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During communication, humans express their emotional states using various modalities
(e.g., facial expressions and gestures), and they estimate the emotional states of others by
paying attention to multimodal signals. To ensure that a communication robot with limited
resources can pay attention to such multimodal signals, the main challenge involves
selecting the most effective modalities among those expressed. In this study, we propose
an active perceptionmethod that involves selecting the most informative modalities using a
criterion based on energy minimization. This energy-based model can learn the probability
of the network state using energy values, whereby a lower energy value represents a higher
probability of the state. A multimodal deep belief network, which is an energy-based
model, was employed to represent the relationships between the emotional states and
multimodal sensory signals. Compared to other active perception methods, the proposed
approach demonstrated improved accuracy using limited information in several contexts
associated with affective human–robot interaction. We present the differences and
advantages of our method compared to other methods through mathematical
formulations using, for example, information gain as a criterion. Further, we evaluate
performance of our method, as pertains to active inference, which is based on the free
energy principle. Consequently, we establish that our method demonstrated superior
performance in tasks associated with mutually correlated multimodal information.
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1 INTRODUCTION

Humans use signals of various modalities to communicate their internal states to one another. For
instance, when interacting, humans use facial expressions, gestures, and vocalizations to express their
emotions and to perceive the emotions of others. Complex relationships exist between such
multimodal signals. Sometimes, such multimodal signals demonstrate correlative relationships,
and at other times, they exhibit complementary characteristics. Specifically, multimodal expressions
of emotion have strong interrelations because the emotional states of humans are linked to their
bodies and are widely expressed in their multimodal signals. Therefore, it is necessary to select
informative signals to estimate the emotions of others accordingly.

Various researchers have proposed the development of communication robots that can estimate
human emotions. Breazeal and Aryananda (2002) used acoustic features to determine the emotional
states of interaction partners. Barros et al. (2015); Elfaramawy et al. (2017) used facial expressions
and gestures as visual signals for emotion recognition. In contrast, Breazeal (2003); Watanabe et al.
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(2007); Lim and Okuno (2014); Barros and Wermter (2016)
focused on multimodal expressions to recognize the emotional
states of interaction partners. For instance, Lim and Okuno
(2014) developed a communication robot that was able to
acquire multimodal representations of human emotions using
human voice and gait. Barros and Wermter (2016) developed a
multimodal deep neural network that uses audio-visual signals to
recognize the emotional state of humans. However, a robot
cannot always deal with all the available modality information
simultaneously. Thus, it must actively access the dynamically
changing emotional expressions of the interaction partner instead
of accessing all the information of the interaction partner over
time. We believe that it is necessary to estimate emotions using as
little information as possible owing to the inherent resource
limitations of robotic systems and inevitably continuous
changes in an interaction partner’s emotional state during the
interaction process. Moreover, not every modality signal
meaningfully indicates the actual state of a partner because
some signals may contain noise or ambiguity. The robot
should select the most informative modalities among those
available to estimate the target states.

In the field of robotics, the issue of attention control for
obtaining information to update estimations is formulated as
active perception. Inmany studies, the attention point of a robotic
camera has been controlled or actions have been selected to
perceive sensory signals (Sakaguchi, 1993; Roy et al., 2004; Chen
et al., 2011). For instance, Taniguchi et al. (2018) proposed an
active perception strategy designed to determine the order of
perception for multimodal signals (e.g., vision, audio, and tactile
signals) in an object recognition task. The proposed method
involved selecting a modality that maximized information gain
(see Section 2 for details). However, we hypothesize that there is a
large gap between object recognition and emotion estimation.
Taniguchi et al. (2018) assumed that the multimodal signals from
an object were independent of each other. In contrast,
multimodal signals relating to human emotions may have
complex interrelationships with one another. Few works have
considered the relative effectiveness of active perception methods
for modality selection during emotion estimation.

In neuroscience, action control for obtaining perception is
investigated as active inference. Active inference (Friston et al.,
2017) is an action selection method based on the free energy
principle, which is a fundamental principle related to the human
brain. The key concept underlying active inference is that the
human brain performs actions to reduce the prediction error
between the state of the environment (i.e., outside the brain) and
state prediction. From this perspective, the attention shift in
multimodal signals can be regarded as the action execution to
switch modalities to reduce the estimation uncertainty. Recently,
some researchers have studied the relationship between active
inference and other algorithms, such as reinforcement learning,
active learning, and control as inference (Hafner et al., 2020;
Imohiosen et al., 2020). Based on the aforementioned studies, we
consider that the neural mechanism of active inference also
accounts for active perception.

The objective of our research is to apply the concept of active
inference to estimate the emotions of humans in multimodal

human–robot interactions, as shown in Figure 1. We propose an
active perceptionmethod based on expected energy minimization
in an energy-based model. This model represents the joint
probabilities of observation and latent variables according to
an energy value function. A lower energy value corresponds to
a higher probability (i.e., lower uncertainty) of the data in the
proposedmodel. Therefore, the proposed approach enables active
perception by minimizing the expected energy, which is
calculated from the predicted unobserved modalities, among
all selectable modalities. Moreover, it employs a multimodal
deep belief network (MDBN), which is an energy-based
model, and acquires a shared representation among
multimodal signals (Ngiam et al., 2011; Horii et al., 2016,
2018). For instance, Ngiam et al. (2011) fused audio-visual
signals using a bimodal DBN to estimate spoken digits and
letters from human speech. We use an MDBN to learn the
relationship between the multimodal expressions of humans
and their emotional states by abstracting and integrating
multimodal signals. As a first step in this study, we used the
IEMOCAP dataset, which is a multimodal human–human
interaction dataset, to train the MDBN. We then evaluated the
proposed active perception method on its ability to perform
human emotion estimation. The experimental results show
that the proposed method achieved higher accuracy using less
information than other active perception methods for emotion
estimation.

Finally, we discuss the relationship between the proposed
active perception method based on energy minimization and
active perception based on information gain maximization from
the perspective of expected free energy minimization, which is a
key component of the active inference theory.

