluation. While our focus is on the adaptability of the VSR
morphologies to different tasks based on their criticality, we also
investigate whether morphologies evolved with high criticality
show adaptability to different controller types, e.g., phase
controllers and neural network controllers. Brain adaptability
for robotics is a rather consolidated researched topic where
adaptive mechanisms may act on short time scales,
i.e., through learning. Mechanisms of body adaptation are less
understood both for robots and biological organisms. In addition
to the bodies evolved toward criticality, we have considered
several other bodies for the validation process, some of them
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inspired by previous works such as Talamini et al. (2019), while
others automatically generated thorough algorithms based on
randomness. We compare all the robots on the different tasks,
and we draw an overall ranking that shows that criticality is indeed
a good predictor of the adaptability of a robot morphology. All the
experimental work is performed in simulation.

In summary, we experimentally tested the following
hypothesis, here formulated as research questions:

RQ1. Do morphologies evolved for criticality obtain a higher
criticality value than handcrafted morphologies?
RQ2. Do VSRs withmorphologies evolved for criticality obtain
an average performance that is not inferior (on a set of
different tasks) than that of VSRs with handcrafted
morphologies? In both cases, the controllers are evolved for
each specific task.
RQ3. Given a pseudo-randomized method for generating
morphologies that resemble the ones evolved for criticality,
do VSRs with those pseudo-randomized morphologies obtain
an average performance that is not inferior (on a set of
different tasks) than that of VSRs with handcrafted
morphologies? In both cases, the controllers are evolved for
each specific task.

Our main findings are the following. 1) Criticality is a good
predictor of the potential adaptability of a robot morphology. 2)

Criticality as task-agnostic fitness score for the evolution of robot
bodies result in the design of robots that are among the most
adaptable. 3) Bodies evolved for a specific tasks exhibit almost no
adaptability and have indeed particularly low levels of criticality.
4) Morphologies evolved toward criticality show a rather
randomized structure that can be mimicked in a random
generation procedure for morphologies. Such procedure
generate morphologies that are sometimes adaptable and with
criticality values that are in a range between those evolved for
criticality and those evolved for a specific task. The random
generation procedure is computationally fast as compared to EC.
5) The morphologies evolved for criticality may be controlled by
different controller types, i.e., phase controller and neural
network controller. This suggests that morphologies
supporting critical behavior are agnostic to the type of
controller being used.

2 BACKGROUND AND RELATED WORK

In this section, we first describe voxel-based soft robots.
Subsequently, we introduce the concepts related to reservoir
computing, a method that relies on dynamical systems for
efficient computation. We then provide links between VSRs and
RC and finally introduce a beneficial property for dynamical
systems and their computational power, namely criticality.

FIGURE 1 | Schematic view of our approach and its experimental evaluation. We first evolve a morphology driving the optimization with a measure of its criticality:
during this evolution (left), candidate morphologies are not evaluated on any specific task. Then, we take a criticality-optimized morphology and test its adaptability,
i.e., whether a VSR with a task-optimized controller working with this morphology obtains reasonable performance over a set of different tasks. For this evaluation, we
evolve a controller (e.g., a neural network) for the criticality-optimized morphology: during each one of these evolutions (right), candidate controllers are evaluated,
embedded in a robot with the criticality-optimized morphology, on a specific task.
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2.1 Voxel-Based Soft Robots
A Voxel-based Soft Robots (VSR) is an aggregation of soft cubic
blocks, voxels, that can vary their volume in response to a control
signal. Hiller and Lipson (2012) first introduced VSRs along with
a procedure to physically build them using a deformable foam:
the control signal corresponded to the atmospheric pressure and
voxels were not controllable individually. Later approaches to the
realization of VSRs explored different paths as, e.g., silicone cubes
actuated by injected air pressure (Kriegman et al., 2020b; Sui et al.,
2020) or living matter (Kriegman et al., 2020a). Regardless of the
way they are built, VSRs are often designed automatically by
means of optimization and simulation: many different designs are
simulated and their ability to perform a given task is measured.

In this work, we consider a 2-D variant of simulated VSRs that
has been introduced by Medvet et al. (2020b) together with a
time-discrete simulation engine that facilitates their optimization.
A detailed description of the mechanical model of the VSRs and
how they are simulated is given in the cited work and in (Medvet
et al., 2020c): we here summarize the salient concepts.

A VSR is defined by its morphology and its controller. The
former describes how the voxels are arranged. The controller
determines how the area of each voxel varies over the time,
possibly based on the readings of the sensors the VSR is equipped
with. The ability of sensing both itself and the environment makes
VSRs potentially more effective in performing tasks where
perception is beneficial as, e.g., locomotion on uneven terrains
(Talamini et al., 2019).

2.1.1 Morphology
A morphology is a 2-D grid of voxels: adjacent voxels are rigidly
connected at their vertices. In the simulation, the voxel is modeled
as a compound of spring-dampers systems, masses, and distance
constraints. By varying the parameters of those components,
different materials for the voxels can be simulated: in this
work, however, we use the same default values for each voxel
and hence assume that the voxels of a VSR are composed of the
same material.

2.1.2 Controller
During the simulation, voxels vary their area in response to a
control signal imposed by the controller and to the external forces
deriving from the contact with other voxels and with the ground.
The control signal is a value in f � [−1, 1], where −1 corresponds
to maximum requested expansion and 1 corresponds to
maximum requested contraction. Expansion and contraction
are modeled in the simulation as instantaneous changes of the
resting length of the springs in the spring-damper systems of the
voxel. The change is such that the area of a voxel subjected to
f � 1 and no external forces is 75% of the area with f � 0, and the
area with f � −1 is 125% of that with f � 0.

The value of the control signal is set for each voxel at each
time-step by the VSR controller. Different controllers have been
used in previous works, ranging from simple ones where the
control signal for each voxel depends only on the time (Kriegman
et al., 2018), to others where a recurrent neural network processes
the VSR sensor readings to produce the control signals (Medvet
et al., 2020a).With the aim of evaluating the adaptability also with

respect to different forms of controller, in this study we consider
two controllers.