The remainder of this paper is organized as follows. Section 2
presents related work on robotics and neuroscience. Section 3
introduces energy-based models and their characteristics. Section
4 outlines and describes the mathematical formulation of our
method based on energy minimization. Section 5 provides the
details of the dataset and experimental settings. Subsequently,
Section 6 presents the experimental results and discusses the
difference between the proposed active perception method and

FIGURE 1 | Action selection during multimodal affective interaction
between a human and robot.
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others based on the results and mathematical formulations.
Finally, Section 7 provides our final conclusions and suggests
some issues to be addressed in future research.

2 RELATED WORK

2.1 Active Perception in Robotics
Many researchers have investigated active perception, which is an
important skill for robots that interact with objects, humans, and
environments. The most popular application of active perception
in robotics is active vision, in which a robot controls its attention
to obtain information (Roy et al., 2004; Chen et al., 2011; Valipour
et al., 2017; Zaky et al., 2020). For instance, Roy et al. (2005)
proposed a 3D object recognition system using a single camera.
The system iteratively determined the view of an object, which
could not be captured by the camera initially, based on the
probability of a hypothesis regarding the object. When the
probability was lower than the predetermined threshold, the
system determined an optimal movement to maximize the
increase in the probability by obtaining another observation.
Deinzer et al. (2009) proposed an active vision system that
selectively moved a camera around an object. The viewpoint
planning method involved reinforcement learning and selected
the next viewpoint based on the information gains of candidate
viewpoints.

Several studies have been conducted on active object
recognition based on not only visual perception, but also
tactile perception (Sakaguchi, 1993; Tanaka et al., 2014;
Scimeca et al., 2020). Sakaguchi (1993) proposed an active
haptic sensing system that used various tactile sensors (e.g.,
pressure sensors, thermal sensors, and vibration sensors) to
estimate object categories. Their proposed method involved
selecting the next sensor from the set of tactile sensors to
maximize the mutual information between the object category
and the i-th sensory signal. The mutual information indicated the
degree with which the uncertainty of the object category estimates
would be reduced when the system perceived the object using the
i-th sensor. Their proposed method exhibited better performance
than a random selection strategy, improved the recognition
accuracy, and reduced the number of observations.

Taniguchi et al. (2018) proposed an active perception
method using a multimodal hierarchical Dirichlet process
(MHDP) for object recognition. The MHDP represented the
relationships between multimodal sensory signals and object
categories utilizing a probabilistic model. Their active
perception method, which was formulated terms of in
information theory, involved selecting the next perception
modality that maximized the information gain between the
current belief of an object and the expected sensory signal of
each unobserved modality. They showed that their proposed
method estimated object categories using fewer modalities
(i.e., faster) than other methods.

In the studies mentioned above, in which object categories
were estimated using single or multimodal sensors, it was
assumed that the sensory signals were independent between
modalities and/or observations. This assumption helped

simplify the representation of the relationships between the
object categories and sensory signals as well as the calculations
of the mutual information and information gain. In contrast, we
supposed that this assumption does not hold in emotion
recognition because the multimodal signals that are expressed
to convey emotions have strong interrelations. For instance, when
a person speaks in a loud voice, it is expected that their mouth
would open widely, and that more gestures are made than when a
person speaks softly. These characteristics can help a robot decide
which modality signal to perceive to update the estimation belief.
Therefore, it is important to avoid assuming independence
between sensory signals for emotion recognition.

2.2 Active Inference and Free Energy
Principle
Attention selection, such as active vision and active perception,
is an important cognitive function for humans as well as robots.
The attention selection mechanism of humans that involves
active perception has been discussed recently from the
perspective of active inference (Friston et al., 2017). Active
inference is one of the inference mechanisms in the free
energy principle. Friston (2010) proposed that the human
brain minimizes the variational free energy required to
model and understand the world and that the process is
realized in two ways: perceptual and active inference.
Perceptual inference is the ability to infer the latent state of
the stimuli evoked in the environment using the stimulus
predictions and the errors between the actual and predicted
stimuli. This ability is known as prediction error minimization
in perception (Friston and Kiebel, 2009). In contrast, active
inference refers to inference of the latent state by executing or
optimizing actions to change perceptions (Friston et al., 2017).
In other words, the human brain updates its estimations and
reduces the uncertainty of its predictions by performing its own
actions. Essentially, active inference in a set of discretized
actions is related to the active perception studied by
Sakaguchi (1993); Taniguchi et al. (2018).

Recently, the free energy principle and the concept of active
perception have been employed in numerous investigations. One
active research area considers emotions. Human emotions have
been well discussed in terms of the free energy principle and
active inference with embodied signals (i.e., interoception) (Seth,
2013; Seth and Friston, 2016; Barrett, 2017). Seth (2013) and Seth
and Friston (2016) described the determination of the emotional
states of humans as the prediction of self-body signals through,
e.g., interoception. Interoception is the perception of the sensory
signals of organs and hormones; thus, a sensation represents the
internal state of the body. Barrett (2017) proposed an embodied
predictive interoception coding model to represent human
emotions based on predictive coding (i.e., the free energy
principle). In this model, the emotional state is represented
based on the prediction of interoception with proprioception
and exteroception, and the human reaction to emotional change
(e.g., paying attention to specific sensory signals) is considered an
active inference for minimizing the prediction error of
interoception.
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Several studies on robotics and computational modeling
have suggested cognitive function frameworks based on
the free energy principle and active inference (Smith et al.,
2019; Demekas et al., 2020; Ohata and Tani, 2020; Oliver
et al., 2021). For instance, Smith et al. (2019) proposed
an active inference model that learned emotional concepts
and inferred emotions from simulated multimodal sensations
(i.e., exteroceptive, proprioceptive, and interoceptive
sensations). The proposed model performed attention
selection to a valence (i.e., positive or negative) state to gain
precise information from the environment. Oliver et al. (2021)
proposed an active inference model for a robot to recognize its
body, whereby the robot sampled a sensory signal that
matched its prediction. Their model outperformed the
classical inverse kinematics model in a reaching task
involving real-world interaction. However, these active
inference models in robotics have yet to be applied to
human–robot interaction in an affective context, e.g.,
emotion estimation.

3 ENERGY-BASED MODELS FOR
REPRESENTING EMOTIONS FROM
MULTIMODAL EXPRESSIONS
This section introduces a multimodal neural network called
MDBN (Ngiam et al., 2011; Horii et al., 2016, 2018) designed
to represent relationships between human emotions and their
multimodal expressions. The MDBN is a hierarchical and
multimodal extension model of a restricted Boltzmann
machine (RBM) (Hinton and Salakhutdinov, 2006; Hinton,
2010), which is an energy-based model that abstracts input
signals in an unsupervised manner. To compress and integrate
multimodal signals, the MDBN comprises two parts,
including a DBN (Hinton and Salakhutdinov, 2006) for
handling each modality signal and an RBM for gathering
the output of each DBN as the top layer of the model.
Figure 2A,B illustrates the structures of the RBM and
MDBN, respectively. In this section, we will first describe
the RBM as a component of the MDBN. Next, we will explain

the MDBN and its energy function, which is used in our active
inference method.

3.1 Restricted Boltzmann Machine
An RBM (Hinton and Salakhutdinov, 2006; Hinton, 2010) is a
two-layered stochastic neural network (see Figure 2A) in which
each layer is composed of different types of neurons. vi represents
the activation of the i-th visible layer unit that receives external
signals as inputs, and hj represents the activation of the j-th
hidden layer unit that does not receive external signals. The
connecting weights between the layers are symmetric (i.e., wij �
wji), whereas there are no connections between units in the same
layer. The RBM learns the probability of input signals in the
visible layer and their abstracted representations in the hidden
layer in an unsupervised manner. The joint probability of
activations v and h in the RBM is represented using a
Boltzmann distribution, as follows.

p(v, h; θ) � 1
Z(θ) exp(−E(v, h; θ)), (1)

where Z(θ) is a partition function and E (v, h; θ) is the energy
function, which assigns the energy value for the corresponding
activations based on the network parameter θ (i.e., connecting
weights and biases of neurons). Eq. 1 represents the joint
probability of the network state, thereby indicating that a
lower energy state has a higher probability than a higher
energy state.

The training algorithm of RBMs, contrastive divergence
algorithm (Hinton, 2010), can be described as a minimization
of a reconstruction error between the actual input signals and
reconstructed signals from the hidden activations by modulating
the parameter θ. This process maximizes the joint probabilities of
training data through the minimization of energy values of the
data in the RBM. Finally, the energy-based model can represent
the likelihood of any combination of v and h using the energy
function. The reader can refer to Hinton (2010); Cho et al. (2011)
for details of the update rules for the model parameters.

The activation of the stochastic unit in each layer is modeled in
specific distribution (e.g., Bernoulli and Gaussian). For instance, a
Bernoulli–Bernoulli RBM handles only binary signals for both the

A B

FIGURE 2 | Structures of the RBM, DBN and proposed MDBN.
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visible and hidden units (i.e., vi ∈ {0, 1} and hj ∈ {0, 1}).
The probabilistic functions of activation for these units are
given by

p(vi � 1|h; θ) � sig ∑
j

hjwij + ai⎛⎝ ⎞⎠, (2)

p(hj � 1|v; θ) � sig ∑
i

viwij + bj⎛⎝ ⎞⎠, (3)

where θ � {a, b, w} are the model parameters, ai and bj are the bias
parameters for the i-th visible and the j-th hidden units, respectively,
and sig(x) is a sigmoid function 1/(1 + exp (−x)). The energy function
of the Bernoulli–Bernoulli RBM is expressed as follows.

E(v, h; θ) � −∑
i,j

vihjwij −∑
i

aivi −∑
j

bjhj. (4)

In addition, to handle the continuous values of sensory signals
in the visible layer, the binary units can be replaced with Gaussian
units. The activation probabilities for the visible and hidden units
of a Gaussian–Bernoulli RBM are expressed as follows.

p(vi � v|h) � N v|∑
j

hjwij + ai, σ
2
i

⎛⎝ ⎞⎠, (5)

p(hj � 1|v) � sig ∑
i

1
σ2
i

viwij + bj⎛⎝ ⎞⎠, (6)

where N (·|μ, σ2) denotes the probability of a Gaussian
distribution with mean μ and variance σ2 and σ i is the
standard deviation associated with the i-th Gaussian visible
unit. The probability function of the hidden units is different
from that in Eq. 3, because of the effect of the variance of the
visible units. Both Bernoulli–Bernoulli and Gaussian–Bernoulli
RBMs not only abstract the input signals to latent signals using
Eqs 3, 6, but also reconstruct the input signals from the latent
signals using Eqs 2, 5, respectively.

3.2 Multimodal Deep Belief Network
To acquire the relationships between human emotions and their
multimodal expressions using the energy-based model, we
constructed a hierarchical and multimodal extension model based
on RBMmethods. First, we stacked RBMs to abstract sensory signals
hierarchically in each modality. A multi-stacked RBM with directed
connections is called aDBN (Hinton and Salakhutdinov, 2006)where
the hidden layer of a lower RBM is connected to the visible layer of an
upper RBM (see Figure 2B). We employed two different types of
layers to construct the DBN, including a visible layer with Gaussian
distribution to take into consideration continuous sensory values, and
a hidden layer with Bernoulli distribution to encode them into
discrete representations. The DBN is trained for each layer
independently using the contrastive divergence algorithm in an
unsupervised manner.

Next, we added another hidden layer (3rd hidden layer) to
associate abstracted modality signals by each DBN. The top layer
of each modality DBN (2nd hidden layer) was connected to the third
hidden layer, as shown in Figure 2B. Here, we assumed that humans

use N kinds of modalities (i.e.,M � {m1, . . .,mn, . . ., mN}, |M| � N),
such as facial expressions, vocalization, and gestures to express their
emotions (Figure 1). Let hn

2 ∈ {0, 1}Jn denote the activation of the
n-th modality (mn) DBN’s second hidden layer. We then
calculated the activation probability of the s-th unit
zs ∈ {0, 1} of the third hidden layer by replacing v in Eq. 3
with h2 � {hm1

2 ⊕hm2
2 ⊕/⊕hmN

2 } (here, ⊕ denotes a concatenate
operator).

p(zs � 1|h2) � sig ∑J1
j

h2m1 ,j
wjs +/ +∑JN

j

h2mN,jwjs + cs⎛⎝ ⎞⎠, (7)

where wjs is the connection weight between the j-th unit of each
top layer of DBNs and the s-th unit of the third layer, and cs is
a bias parameter. Finally, the energy function of the second
and third hidden layers that we used as the criterion for
the proposed active perception method is expressed as
follows.