In the first and simplest one, that we call phase controller, the
control signal of the ith voxel at time t � kΔt is given by:

f (k)i � sin(2πkΔt + ϕi) (1)

That is, all the voxels are controlled with a sinusoidal signal with
the same amplitude and a frequency of 1 Hz, but different phases
ϕi. An instance of the phase controller for a VSR with n voxels is
completely described by the vector ϕ ∈ Rn of phases.

The second controller, that we call neural controller, is based
on a fully connected feedforward artificial neural network (NN)
and resembles that proposed by Talamini et al. (2019). At each
time step, the controller collects the vector x(k) ∈ Rm of m
readings from the VSR sensors and feeds it to the NN;
instantaneously, the NN outputs a vector y(k) ∈ [−1, 1]n. The
control signal of the ith voxel at time is the ith element of y(k).
Based on the experimental settings of (Talamini et al., 2019), we
here worked with a NN with one hidden layer with 65% of the
neurons of the input layer and with the hyperbolic tangent as the
activation function. An instance of the neural controller for
a VSR with n voxels and m sensors is hence completely
described by the vector θ ∈ Rp of weights of the NN, with
p � 0.65(m + 1)m + 0.65mn, where the +1 is the bias.

When using the neural controller, we equipped each voxel of
the VSR with four sensors, resulting in an overall number of
sensorsm � 4n. At each time step, they sense 1) the ratio between
the current area of the voxel and its rest area, 2) whether the voxel
is or is not touching the ground (the output being 1 or 0,
respectively), 3) and 4) the velocity of the center of mass of
the voxel along the x- and y-axes integral with the voxel.

2.2 Adaptability
One of the main challenges and opportunities of VSRs is their
potential adaptability. Robots made of soft materials may interact
with their environment in a more natural way, inspired by how
biological systems interact with their environments (Trimmer,
2013).

According to Rus and Tolley (2015), these robotic systems are
more adaptable and versatile than traditional ones made of rigid
joints. However, this aspect has never been completely explored,
since most of the research in the literature has dealt with the
automatic design of robots for a very specific task. Kriegman et al.
(2018) and Cheney et al. (2013) considered different aspects of
soft robots such as the lifetime development and an effective
representation and the results are evaluated on their locomotion
performance. Sadeghi et al. (2017) engineered a soft robot
inspired by the plants for growing. Finally, Shen et al. (2017)
took inspiration from cephalopod molluscs for developing a
robot that exhibited interesting underwater propulsion and
maneuvering mechanisms.

Auerbach and Bongard (2014) showed that the morphological
complexity is a result of the selection pressure provided by
increased environmental complexity. Recently, Miras et al.
(2020) wrote about (Auerbach and Bongard, 2014) that: The
authors demonstrated that increasing the complexity of the
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environmental conditions might result in an increase to the
morphological complexity of the creatures. However,
measuring complexity does not provide clear insights
concerning properties of intelligible morphological traits, for
instance, the number of limbs a robot has. Importantly, two
environments could be equally complex, but induce the
emergence of different phenotypic and behavioral traits.
Chvykov et al. (2021) attempted self-organization away from
equilibrium through the use of shape-changing robotic active
matter, and outlined a methodology for controlling collective
behavior. Corucci et al. (2018) investigated the evolution of
walking and swimming soft robots in different environments
to explore the effect of major environmental transitions during
evolution. Horibe et al. (2021) focused on the regeneration of soft
robot bodies using growing neural cellular automata when
damages are induced to the morphology.

An approach for task-agnostic morphology evolution (TAME)
is presented by Hejna et al. (2021), where an information
theoretic objective is used instead of the robot performance in
a specific task. While the used morphologies are not voxel-based
(as in our work) but are encoded as a tree of limbs and joints, the
underlying assumption is similar to ours in that morphologies
that can achieve a large amount of states in a controllable way
may perform well in different tasks. Their approach is based on a
graph neural network as predictor of the actions taken by each
joint and mutual information-based fitness to maximize the
number of possible actions.

Very recently, Bhovad and Li (2021) have proposed soft robots
with origami capabilities, which result in a dynamical and high-
dimensional system that can be harnessed as physical substrate
for RC. The framework of RC in the context of soft robots may
provide a novel view on soft robot bodies as dynamical systems
and foster the investigation about dynamical behaviors that may
be controllable and adaptive.

2.3 Reservoir Computing
Reservoir Computing (RC) is a computational framework derived
from echo state networks (Jaeger, 2002) and liquid state machines
(Fernando and Sojakka, 2003), which leverages on the high-
dimensionality of a dynamical system, i.e., its substrate, to
produce training-efficient linear readout mechanisms as an
alternative to expensive recurrent neural network training. In
practice, dynamical systems that possess the echo state property
(previous inputs “echo” through the network for a certain amount
of time and thereby slowly disappear without being amplified)
may be used.

Recent works on RC, such as (Li et al., 2012; Nakajima et al.,
2013; Tanaka et al., 2019), suggest that soft robotic systems,
thanks to the intrinsically high-dimensionality, non-linearity, and
elasticity property of soft materials, which lead to overall highly
complex and time-varying dynamics under actuation, are
perticularly well suited substrates for RC. Specifically, Li et al.
(2012) and Nakajima et al. (2013) showed that the structure of an
octopus arm inspired soft robot can be exploited as a
computational resource.

Indeed, it has been shown that the rich dynamics used by
reservoir computers are often present in systems that show

complex behaviors, typically at a critical point between
ordered and chaotic dynamics (Schrauwen et al., 2007).

2.4 Criticality
The brain criticality hypothesis states that the brain may operate
in critical state between ordered and disordered dynamics
(Wilting and Priesemann, 2019). Criticality is considered one
of the mechanisms by which complexity arises in nature,
suggesting the possibility that criticality has been selected by
evolution as a beneficial trait (Hesse and Gross, 2014). Theoretical
and experimental work has shown that systems at criticality allow
for optimal information processing and computing properties
(Zimmern, 2020). In practice, in order to achieve criticality, a
system parameter has to be precisely tuned. However, some
dynamical systems such as the brain have the ability to self-
tune through local processes, i.e., self-organized criticality (SOC).
SOC is a property typically observed in slowly driven non-
equilibrium systems with many degrees of freedom and
strongly non-linear dynamics (Bak et al., 1988), which
naturally evolve toward a critical point of phase transition
between chaotic and non-chaotic regimes (Bertschinger and
Natschläger, 2004).