E(h2, z; θ) � −∑J1
j
bjh

2
m1 ,j

−∑J1
j

∑
s

h2m1 ,j
zswjs −/

−∑JN
j
bjh

2
mN,j −∑JN

j

∑
s

h2mN,jzswjs

−∑
s
cszs.

(8)

4 ACTIVE PERCEPTION BASED ON
ENERGY MINIMIZATION IN AN MDBN

This section introduces the proposed active perception method
based on energy minimization in the MDBN. Section 4.1
provides the details of the proposed algorithm, and Section
4.2 formulates the proposed method from the perspective of
the maximization of the energy difference between the current
and predicted energy values.

4.1 Proposed Active Perception in the
Multimodal Model
The essential concept underlying our method is that a robot
selects a single modality that minimizes the expected energy
using the predicted unobserved sensory signals. As described
in Section 3, the network energy corresponds to the likelihood
of the model state. In other words, the modality that results in
the lowest energy is expected to have the highest likelihood in
the current estimation.

Figure 3 illustrates the active perception process, assuming
that the human partners use three modalities (i.e.,M � {m1,m2,
m3}, |M| � 3). Let Mo 4M denote a set of modalities observed
by the robot. Active perception is defined as modality selection
from a set of unobserved modalities,Mu �M\Mo, to update the
estimation. The 2D space in the upper part of Figure 3 shows
the energy distribution in any low-dimensional space (e.g., the
principal component (PC) space) of the third hidden layer of
the MDBN. Blue indicates lower energy, whereas yellow
indicates higher energy. The open circles represent the third
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hidden activations of the MDBN corresponding to the
estimation of the emotion of the partner. The red circle is the
ground truth calculated using the signals of all modalities and thus
represents the last state of the hidden layer after the robot has
received all sensory signals from the interaction partner. Active
perception based on energy minimization in the MDBN is
performed T times (T &|M| − 1) through the following steps.

Step 1
The model receives the signal of modality minit (here, minit �
m2) as the initial perception and adds the modality to the set of
observed modalitiesMo. Next, the model estimates the emotion
of the partner z from the observed modality signal [i.e., the
white circle z[h2m2

] in the upper part of Figure 3 (Step 1)].

Step 2
The second hidden layer reconstructs each unobserved modality
feature as a prediction ĥ2mn

(i.e., here ĥ2m1
and ĥ2m3

) separately from
the third hidden layer’s current activation z[h2Mo]. The model
then updates the energy values Emn based on the current
observation h2Mo, network state z[h2Mo], and predicted
features of mn modality ĥ2mn

using Eq. 8.

Step 3
The model selects the next perception as the n-th modality that
minimizes the energy En the most from the set of unobserved
modalities Mu [i.e., m3 is selected in Figure 3 (Step 3)] and
receives the actual signal. The model then adds the modality to set
Mo and updates the estimation of the emotion of the partner
(i.e., the second white circle).

Step 4
The process is repeated from Step 2 until T inferences are
achieved.

Algorithm 1 provides the details of the procedure. The Monte
Carlo sampling number K is introduced to calculate the expected
energy of each Emn.

Algorithm 1. Active inference based on energy minimization
in an MDBN.

4.2 Mathematical Formulation of the
Proposed Active Perception Method
To clarify the relationship between the proposed active
perception method, the previous method that maximizes
information gain (Taniguchi et al., 2018), and active
inference (Friston et al., 2017), this section provides a
formulation of the proposed method. First, we described the
energy of the observed signals and the current estimation as
Einit � E(h2Mo, z) and the energy after integrating the predicted

modality feature (ĥ2mn
) as Epred � E(h2Mo⊕ĥ

2
mn
, z). The proposed

method attempts to minimize E
pred

. In other words, it attempts
to maximize the energy difference between E

init
and E

pred
. The

energy difference of modality mn can then be written as follows
using Eq. 1.

FIGURE 3 | Outline of the active perception method based on energy minimization of the prediction.
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Ediff
mn

� Einit − Epred

� logp(h2Mo ⊕ ĥ
2
mn
, z) − logp(h2

Mo, z)

� log
p(h2Mo ⊕ ĥ

2
mn
, z)

p(h2Mo, z)

� log
p(z|h2

Mo, ĥ
2
mn
)p(ĥ2

mn
|h2Mo)p(h2

Mo)
p(z|h2

Mo)p(h2
Mo)

� log
p(z, ĥ2mn

|h2
Mo)

p(z|h2
Mo)p(ĥ2mn

|h2
Mo)

+ logp(ĥ2mn
|h2Mo)

(9)

Here, it is supposed that the bias parameter bj � 0 for all nodes
of the second hidden layer of the MDBN.

In Algorithm 1, K samples of z[k] and ĥ2m[k] are obtained to
calculate the expected energy through Monte Carlo sampling.
The expected energy difference is expressed as follows.

E[Ediff
mn

] � 1
K

∑
k

log
p(z[k], ĥ2m[k]|h2Mo)

p(z[k]|h2Mo)p(ĥ
2

m[k]|h2Mo)
+ 1
K

∑
k

logp(ĥ2m[k]|h2Mo)

� IG(z; ĥ2mn
|h2Mo) − {−E[logp(ĥ2mn

|h2
Mo)]}.

(10)

Here, IG denotes the information gain of the prediction ĥ2mn

for the estimation of z when observation h2Mo is given. The first
term is similar to the criterion used in the active perception
method proposed by Taniguchi et al. (2018). This term also
represents the mutual information between the estimation z and
prediction ĥ2mn

. Using this term, our method and the previous
technique select the more informative modalities from the
unobserved ones based on the prediction.

In contrast, the second term was not included in the previous
method. This term represents the negative entropy of the
prediction ĥ2mn

conditioned by observations, h2Mo. Essentially,
it represents the expectation of the likelihood of the prediction
ĥ2mn

when the model receives the observation h2Mo. If no
correlations exist between the multimodal signals, this term is
expressed as a constant value for all predictions (i.e., the
distribution will be uniform) because the observed signals will
have no information for prediction. Meanwhile, if correlations do
exist between the multimodal signals, this term will produce
different values for predictions, which are made from the same
observed signals. We believe that this difference gives our active
perception method an advantage over previous methods in
emotion recognition. Note that our method does not calculate
the information gain and log-likelihood directly. Instead, both
values are acquired indirectly by minimizing Epred.

Next, we compared our method with active inference. The
active inference method considers the next action selection to be
performed byminimizing the expected free energy Gτ(π) (Friston
et al., 2017; Da Costa et al., 2020) in practice. Gτ(π) is expressed as
follows.

Gτ(π) � EQ(oτ ,xτ |π)[lnQ(xτ |π) − ln ~p(oτ , xτ)]
≈ − EQ(oτ )DKL[Q(xτ |oτ)‖Q(xτ |π)]︸													︷︷													︸

Epistemic Value

+ −EQ(oτ ,xτ |π) ln ~p(oτ)[ ]{ }︸									︷︷									︸
Extrinsic Value

.

(11)

Here, oτ and xτ represent the observations and hidden states at
τ, respectively, and π represents a policy, which is a sequence of
actions (i.e., π � [a1, a2, . . ., aτ]). Please see the work of Sajid et al.
(2020) for a detailed explanation of this equation. The expected
free energy here comprises two terms: epistemic and extrinsic
values. The epistemic value represents the information gain when
the active inference model performs actions using π in the future.
This term should be maximized to minimize the expected free
energy. In other words, the active inference model performs
actions to maximize information gain and contributes to
reducing the uncertainty in future estimations. The extrinsic
value, which includes a minus sign is the log-likelihood of the
desired observations p (oτ) under the belief in the future. To
minimize the expected free energy, the active inference model
must minimize this term. This means that the active inference
method maximizes the probability of oτ generated by future
actions. According to this characteristic, this term can be
described as the model preference. In fact, the first and second
terms in Eq. 10 correspond to the terms in Eq. 11. These relations
indicate that the proposed method performed energy
minimization of the second and third hidden layers of the
MDBN (in other words, maximizing the energy reduction in
the RBM), which is equivalent to the active inference performed
by minimizing the expected free energy.

5 EXPERIMENTAL SETUP

This section explains the experiments performed to evaluate the
performance of the proposed active perception method and its
comparison to other methods used in human–robot interaction.
We focused on multimodal affective interactions in which
attention selection is required. Section 5.1 introduces the
multimodal interaction dataset IEMOCAP (Busso et al., 2008)
and experimental conditions. Section 5.2 describes the details of
the modality signals and the feature extraction method. Finally,
Section 5.3 specifies the parameters of the proposed MDBN.

5.1 Multimodal Interaction Dataset:
IEMOCAP
We employed the IEMOCAP dataset (Busso et al., 2008), which is
a multimodal human–human emotional interaction dataset, to
train the MDBN and evaluate the proposed active inference
method. Figure 4A depicts a sample scene of the IEMOCAP
dataset. The dataset comprises approximately 12 h of audiovisual
data (motion captures of face and hands and speech) from 10
actors. Their facial expressions and hand movements were
recorded using a motion capture system, and the
conversations were recorded using additional video cameras.
Fifty-three and six motion capture markers were attached to
the faces and hands of the actors, respectively (Figure 4B), while
communicating with other actors. During the interaction process,
the actors expressed many types of emotional states based on the
scenario and circumstances of the interaction process.

All recorded data were segmented into utterances, and three
evaluators were used to annotate each utterance using an emotion
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label. The set of emotional labels contained nine states: happiness,
excitement, surprise, neutral, frustration, anger, sadness, fear, and
disgust. We selected the category with the majority vote as the
ground truth of the emotional state for each utterance. If two or
more categories had the same number of votes, we set the data
category to “ambiguous state.” As a result, each utterance was
assigned one of the 10 emotional labels. Our final dataset
contained 4,985 utterances; Table 1 lists the number and
percentage of each emotional utterance.

To evaluate the performance of our method in situations with
different levels of difficulty, we designed three cases, including a
10% case, in which 90% of the data were used for training and
10% for testing, a 30% case, in which 70% of the data were used
for training and 30% for testing, and finally, a novel person case,
in which the data from nine randomly selected actors were used
for training and the remaining data were used for testing. The test
dataset in the third condition was very unfamiliar to the model
compared to those in the first two conditions. In each situation,
we produced 10 dataset variations to enable statistical analysis.

5.2 Feature Extraction From Audiovisual
Signals
We obtained multimodal emotion expressions from each
utterance. The audiovisual data were divided into seven

modalities (i.e., |M| � 7). The first five modalities contained
the visual information regarding the movements of the right hand
(m1), left hand (m2), mouth (m3), cheek (m4), and eyebrow (m5).
The two audio modalities included the pitch and intensity of the
vocalization (m6) and its mel-frequency cepstral coefficient
(MFCC) (m7). We extracted statistical features from the
modalities mentioned above as input signals of the MDBN, as
follows.

First, we obtained modality-dependent features. The hand
movement features (i.e., m1 and m2) consisted of the velocity and
acceleration of two markers in each hand, where the velocity and
acceleration were measured in three dimensions (i.e., the x, y, and z
dimensions). As a result, the gesture modalities had 12 dimensions
each. The facial movement features (i.e.,m3,m4, andm5) consisted of
the distances between markers in each region and their derivatives.
We focused only on several motion capture markers, as shown in
Figure 4B. The mouth movement was measured as three distances
indicated using the yellow lines in Figure 4B. The cheek movement
(m4) was represented by the two distances indicated in blue, and the
eyebrow movement (m5) consisted of the four distances colored in
green. Each distance was normalized using the distance between the
eyes of the individual (i.e., the intra-person distance) and represented
in a two-dimensional (x-z) space because the y-coordinates of the
markers did not change significantly. Finally, m3, m4, and m5 had
12, 8, and 16 dimensions, respectively. The first audio features (m6)
consisted of pitch, intensity, and their time differences from the
prior time step. The second audio features (m7) consisted of 13-
dimensional MFCCs and their time differences. The audio
modalities had 4 and 26 dimensions, respectively.