Being close to this phase transition allows systems in which
complex computation is possible, as presented by Langton
(1990), who investigated the conditions that allow
computation in Cellular Automata (CA). Criticality is also
inherently connected to the separation property, used by
Gibbons (2010) for the assessment of neural reservoirs.
Brodeur and Rouat (2012) and Heiney et al. (2019)
demonstrated, for spiking neural networks, that the
regulation of a RC substrate toward criticality may allow to
obtain a more powerful reservoir.

A standard metric for estimation of criticality is to measure
how close is the empirical avalanches distribution in the system
(Bak et al., 1988) to a target power law distribution. Such metric
exploits a convenient representation for the distributions based
on the method presented by Clauset et al. (2009), which is also
used in this work. A graphical explanation of avalanche
quantification is depicted in Figure 2. An example of using
such criticality metric as fitness function in EC is provided in
(Pontes-Filho et al., 2020a; Pontes-Filho et al., 2020b), where the
goal was to evolve CAs toward SOC.

3 OPTIMIZING VOXEL-BASED SOFT
ROBOT MORPHOLOGY FOR CRITICALITY

The central hypothesis of this study is that a VSR morphology
that exhibits the property of criticality is adaptable; that is, VSRs
with that morphology, but possibly different controllers, are good
in a diverse set of tasks. As a consequence, we speculate that
optimizing for criticality results in optimizing for adaptability. In
order to verify this hypothesis, we need a way for measuring the
degree to which a VSR morphology exhibits the criticality
property and a way for optimizing a VSR for criticality. In the
following sections, we describe in detail our approaches for both
things.
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3.1 Criticality of a Voxel-Based Soft Robot
Morphology
We build our definition of criticality of a VSR morphology based
on the concept of avalanche. Intuitively, given a dynamical system
in which an initial input stimulus can be injected, the avalanche is
the resulting outcome and its extension can be measured in time
(how long it lasts) and space (how broadly it involves the system).
A system that is chaotic will often produce extended avalanches,
regardless of the initial input stimulus. Conversely, a system that is
predictable and prone to reach equilibrium will in general produce
large avalanches only for few input stimuli. Based on this intuitive
observation, Bak et al. (1988) showed that systems that lie on the
boundary between chaotic and non-chaotic regimes (the edge of
chaos), i.e., that exhibit criticality, produce avalanches whose
extension distribution resembles the power law distribution.
Summarizing, the closer the avalanche extension distribution to
the power law distribution, the more the system exhibits criticality.

In order to apply this intuitive definition of criticality to the
morphology of a VSR, we need to define what is an input stimulus
and how to measure the avalanche extension, provided that the
morphology itself, i.e., a 2-D grid of voxels, constitutes the
dynamical system.

We define as input stimulus the application of a control signal
fstimulus for exactly one time step to exactly one voxel of the
morphology. For measuring the avalanche extension, we proceed
as follows. We simulate the VSR for tavalanche simulated time,
applying the stimulus at the first time step. Then, at each time step
k and for each ith voxel, we measure the relative area variation:

Δa(k)i �
∣∣∣∣∣∣∣∣∣
a(k)i − a(k−1)i

a0

∣∣∣∣∣∣∣∣∣
(2)

where a(k)i is the area of the ith voxel at k and a0 is the rest area,
the same for every voxel. Finally, we measure the avalanche
extension e as the number of voxel for which maxkΔa(k)i ≥ τ,
i.e., for which a(k)i ≥ τ for at least one time step during the
simulation—τ is a parameter determining the threshold on the
relative area variation. We hence consider only the spatial
extension of the avalanche and measure it as the number of
voxels which were affected by the initial stimulus.

In order to minimize the impact of the effect of the gravity and
to make our definition of criticality agnostic with respect to the
morphology rotation, we perform the simulation in absence of
gravity.

Based on the above definition of avalanche extension and on
the previous studies on avalanche distribution in systems
exhibiting criticality, we measure the criticality as follows.
Given a morphology b composed of n voxels, we obtain n
measures of avalanche extensions E � {e1, . . . , en} by applying
the initial stimulus once for each of the n voxels in b—we recall
that our simulations are deterministic. Then, we estimate the
degree to which the sample E fits a power law distribution by
computing its coefficient of determination (Nagelkerke et al.,
1991) fdet(E) ∈ [0, 1] and its Kolmogorov-Smirnov statistic
(Drew et al., 2000) fKS(E) ∈ R+ computed on E and a
theoretical power law distribution. Finally, we define the
criticality of b as:

crit(b) � (e−fKS(E))
2 + fdet(E) (3)

with crit(b) ∈ [0, 2]. The greater its value, the closer the
distribution of E to the power law distribution, and hence the
closer b to the edge of chaos.

FIGURE 2 | Graphical representation of avalanches in a system composed by 60 cells arranged in a grid. The top row shows an initial activity from a single cell at
Frame 1 that propagates to three cells at Frame 2, eventually ending at Frame 6. The bottom row shows the avalanche size and duration. Image adapted from (Heiney
et al., 2021) in the context of biological neural networks on Micro-Electrode Arrays.
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3.1.1 Choice of the Threshold τ for the Relative Area
Variation
In practice, a key role in the quality of the measure of criticality is
played by the parameters fstimulus, tavalanche, and τ. Since the
mechanical model of the VSR in our simulation employs a
damping factor for linear and angular velocities (see Medvet
et al. (2020b)), it follows that tavalanche can be set to a long-
enough value: after preliminary experiments, we chose
tavalanche � 30 s—for all the other parameters, including the
time step duration of Δt � 1/60 s, we used the default values
of 2D-VSR-Sim.

Concerning fstimulus and τ, they obviously interact: the stronger
the stimulus, the smaller the threshold needed to count a voxel as
contributing to the avalanche. We hence set the largest value for
the stimulus, i.e., fstimulus � 1, and devised an experimental
procedure for finding an appropriate value for τ. Ideally, the
threshold value should allow for a large variation in the extension
of the avalanches: that is, for a given morphology it should be
large enough to have some stimulus for which the avalanche is not
widely extended and small enough to have some stimulus for
which the avalanche is extended. However, the size of the
morphology clearly impacts on such ideal threshold value. For
this reason, we assume that τ depends on the number n of voxels
in the morphology b for which the criticality is measured (by
means of Eqs. 2, 3) and we fit experimentally a model for τ(n), as
follows.