Next, we calculated the statistical values of each feature during
each utterance. The statistical values included the mean, variance,
range, maximum, and minimum values of each feature. We
defined these statistical values as the input signals of each
modality-specific DBN. Ultimately, the numbers of dimensions
form1,m2,m3,m4,m5,m6, andm7 were 60, 60, 60, 40, 80, 20, and
130, respectively.

5.3 Network Structure and Training Method
The proposed MDBN consisted of seven modality-specific
DBNs and one additional hidden layer. Each modality-specific

A B

FIGURE 4 | Example interaction data from the IEMOCAP dataset (Busso et al., 2008) and the distances focused as facial movement features.

TABLE 1 | Amount and percentage of emotional data.

Emotional labels Number of data Percentage [%]

Happiness 297 5.96
Excitement 549 11.00
Surprise 31 0.62
Neutral 606 12.20
Frustration 998 20.00
Anger 621 12.40
Sadness 653 13.10
Fear 20 0.40
Disgust 1 0.02
Ambiguous 1,209 24.30

Total 4,985 100.00
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DBN had three layers (visible, first hidden, and second hidden
layers). The number of visible units of each modality-specific
DBN was set to the number of dimensions corresponding
to the input signals. Specifically, the RBMs of m1, m2, m3,
m4, m5, m6, and m7 had 60, 60, 60, 40, 80, 20, and 130 visible
units, respectively, and the number of the first hidden
units in each network was set to half the number of visible
units up to a maximum of 50, i.e., 30, 30, 30, 20, 40, 10, and
50, respectively. The number of the second hidden layer units
was set to 10 in each case to avoid the imbalance of
information between modalities. The third hidden layer
was connected to the second hidden layers of all the
modality-specific DBNs, as shown in Figure 2B. This RBM
received inputs that were concatenated outputs from all
the modality-specific DBNs. Therefore, there were 70 units
in the second hidden layer. Finally, the third hidden layer
had 20 hidden units. All the connecting weights of the
networks were initialized using normal distributions with a
mean value of zero and a unit variance. We constructed the
MDBN using our full scratched program1.

The MDBN was trained using the training dataset
corresponding to each situation (i.e., 10%, 30%, and novel
person cases). First, each modality-specific DBN was
trained separately. Next, the third hidden layer was trained
by concatenating the output (i.e., the second hidden layer)
of the modality-specific DBNs. Every RBM was trained
for 10,000 steps in an unsupervised manner (i.e., the
MDBN did not use the emotional labels for training).

6 EXPERIMENTAL RESULTS

The purpose of these experiments was to verify how the proposed
active perception method performed in the proposed MDBN.
Therefore, we first evaluated the detailed behavior and process of
the proposed active perception method by selecting one modality
signal from the test datasets as initial modality (i.e.,Mo � minit in
the first step of active inference). The MDBN was trained using
the training datasets corresponding to each scenario as explained
in Section 5.1. Section 6.1 describes the acquired multimodal
representation in MDBN and the state transitions through active
perception under the 10% case.

Next, we employed additional neural networks to estimate
emotional states from the multimodal representations and
compared the change in the estimation accuracy through active
perception with the existing methods under all of the dataset cases
in Section 6.2. Finally, Section 6.3 discusses the implications of the
results.We set the number ofMonte Carlo samples asK � 100, and
the active perception evaluations were performed 10 times under
each condition for statistical analysis in all experiments.

It is to be noted that all active perception methods were
evaluated in the test phase of the emotion estimation task
(i.e., after the model was trained).

6.1 Result I: Active Perception Using the
Proposed Method
First, we verified the distribution of multimodal emotional
expressions and their energy values in the MDBN. We
performed PC analysis for the 20-dimensional outputs of the
third hidden layer to visualize the representation in a 2D space, as
shown in Figure 3. Figure 5 depicts the first and second PC
spaces of the third hidden layer’s activations of the MDBN. Each

FIGURE 5 | Representations and energies in the first and second PC spaces: (A) activations of the third hidden layer of the MDBNwith emotional labels; (B) energy
distribution of hidden activations.

1https://github.com/takato1414/rbm_sets.git
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marker in the left graph indicates the activation when the model
used the signals of all the modalities. The colors and shapes of the
markers represent the emotional categories of the multimodal
data, where those of ambiguous states were omitted. Note that
the MDBN did not use the emotional labels in training.
Although many emotional categories are widely distributed
in the PC space, the neutral, sad, and fear categories have bias.
Specifically, their expressions were placed on the left side of the
PC space. The x-axis (i.e., PC 1) represents the intensity of the
multimodal expressions because the emotional categories
mentioned above have lower intensities. In contrast, PC 2
represents the individual characteristics, where the
emotional categories are uniformly distributed on this axis.
The colors in the right graph represent the distributions of the
energy values in the same PC space. A lower energy values
corresponds to a higher probability of the data in the energy-
based models. The left side of the graph shows low energies
because the data are concentrated in this region. The energy
distribution in the PC space is not smooth because the PC
transformed the data representation linearly. However, the

distribution in the original space (i.e., 20-dimensional
hidden activation) may be smooth.

Next, we provide two examples of emotion estimation through
active perception. Figure 6A shows the transition of emotion
estimation in the PC space. The same emotional state was
estimated using different modalities as the initial modality
(i.e., Hand 1: m1, Face 1: m3, and Audio 1: m6). Each color and
marker represents the initially observed modality and number of
active perceptions, respectively. The ground truth calculated using
all modality signals is represented by p. The emotional state of this
particular expression is “sad”. Each estimation started from a
different initial modality and traversed to the ground truth
stepwise through active perception. The transitions of the Face 1
(m3) and Audio 1 (m6) conditions overlap starting from Step 5
because the same modalities were selected in Steps 5 (m2, left hand)
and 6 (m1, right hand). This occurred because the hands did not
always move actively because the actors were sitting on chairs.
Therefore, the hand movement conveyed less information than the
other modalities, and thus, it was selected later in the active
perception. The modalities selected through active perception are
listed in Table 2. Figure 6B shows the results of active perception
for different emotional expressions. In each case, Audio 1 (m6) was
the initial modality, where the audio signals are similar to each
other. The emotional states corresponding to these three cases
include happy, neutral, and angry, which are represented by
different colors. The transition in the estimation for the happy
expression reaches the ground truth faster than it does in the other
cases. Two interesting findings can be derived from these results.
First, only a few modalities represent the happy state: Audio 1 (m6),
Audio 2 (m7), Face 1 (m3), and Face 2 (m4). Therefore, our active
perception method could efficiently select highly informative
modalities. Second, the anger and neutral emotions require more
steps to be recognized accurately because anger is usually difficult to
distinguish from the other negative emotions, such as, frustration

A B

FIGURE 6 | Example transitions of hidden activations in PC space through active inference: (A) transitions of estimation using different initial modalities; (B)
transitions of estimation for different emotions.