We consider the square morphologies of ℓ × ℓ voxels, with
ℓ ∈ {3, . . . , 10} and, for each one, we: 1) experimentally find the
greatest value τℓall such that every stimulus corresponds to an
avalanche of all the ℓ2 voxels—that is, ∀τ > τℓall there is at least one
stimulus, i.e., at least one voxel of the morphology to which to
apply the initial control signal, that corresponds to an avalanche
not involving the entire morphology; 2) experimentally find the
lowest value τℓone such that every stimulus corresponds to an
avalanche of only one voxel (the one to which the stimulus is
applied).

Then, we consider 10 values for τ evenly distributed in
[τℓall, τℓone] and, for each one, we measure the standard

deviation σE of the corresponding avalanche extensions.
Finally, we determine the value τℓopt that corresponds to the
largest σE.

This way, we obtain for each one of 10 robots of sizes ranging
from n � 9 to n � 100 an estimate of an optimal threshold value,
i.e., a τ value that maximizes the variability of the observed
avalanche extensions. We finally determine τ(n) by fitting a
quadratic model with those estimates:

τ(n) � 9.24 × 10−7n2 − 1.42 × 10−4n + 6.10 × 10−3 (4)

Figure 3 shows the fitted model and the values for τ(n)
measured with the procedure described above.

3.2 Evolutionary Optimization of Criticality
We aim at optimizing a VSR morphology for criticality, i.e., we
want to search in the space of VSR morphologies for the
one that corresponds to the largest criticality, as defined
in Eq. 3.

We tackle this optimization problem with EC: this large family
of optimization methods has been showed to be effective for
uncommon search spaces (here, the space of VSR morphologies)
and objective functions that are not well characterized. Indeed,
EC has been used extensively for the optimization of VSRs: e.g.,
the morphology in (Cheney et al., 2013), the controller in
(Talamini et al., 2019), the sensory apparatus in (Ferigo et al.,
2021).

Two key components of any optimization performed by
means of EC are the solution representation and the
Evolutionary Algorithm (EA). Concerning the former, we
represent VSR morphologies as numerical vectors in Rℓ

2
.

Given a genotype g ∈ Rℓ
2
, where ℓ is the side length of a

square ℓ × ℓ grid enclosing the largest representable
morphology, we obtain the corresponding morphology b with
the iterative procedure of Algorithm 1. We associate each
element of g with a position of an empty ℓ × ℓ grid and
iteratively fill the grid with nvoxel voxels, a parameter of the
representation, starting from the grid cells corresponding with
the largest elements of g and taking care to build a “connected”
morphology, i.e., one in which each voxel is reachable from other
voxel by moving through adjacent voxels.

Algorithm1: The algorithm formapping a genotype g ∈ Rℓ
2
to

a morphology b of nvoxel voxels enclosed in a ℓ × ℓ grid.

For the evolutionary optimization of the morphology, we use
the simple EA of Algorithm 2. We iteratively evolve a population
of npop solutions for ngen generations. At each generation, we

FIGURE 3 | Experimental values for the optimal threshold τ(n) (see text)
and corresponding fitted model.
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build the offspring of npop individuals by selecting parents with
tournament selection and applying mutation or crossover with
pmut or 1 − pmut probability. Finally, we merge the offspring and
the parents and we discard the worst solutions until the resulting
size is again npop.

Algorithm 2: The EA for the optimization of the morphology.

We initialize the population by randomly samplingU(0, 1) for
each element of each genotype. We select solutions to reproduce
with a tournament of size ntour, i.e., we first pick ntour solutions
randomly with repetition, then we select the best one among
them. For the mutation, we use the Gaussian mutation, according
to which each element g′i of the child g ′ is obtained by adding a
Gaussian noise with zero mean to the corresponding element gi of
the parent g , i.e., g ′i � gi + N(0, σmut). For the crossover, we use
the standard uniform crossover, in which each element g′i of the
child g ′ is the corresponding element of one of the two parents
with uniform probability.

We remark that we do not optimize the morphology of the
VSR for a specific task. Instead, we optimize for criticality, on the
assumption that great criticality corresponds to a morphology
that is adaptable to different tasks.

4 EXPERIMENTS AND RESULTS

In this section, we describe the experimental work carried out to
verify our hypotheses. First, we investigate whether it is possible
to evolve VSR morphologies that are optimized for criticality,
and therefore task-agnostic. In order to quantify the level of
criticality of VSR morphologies, we measure the avalanche
distribution produced by each morphology as described in
Section 3.1.

Second, we test the criticality-evolved morphologies on three
different tasks. The research hypothesis here is that the
morphologies evolved for criticality perform reasonably well on

all tasks, therefore showing adaptation. In this step, we also test
some handcrafted morphologies that are expected to be very well
suited for specific tasks. While the handcrafted morphologies may
be better than the criticality-evolved ones on specific tasks, we
expect the overall ability to solve different tasks to be inferior than
the criticality-evolved morphologies. In order to test the criticality-
evolved morphologies as well as the handcrafted morphologies on
the different tasks, we optimize the phase controller (see Section
2.1.2) of several VSRs for each one of the morphologies. We do the
optimization with a state-of-the-art EA, detailed below.

Third, we explore whether there are cheaper ways to optimize
task-agnostic morphologies with similar dynamical properties as
those evolved for criticality. To do that, we start with the
observation that VSRs that show higher degree of criticality
seem to have morphologies that are less structured, with some
degree of randomness in the components stretching out of the
bodies. We introduce a pseudo-random generation method that,
starting from a voxel, adds a new voxel in one of the neighboring
positions. Also, we introduce a random method that adds voxels
in random locations until a connected component of a target size
is achieved. We measure the criticality of both randomized
methods and we test the resulting VSRs on the same three
tasks used in the previous experiments (for comparison) by
optimizing their phase controllers.

Finally, we investigate whether the criticality-evolved
task-agnostic morphologies retain their adaptability also
when coupled with a neural controller (see Section 2.1.2),
rather than a phase controller. Again, we optimize the
controllers for each task and each morphology using a
state-of-the-art EA.

We performed all the experiments using publicly available
software tools: JGEA1 for the evolutionary optimization and 2D-
VSR-Sim2 for the VSR simulations.

FIGURE 4 | Criticality of the best morphology at each iteration of the EA
used for optimizing the morphologies. The solid lines indicates the median
across the 10 runs; the shaded area corresponds to the interquartile range
(from 25-th to 75-percentile).

1https://github.com/ericmedvet/jgea.
2https://github.com/ericmedvet/2dhmsr.
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4.1 Task-Agnostic Evolution of Voxel-Based
Soft Robots Morphology
In this first experiment, we aim at evolving VSR morphologies
using a fitness function that is purely based on the criticality
measure introduced in Section 3.1. Therefore, the aim is to evolve
robot morphologies that are agnostic to the task they may be
tested for. Our assumption is that greater criticality corresponds
to a morphology that is adaptable, once associated with a
controller, to different tasks.

We executed the EA of Section 3.2 ten times with different
random seeds. We set the parameters related to the
representation to ℓ � 10 and nvoxel � 20: this means that we
optimized morphologies of 20 voxels enclosed in a 10 × 10
grid. Concerning the EA, we used the following parameters:
npop � 1000, ngen � 200, σmut � 0.01, ntour � 10. We chose
these values after a few preliminary experiments; we verified
that small variations did not lead to drastically different results.
We obtained one morphology at the end of each execution,
i.e., out of each evolutionary run. Figure LABEL:fig:fitness-
evolution,fig:bodies-criticality-evo summarize the results.

Figure 4 shows the criticality of the best morphology during
the evolution (median value and interquartile range across the 10
runs). It can be seen that there is an improvement of the
criticality: the largest portion of the improvement is obtained
in the first stage of the evolution. The figure also shows that there
is still an intrinsic boundary which prevents the evolution to find
a morphology with maximum theoretical criticality,
i.e., crit(b) � 2—see Eq. 3. We speculate that larger values for
the criticality could be obtained with different, possibly larger,
values for nvoxel, i.e., with morphologies with more voxels.
However, what matters is that the morphologies obtained
from the evolutionary process have reached higher criticality
values than all the other baselines presented in the following
experiments.

Figure 5 shows the final 10 optimized morphologies, i.e., for
each run, the morphology of the final population with the largest
value for the criticality. The evolved morphologies have several
offshoots that are stretching out from the “central core” (i.e., the
central portion of the morphology). Apparently, there is not a
recurrent pattern in the placement, orientation, and length of
those offshoots. In addition, the largest central cores are fairly
small, ranging from rectangles of size 2 × 2 to 2 × 3, and only a
single case with a rectangle of size 3 × 3 voxels. This is in stark

contrast with morphologies traditionally tested in the literature,
which typically involve highly structured and compact bodies.

4.2 Validating the Adaptation to Different
Tasks
In order to test how adaptable the task-agnostic morphologies
evolved in the previous experiment are, we consider three tasks.
For each task and each morphology, we evolve a phase controller
of a VSR with that morphology; we drive the evolution with a
measure of how well the VSR is performing the task. The more
adaptable a task-agnostic morphology, the better the
performance on all tasks of VSRs with evolved task-specific
controllers and that morphology.

4.2.1 Tasks
We considered the tasks described below. In each task, we simulate
the VSR under evaluation for a fixed time in a predefined, task-
specific environment (with gravity); upon the simulation, we take a
quantitative measure f of the degree of task achievement.

In the locomotion task, the VSR has to run along a flat terrain
the farthest possible. The simulation lasts 20 s (simulated time)
and wemeasure the average velocity of the VSR along the positive
x-axis, i.e., we measure the difference between the x-coordinate of
the center of mass of the VSR at t � 20 s and at t � 0 s and divide
it by 20.

In the jump task, the VSR has to jump the highest possible. The
simulation lasts 20 s and we measure the height of the highest
jump done in that interval, i.e., the difference between the

FIGURE 5 | Morphologies evolved for criticality together with the
corresponding value of criticality.

FIGURE 6 | Example of cave-like environment used in the escape task.
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maximum observed value of the y-coordinate of the center of
mass and its value at t � 0 s—the latter is considered as a
reference point to allow a fair comparison of VSRs whose
morphology extends mainly along different directions. In this
task, the environment is limited by two walls on left and right:
interestingly, some of the VSRs evolved to attempt to climb those
walls, rather than to actually jump.

Finally, in the escape task, the VSR has to exit from a cave-like
environment. Here the VSR initially starts in an environment
with a ceiling, a wall on the left, and a narrow aperture on the
right. An example of a cave-like environment is shown in
Figure 6, where the aperture has an initial height of 75% of
the VSR largest dimension, and decreases slowly. The simulation
lasts 40% and wemeasure the distance “walked” by the VSR along
the positive x-axis, as for the locomotion task. Differently from
the latter, however, the VSR here does not only need to exhibit a
gait that allows to move effectively, but it also needs to “squeeze”
itself in order to actually pass through the aperture.

4.2.2 Controller Evolution
Given a morphology and a task, we evolve a phase controller
using Covariance Matrix Adaptation Evolutionary Strategies
(CMA-ES) (Hansen et al., 2003). CMA-ES is widely
considered as a state-of-the-art EA for continuous
optimization, i.e., for optimization in the space Rp. Since a

phase controller is defined by the numerical vector of the n
phases (see Section 2.1.2), n being the number of voxels in the
morphology, CMA-ES perfectly fits the case. Indeed, it has been
recently shown that this EA works well also for VSRs (Ferigo
et al., 2021; Medvet and Bartoli, 2021).

CMA-ES iteratively optimizes a numerical vector in the form
of a multivariate normal distribution. At each iteration, it samples
the distribution obtaining a number λ of solutions and then
updates the parameters of the distribution by recomputing them
based on the best ⌊λ2⌋ solutions, i.e., those with the largest task
achievement measure f. In the latter operation, CMA-ES employs
non trivial heuristics that are detailed in (Hansen, 2016).