TABLE 2 | Order of modalities selected through active perception under each
condition.

Different initial modality Different emotion

Hand 1 Face 1 Audio 1 Happy Neutral Anger

minit m1 m3 m6 m6 m6 m6

1st m7 m7 m7 m7 m7 m7

2nd m6 m6 m5 m3 m5 m3

3rd m5 m4 m4 m4 m4 m4

4th m4 m5 m3 m5 m3 m5

5th m3 m2 m2 m1 m2 m2

6th m2 m1 m1 m2 m1 m1
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and disgust. In addition, the estimation of the neutral expression
had an error compared to the ground truth because the probability
of hidden activation had a wider distribution (i.e., high entropy)
owing to the inherent characteristics of the neutral emotion.

6.2 Result II: Quantitative Evaluation of the
Proposed Method Compared to Other
Methods
We evaluated how the accuracy of emotion estimation increased
through active perception. We employed a four-layered feed-
forward neural network (FFNN) to estimate emotional categories
from the multimodal representations of human expressions that are
activations of the third hidden layer of the MDBN. The number of
nodes per layer was 20 (i.e., the number of the third hidden layer’s
units of the MDBN), 64, 32, and 8 (i.e., the number of emotional
categories, excluding disgust and ambiguous states) from the input
layer to the softmax layer (i.e., the top layer). All layers, except the
softmax layer, used a rectified linear unit (ReLU) function as the
activation function. We used the Keras library (Chollet, 2015) to
build this network and the RMSprop as an optimizer. The FFNN
learned the relationships between the MDBN outputs and their
emotional categories in a supervised manner. However, the
connection weights of the MDBN were not fine-tuned through
the FFNN training process. In other words, each network was

trained independently. We compared the estimation accuracy of
our method to that of two other methods: the IG.max and random
methods. The IG.max approach is an active perception method
based on the information gain maximization proposed by Taniguchi
et al. (2018). We used information gain maximization instead of
energyminimization as the active perception criterion of theMDBN.
We set the number ofMonte Carlo samples asK � 100. The random
strategy involved selecting a modalitymn fromMu randomly at each
step. All methods were evaluated in the three dataset cases: the 10%,
30%, and novel person cases described in Section 5.1.

Figure 7A–C and Table 3 show the changes in the estimation
accuracy2 for each of the three cases and the results of statistical
analysis. The different colors indicate the results for the different
methods. The accuracy in the initial and final steps is the same for
all the active perception methods under each set of conditions. The
maximum estimation accuracy was approximately 40% when the
model used all the modality signals (see Section 6.3.2 for further
discussion). The experimental results show that the estimation
accuracy of the random method increases linearly through active

A B C

FIGURE 7 | Change in estimation accuracy using each active perception method in all dataset cases: (A) estimation accuracy in the 10% case; (B) estimation
accuracy in the 30% case; (C) estimation accuracy in the novel person case.

TABLE 3 | Change in estimation accuracy mean and standard deviation through each active perception method in all dataset cases. The values in parentheses indicate the
standard deviation.

10% case 30% case Novel person case

E.min IG.max Random E.min IG.max Random E.min IG.max Random

initial 19.43 (1.88) 19.43 (1.88) 19.43 (1.88) 17.55 (1.63) 17.55 (1.63) 17.55 (1.63) 16.59 (1.71) 16.59 (1.71) 16.59 (1.71)
1st 26.39(1.59)***,††† 24.11(1.79)††† 21.31 (1.34) 24.90(1.82)**,††† 22.90(1.27)† 21.79 (0.62) 21.46(2.47)† 21.62(1.62)††† 19.10 (1.11)
2nd 27.02(1.23)††† 27.85(1.21)††† 24.08 (1.06) 26.44(1.62)††† 26.36(1.11)††† 24.50 (0.76) 25.48(2.18)††† 25.87(1.83)††† 21.71 (0.77)
3rd 28.77(1.03)††† 28.54(1.07)††† 26.87 (0.93) 27.85 (1.13) 28.28(1.07)† 27.04 (0.98) 26.91(1.48)††† 28.05(1.70)††† 24.17 (0.59)
4th 30.65 (1.63) 30.06 (1.79) 29.85 (0.84) 30.33 (1.45) 30.68(1.37)† 29.54 (0.93) 27.48(1.23)††† 27.31(1.19)††† 26.04 (0.42)
5th 35.38 (1.52) 34.59 (1.65) 35.15 (0.93) 34.64 (1.73) 34.35 (1.70) 34.05 (1.06) 29.38(0.81)†† 29.37(1.25)† 28.23 (0.89)
6th 39.17 (1.65) 39.17 (1.65) 39.17 (1.65) 39.97 (0.82) 39.97 (0.82) 39.97 (0.82) 30.10 (1.42) 30.10 (1.42) 30.10 (1.42)

*(p < 0.05), **(p < 0.01), ***(p < 0.005): significant difference from IG.max.
†(p < 0.05), ††(p < 0.01), †††(p < 0.005): significant difference from Random.

2We also calculated the macro-F1 score because of the imbalance of emotional
classes in the dataset. The trend of the results was the same in both cases; therefore,
we show only micro-F1 scores (i.e., accuracy) for easy comparison of our work with
other studies.
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perception. In contrast, E.min and IG.max exhibit significant increases
in estimation accuracy at an early stage of active perception.

Figure 8 highlights the estimation accuracy in the first step of
active perception. We conducted a Student’s t-test for each set of
conditions. In the novel person situation, the results of the
proposed and IG.max methods show no significant difference:
t (18) � 1.734, p � 0.430. In contrast, their results exhibit
significant differences in the 10 and 30% cases: t (18) � 1.734,
p < 0.005 and t (18) � 1.734, p < 0.01, respectively, although both
methods outperformed the random approach.