We used CMA-ES with the default parameters suggested in
(Hansen, 2016): we set the initial step size σ � 0.5 and the
population size λ � 4 + ⌊3 log p⌋, p � nvoxel � 20 being the
dimension of the search space. We set the initial vector of
means of the multivariate normal distribution by sampling
uniformly the interval [−1.0, 1.0] for each vector element. We
stopped the execution of CMA-ES after 10,000 fitness evaluations.

4.2.3 Comparison Baselines: Handcrafted
Morphologies
To benchmark the adaptability of the criticality-evolved
morphologies, we consider also four manually designed
morphologies that we show in Figure 7.

For theWorm and the Bipedmorphologies, we got inspiration
by the results of (Talamini et al., 2019; Medvet et al., 2020b;
Medvet et al., 2020c), where they have been thoroughly assessed
in the task of locomotion. The Box and RevT are some of the
simplest morphologies that can be manually designed. All these
morphologies are made of exactly nvoxel � 20, and they all exhibit
a low criticality score.

4.2.4 Results and Discussion
For each task and each morphology, we executed CMA-ES
10 times with different random seeds. We hence performed 3 ×
(10 + 4) × 10 evolutionary runs. After each run, we took note of
the task achievement degree f of the best final VSR. Then, for each
morphology and task, we computed the median mf and the
standard deviation σ f of f across all the 10 runs. Once we
completed all the runs for a task, we ranked the morphologies
according to their mf on that task and assigned a task-specific

FIGURE 7 | Handcrafted morphologies, designed based on domain
knowledge, together with the corresponding value of criticality.

TABLE 1 | Results for the optimized and handcrafted morphologies coupled with
the phase controller. For each task and eachmorphology, the table shows the
medianmf and the standard deviation σ f of f across all the 10 runs. Moreover, the
table also shows the task-wize ranks r, the average rank μr , and the criticality of
each morphology.

Locomotion Jump Escape

Morph mf σf r mf σf r mf σf r Crit μr

Opt-1 2.54 0.2 5 3.03 0.3 1 0.82 0.3 3 0.78 3
Biped 5.96 1.3 2 2.85 0.3 2 0.08 0.0 12 0.26 5
Opt-9 2.31 0.7 7 2.14 0.4 6 0.79 0.1 4 0.75 6
Opt-6 2.16 0.5 9 2.03 0.4 8 1.20 0.3 2 0.76 6
RevT 4.44 5.2 3 2.23 0.2 5 0.34 0.0 11 0.28 6
Worm 6.32 0.6 1 2.40 0.6 4 0.04 0.0 14 0.21 6
Box 4.41 1.0 4 2.50 0.4 3 0.04 0.0 13 0.17 7
Opt-2 1.81 0.5 10 0.79 0.0 13 1.64 0.4 1 0.77 8
Opt-5 2.27 0.5 8 1.69 0.3 9 0.52 0.2 8 0.78 8
Opt-3 1.20 0.2 11 2.14 0.3 7 0.43 0.2 9 0.79 9
Opt-4 2.41 0.6 6 1.57 0.3 11 0.42 0.2 10 0.77 9
Opt-0 0.93 0.4 13 1.58 0.2 10 0.73 0.1 6 0.77 10
Opt-7 1.01 0.4 12 1.46 0.1 12 0.67 0.1 7 0.77 10
Opt-8 0.72 0.1 14 0.74 0.4 14 0.75 0.1 5 0.77 11

FIGURE 8 | Scatter plots of the criticality vs. the median task
achievement degree mf , one point for each morphology, one plot for
each task.
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rank r to each morphology. Finally, we computed for each
morphology the average rank μr by considering the mean of
the ranks on the three tasks: the lower μr , the greater the
adaptability. Table 1 and Figure 8 summarize the results.

Table 1 shows all the salient indices for the 10 optimized
morphologies (denoted by Opt-n, with n ∈ {0, . . . , 9}) and the
four handcrafted morphologies. The morphologies are sorted
according to their average rank μr . The foremost finding is that
the morphology that ranks, on average, the best on the three tasks
is an optimized morphology, namely Opt-1. That is, Opt-1 is the
most adaptable morphology among the 14 considered
morphologies.

A more detailed analysis of the results can be done by
observing the rankings task by task. Considering only the
results on the locomotion task, it is clear that the handcrafted
morphologies, namely Worm, Biped, RevT, and Box, are actually
the most effective ones. However, it can also be seen from Table 1
that some of the handcrafted morphologies, while being often
extremely effective on a specific task, perform poorly on other
tasks. For instance, the Worm is the most effective in locomotion
and the least effective in escape.

The above considerations are corroborated by Figure 8. The
figure shows, for each task, a scatter plot of the median task
achievement degree mf vs. the criticality, one point for each
morphology. It can be seen that the handcrafted morphologies are
very effective in the locomotion task (in facts, two of them have
been designed and extensively used purposely for that task) while
they are all poorly effective for the escape task. Interestingly, the
only handcrafted morphology that performs decently on the
escape task (RevT) is also the one with the largest criticality.

We performed an analysis of the statistical significance of the
results of this experiment. Precisely, we aimed at testing two null
hypotheses. First, we tested, for each task, the null hypothesis that
morphologies optimized for criticality obtain the same median
task achievement degree mf of handcrafted morphologies. We
verified that the null hypothesis can be rejected for two on three
tasks, since the difference between the correspondingmf values is
statistically significant (Mann-Whitney U test with α � 0.05 and
Bonferroni correction: p-value is 0.002≤ α

m, 0.028> α
m, and

0.006≤ α
m, with m � 3, respectively for locomotion, jump, and

escape). Second, we tested the null hypothesis that, considering all
tasks, morphologies optimized for criticality achieve the same
overall average rank μr of handcrafted morphologies. We verified
that the null hypothesis cannot be rejected, since the difference of
μr values is not statistically significant (p-value is 0.14> α).

4.3 A Cheap Proxy for Task-Agnostic
Evolution
In the previous experiments, we observed that the criticality
appears to be a good predictor of the adaptability: VSRs based
on morphologies evolved for criticality using a task-agnostic
optimization showed to be good, on average, on different
tasks. However, evolution toward criticality is a resources
intensive process. We hence explored the possibility of
designing a generative procedure able to build, from scratch
and in a one-shot fashion, a morphology that exhibits good
criticality.

For designing that procedure, we observed the features of the
optimized morphologies (see Figure 5). We also considered the
raw results of the experiments of Section 4.1. The solutions in the
initial populations of the runs of the criticality optimizations
exhibited criticality values larger than those of the handcrafted
morphologies (see Figure 4): that is, the joint result of the
genotype initialization and the solution representation
produced alone, without evolutionary pressure, morphologies
with larger criticality than the handcrafted ones. Based on
these considerations, we devised a non-deterministic procedure
for generating morphologies with good criticality, as follows.

Given an unlimited empty grid, we start by putting a voxel in a
randomly chosen position in the grid. Then, we iteratively add
one voxel at a position adjacent to the last added voxel until nvoxel
voxels have been added. By adding each voxel close to the last one,
the overall morphology ends up having those kind of offshoots
that we observed in the optimized morphologies. We call this
procedure Grow. We executed it 10 times with nvoxel � 20 and
different random seeds: Figure 9 shows the 10 obtained
morphologies along with their criticality value.

As a comparison baseline, we also devised another non-
deterministic procedure that still generates morphologies
randomly, but does not attempt to mimic the shape of the
optimized morphologies, namely their offshoots. In this case,
we simply add voxels at random positions of an initially empty
ℓ × ℓ grid until we obtain a connected portion of the grid
consisting of nvoxel voxels. We call this procedure Random. As
for the Grow procedure, we executed the Random procedure
10 times with different random seeds—and with ℓ � 10 and
nvoxel � 20: Figure 10 shows the 10 obtained morphologies
along with their criticality value.

By looking at Figure LABEL:fig:bodies-grow,fig:bodies-
random it can be seen that the Grow morphologies are

FIGURE 9 |Morphologies generated with the Grow procedure together
with the corresponding value of criticality.

FIGURE 10 | Morphologies generated with the Random procedure
together with the corresponding value of criticality.
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visually more similar to the optimized ones (see Figure 5) than
the Random morphologies. Moreover, the criticality of the Grow
morphologies is in general larger than the criticality of the
Random morphologies. We remark that both procedures are
task-agnostic, as the criticality-driven evolution of the
morphology.

4.3.1 Adaptability of Grow Morphologies
As a further validation of the fact that the Grow procedure can be
a cheap proxy for the criticality-driven evolution of
morphologies, we repeated experiments of Section 4.2 for the
10 Grow morphologies of Figure 9. We also included the 10
Random morphologies of Figure 10. We hence performed other
3 × (10 + 10) × 10 evolutionary runs of CMA-ES. Table 2
summarizes the results.

It can be seen that the Grow procedure, i.e., the one inspired by
the results of the criticality-driven evolution results, generates
morphologies that exhibit, on average, a greater adaptability
(i.e., lower μr) than the Random morphologies. Interestingly,
the two most adaptable morphologies are Grow-4 and Grow-5,
that outperform even the ones evolved toward criticality, in terms
of overall ranking.

We performed the same statistical significance analysis of
Section 4.2.4. Considering mf separately for each task, the

difference between Grow and optimized is never statistically
significant and the difference between Grow and handcrafted
is statistically significant for two on three tasks (jump not
significant). Considering μr , the differences between optimized
morphologies and each one of the other types are not statistically
significant.

A few videos of evolved VSRs with the morphologies obtained
with the procedures above in the three considered tasks are
available online: locomotion (https://www.youtube.com/watch?
v�rRPI-WvezY0), jump (https://www.youtube.com/watch?
v�5JYwQPptVZE), escape (https://www.youtube.com/watch?
v�1G8eO5DCRLM).

4.4 Validating the Adaptation to Different
Controllers
We further investigated the adaptability of the morphology
generated with the task-agnostic procedures described
above—namely, the criticality-driven evolution, the Grow, and
the Random procedures, by repeating the same validation process
of the previous sections with a different controller. Here, we used
the neural controller described in Section 2.1.2. This controller is
more complex than the phase one for two reasons: 1) it is based
on a neural network, and can hence generate a richer dynamics in

TABLE 2 | Results for the optimized and randomly generated morphologies coupled with the phase controller. For each task and each morphology, the table shows the
medianmf and the standard deviation σ f of f across all the 10 runs. Moreover, the table also shows the task-wize ranks r, the average rank μr , and the criticality of each
morphology.

Morph Locomotion Jump Escape

mf σ f r mf σf r mf σf r Crit μr

Grow-4 3.02 0.9 1 2.89 0.8 3 1.21 0.2 7 0.35 4
Grow-5 2.86 0.5 4 3.37 1.0 1 1.07 0.3 11 0.34 5
Opt-1 2.54 0.2 5 3.03 0.3 2 0.82 0.3 15 0.78 7
Opt-6 2.16 0.5 10 2.03 0.4 7 1.20 0.3 8 0.76 8
Random-6 2.03 0.2 11 1.58 0.2 14 2.09 0.1 1 0.26 9
Grow-9 2.94 0.3 3 1.98 0.3 9 1.02 0.2 14 0.31 9
Random-5 1.54 0.2 14 1.66 0.2 12 1.66 0.2 2 0.28 9
Opt-9 2.31 0.7 8 2.14 0.4 4 0.79 0.1 16 0.75 9
Grow-0 2.97 0.3 2 2.00 0.5 8 0.69 0.2 22 0.28 11
Random-8 1.35 0.2 18 1.42 0.2 19 1.60 0.2 4 0.29 14
Opt-2 1.81 0.5 13 0.79 0.0 26 1.64 0.4 3 0.77 14
Random-3 1.42 0.2 17 1.32 0.2 21 1.58 0.3 5 0.22 14
Grow-1 1.90 0.3 12 2.06 0.3 6 0.51 0.1 25 0.34 14
Opt-5 2.27 0.5 9 1.69 0.3 11 0.52 0.2 24 0.78 15
Grow-8 2.46 0.4 6 1.62 0.1 13 0.20 0.0 30 0.34 16
Opt-3 1.20 0.2 19 2.14 0.3 5 0.43 0.2 26 0.79 17
Grow-3 0.98 0.4 25 1.39 0.4 20 1.23 0.4 6 0.30 17
Opt-4 2.41 0.6 7 1.57 0.3 16 0.42 0.2 28 0.77 17
Random-0 1.01 0.1 23 1.46 0.2 18 1.07 0.1 12 0.23 18
Random-2 1.01 0.0 24 1.24 0.1 22 1.16 0.1 9 0.19 18
Random-1 1.47 0.1 15 1.12 0.2 24 0.77 0.0 18 0.26 19
Grow-2 1.17 0.4 20 1.71 0.5 10 0.43 0.1 27 0.35 19
Grow-7 1.13 0.1 21 0.77 0.2 28 1.15 0.1 10 0.26 20
Opt-0 0.93 0.4 26 1.58 0.2 15 0.73 0.1 20 0.77 20
Opt-7 1.01 0.4 22 1.46 0.1 17 0.67 0.1 23 0.77 21
Random-4 0.78 0.1 27 0.89 0.0 25 1.03 0.1 13 0.25 22
Random-7 0.65 0.0 29 1.18 0.2 23 0.78 0.0 17 0.13 23
Grow-6 1.46 0.4 16 0.77 0.2 27 0.32 0.2 29 0.38 24
Opt-8 0.72 0.1 28 0.74 0.4 29 0.75 0.1 19 0.77 25
Random-9 0.58 0.0 30 0.54 0.0 30 0.70 0.1 21 0.45 27
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the control signals and 2) it collects and processes the readings of
the sensors the robot is equipped to.