These experimental results demonstrate that the active perception
methods using information criteria can update their estimationsmore
accurately by obtaining more informative signals when the robot has
limited resources for paying attention to human expressions. In
particular, our method outperformed the IG.max approach in the
first step of active perception, and the performance difference was
more significant in the 10% case than in the 30% case. Meanwhile,
there were no significant differences between the proposed and
IG.max methods from the second step of active perception (see
Table 3). We conclude that our method achieved improved accuracy
faster than the IG.max method using limited information in this task.

6.3 Discussion
6.3.1 Critical Differences Between the Energy
Minimization and the Information Gain Maximization
In previous studies on object category estimation (Sakaguchi, 1993;
Taniguchi et al., 2018), mutual information between the current
estimation and unobserved modality signals has been used as a
criterion for active perception. Suchmethods chose the nextmodality
whose expectation of mutual information is the highest amongst the
unobservedmodalities. This strategy corresponds to information gain
maximization because mutual information represents the amount of
information between two random variables. Therefore, the previous
method and the IG.max approach considered in our experiment can
be regarded as techniques that only consider the first term in Eq. 10
for active perception. In contrast, our method selects the next

modality indirectly based on energy minimization, considering
both terms in Eq. 10. The difference between the proposed and
previous methods is the second term in Eq. 10. This term, which is
the expectation of the negative likelihood of the prediction, represents
the negative entropy of the predicted modality signal conditioned by
the current observation. Moreover, it takes a higher value when the
probability of the prediction becomes uniform. Specifically, this term
can be minimized if the system has knowledge of the prediction and/
or the multimodal signals are related (i.e., correlated).

This advantage of the proposed method is demonstrated in the
experimental results presented in Figure 8. In the novel person case,
the MDBN could not model the probability of unobserved modality
signals, p(ĥ2mn

|h2Mo), because the test data consisted of unknown
actors. Therefore, the second term in Eq. 10 provided little to no
information for modality selection (i.e., uniform distribution). As a
result, the proposed method and the IG.max approach show similar
results in this case. In contrast, the 10 and 30% cases revealed the
advantage of the proposed method. The MDBN could properly
estimate the probability of the test data because the model captured
the tendencies of the emotional expressions of all the actors by detecting
the correlation between multimodal expressions. The difference
between the two methods is larger in the 10% case than in the 30%
case. This result indicates that the second term in Eq. 10 models
relationships between multimodal emotion expressions accurately
using numerous training data and provides a considerable amount
of information for modality selection. In other words, the proposed
method has an advantage over the IG.max method when the
knowledge of the MDBN overlaps with the test situation.

6.3.2 Current Limitations and Future Challenges
In these experiments, we assumed that the proposed active perception
and other methods could obtain information from the partner
without any cost during the interaction. In addition, we assumed
that the emotional expressions of the partner did not change until all
multimodal signals were acquired. However, in a real HRI context,
the robot would expend resources to obtain observations, and the

FIGURE 8 | Estimation accuracy for the first active perception executed in each dataset case.
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partner’s emotional state dynamically changes over time during the
interaction. It is necessary to consider the number of constraints to
conduct active perception (i.e., the maximum number of active
perceptions) during the interaction. Improving the proposed
method to take the robot’s resources, such as the cost of behavior
that acquires the information and constraints on the number of active
perceptions for determining the estimation of other’s emotions
(i.e., decision-making) into account will be explored in the future
studies.

Recent studies that recognize emotional states from the
IEMOCAP dataset achieved approximately 70% accuracy
(Tripathi et al., 2018, 2019). In comparison with these studies, our
results show no advantages in the emotion recognition task because
the maximum accuracy of emotion estimation in our experiments
was about 40% when the robot used complete observations (i.e., all
modality signals).We believe that the results may be attributed to two
issues; the training process of theMDBN and the emotion estimation
model. The training process of the MDBN and the FFNN were
separated to shield the structure of the MDBN energy function
(i.e., model parameters) from the supervised training of the
FFNN. Therefore, the MDBN could not obtain an effective
representation for the emotion estimation in FFNN. Additionally,
the network structure of the estimation module (i.e., the FFNN) was
more straightforward than that of other networks used in previous
studies (e.g., convolutional neural networks (CNN), recurrent neural
networks (RNN), and long short-term memory (LSTM)). However,
we focused on verifying the characteristics of the proposed method
rather than improving the accuracy of emotion estimation in this
study. To achieve higher estimation accuracy for practical use in
actual HRI, we intend to explore not only to use time series models
such as LSTM but also to apply the proposed active perception
method to a model that integrates the representation learning and
recognition into a single energy-based model in future research.

7 CONCLUSION

In this study, we have proposed an active perception method based on
energy minimization in an MDBN. The key concept underlying the
proposedmethod involves obtaining the next sensation by selecting the
modality for minimizing the network energy. The energy of the model
represents the likelihood of the correspondingnetwork state. Therefore,
ourmethod involves selecting themost plausiblemodality based on the
current estimation. First, we formulated the proposed method and
compared it with other active perception methods, i.e., methods
considering information gain (Taniguchi et al., 2018) and the active
inference technique proposed by Friston et al. (2017) based on the free
energy principle. Next, we applied the active perception methods in an

emotion estimation task assuming affective communication between a
human and a robot. The methods were compared to each other in
three dataset cases with different balances between the training and test
datasets. When the training dataset contained more of the same
characteristics as the test dataset, our active perception method
achieved significantly improved accuracy than the other methods in
the test phase using limited information. This result indicates that the
additional term in our formulation (i.e., the second term in Eq. 10),
which is the likelihood of predictions, provides an advantage when the
network can capture the relationships between multimodal signals,
and the robot can select informative modality expressions from the
human to estimate their emotions with limited resources. We
conclude that our method, which is analogous to active
inference, incorporates and even extends the previous methods
that assumed modality independence. In our future research, we
intend to evaluate the performance of our method in practical
situations. For example, the emotion of the partner changes during
interaction, and the robot needs to pay a price to obtain perceptions.
In addition, we intend to apply the proposed method to actual robot
tasks for affective communication.
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