We speculate that the ability to sense itself and the
environment might be ever more beneficial with irregular
morphologies.

We performed the 3 × (10 + 10 + 10 + 4) × 10 runs of CMA-
ES, whose outcomes we summarize in Table 3—we remark that
the dimension of the search space was here much larger than the
case of the phase controller (p ≈ 2000 vs. p � 20). The table
shows, for each morphology, the criticality value and the
average rank μr . We present two views of the results: on the
left, we compare optimized and handcrafted morphologies; on
the right, we compare the morphologies obtained with the three
task-agnostic procedures.

Looking at the results presented in Table 3, our thesis is
further corroborated. On one hand, the number of optimized
morphologies that exhibit greater adaptability (i.e., lower μr) than
the handcrafted morphologies is larger than the case of the phase
controller. On the other hand, three of the top four morphologies
are those evolved for criticality, rather than generated randomly
with the Grow or Random procedures. As for the results with the
phase controller, the differences in average rank μr between
optimized morphologies and each one of the other types are
not statistically significant. These results suggest that a more
complex controller may be needed to exploit the full potential of
morphologies evolved for criticality, i.e., for showing a complex
behavior between order and chaos.

5 CONCLUSION

In this work, we have introduced a task-agnostic approach for
measuring and predicting the adaptability potential of a soft
robotic body based on the definition of criticality, a property
of dynamical systems that operate at a phase transition between
order and disorder. To this extent, we have proposed an
algorithm for guiding the automatic design of adaptable soft
robotic morphologies by means of evolutionary computation
that, without the need to define a specific target task, relies
entirely on the resulting dynamics of the robots morphology
measured as the avalanche distributions, i.e., how close they
are to a power law distribution. The morphologies evolved
with our method obtain criticality values far greater than
those handcrafted with domain knowledge to perform
specific tasks.

We have then validated the evolved morphologies on three
tasks requiring different motor skills, against some manually
designed morphologies inspired by previous works where
domain knowledge is considered, using a simple non-sensing
control algorithm based on periodic control signals. The results
show that our criticality-based approach results into more
adaptable robots, i.e., performing reasonably well in the
different tasks, w.r.t. the manually crafted ones. On the other
hand, the robots optimized for specific tasks perform poorly on
other tasks.

Motivated by the computational cost of the criticality
optimization, we have then considered other design algorithms
based on randomness, which on the contrary are not
computationally expensive. Such randomized algorithms may
produce morphologies that are visually similar to those
evolved for criticality, but with criticality values that are
inferior to the evolved ones (while being higher that the
handcrafted robots). In addition, such morphologies generated
with randomized methods show sometimes promising
adaptability.

Finally, we have repeated the validation process to
investigate whether a sensing controller based on neural
networks would also be able to control the criticality
evolved robots, and thus show adaptability to the different
tasks. Neural network sensing controllers allow the robots with

TABLE 3 | Results for the optimized and randomly generated morphologies
coupled with the neural controller. For each morphology, the table shows the
average rank μr and the criticality of each morphology; μr is computed for
optimized and handcrafted morphologies, on the left, and for the morphologies
obtained with the three task-agnostic procedures, on the right.

Morph Crit μr

Opt-5 0.78 1
Opt-7 0.77 2
Opt-1 0.78 2
Opt-6 0.76 4
Opt-9 0.76 7
Opt-4 0.77 7
Worm 0.22 7
Opt-8 0.77 9
RevT 0.29 9
Biped 0.26 9
Opt-2 0.78 9
Box 0.17 11
Opt-0 0.78 12
Opt-3 0.79 14
Opt-5 0.78 1
Grow-5 0.34 2
Opt-1 0.78 3
Opt-7 0.77 4
Random-0 0.28 4
Random-9 0.46 6
Random-1 0.26 7
Opt-6 0.76 8
Random-5 0.28 10
Opt-9 0.76 12
Grow-2 0.35 12
Opt-4 0.77 12
Grow-4 0.35 14
Random-8 0.30 15
Opt-2 0.78 15
Opt-8 0.77 16
Random-6 0.27 16
Grow-1 0.34 17
Random-2 0.19 18
Random-3 0.22 20
Random-7 0.13 20
Grow-3 0.30 22
Opt-0 0.78 23
Grow-0 0.28 24
Random-4 0.25 24
Opt-3 0.79 26
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optimized morphologies to leverage their body complexity
more than non sensing controllers. Provided with
distributed sensing, the criticality evolved morphologies
reach the highest overall ranking when compared to any
baseline. This promising result suggests that morphologies
supporting critical behavior are more adaptive independently
of the type of controller being used, and independently of the
target task.
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