
Information Distribution in
Multi-Robot Systems: Generic,
Utility-Aware Optimization
Middleware
Michał Barciś 1*, Agata Barciś 1, Nikolaos Tsiogkas2,3 and Hermann Hellwagner1

1Karl Popper Kolleg on Networked Autonomous Aerial Vehicles (KPK NAV), University of Klagenfurt, Klagenfurt, Austria,
2Department of Mechanical Engineering, Division RAM, KU Leuven, Leuven, Belgium, 3FlandersMake@KULeuven, Core Lab
ROB, Leuven, Belgium

This work addresses the problem of what information is worth sending in a multi-robot
system under generic constraints, e.g., limited throughput or energy. Our decision method
is based on Monte Carlo Tree Search. It is designed as a transparent middleware that can
be integrated into existing systems to optimize communication among robots.
Furthermore, we introduce techniques to reduce the decision space of this problem to
further improve the performance. We evaluate our approach using a simulation study and
demonstrate its feasibility in a real-world environment by realizing a proof of concept in
ROS 2 on mobile robots.

Keywords: multi-robot systems, information distribution, adaptive communication, information utility,
communication optimization, Monte Carlo tree search

1 INTRODUCTION

Advances in the field of multi-robot systems (MRS) have allowed sophisticated real-world
applications in science and industry. Some examples include underwater archaeology (Allotta
et al., 2015), search and rescue (Yazdani et al., 2019), and manufacturing (Hoshino et al., 2008).

The information distribution problem refers to the decision process of what information to
exchange, when, and with whom to achieve a good performance of the whole system while obeying
the limited resource utilization, such as available throughput or energy usage. Despite the need to
exchange a multitude of information in MRS, often the literature neglects the role of communication
in such systems. Usually, it is either taken for granted or the main focus is on maintaining the
connectivity (Amigoni et al., 2019). Only recently, the problem of information distribution in MRS
began to receive attention (Marcotte et al., 2019; Best et al., 2019; Fowler et al., 2020; Anderson and
Hollinger, 2021).

In the problem of information distribution, the decision process aims to optimize the
communication in MRS with specified constraints. To perform such an optimization, the
importance of each communication event has to be assessed. Usually, the importance of these
events depends on the mission currently executed by the MRS. Hence, domain knowledge about the
mission has to be incorporated into the solution. This can be achieved in a direct or an indirect way.

A direct approach (Marcotte et al., 2019; Best et al., 2019; Unhelkar and Shah, 2016; Roth et al.,
2006; Anderson and Hollinger, 2021) simulates the course of the mission to estimate the impact of
each communication event on the mission objective. Although such approaches guarantee the best
performance for a specific application, they assume the ability to forward-simulate the mission,
which might require considerable amount of effort or be infeasible.

Edited by:
Ji-Chul Ryu,

Northern Illinois University,
United States

Reviewed by:
Kuppan Chetty Ramanathan,

Hindustan University, India
Jiannong Cao,

Hong Kong Polytechnic University,
China

*Correspondence:
Michał Barciś

michal.barcis@aau.at

Specialty section:
This article was submitted to

Multi-Robot Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 24 March 2021
Accepted: 21 June 2021
Published: 27 July 2021

Citation:
Barciś M, Barciś A, Tsiogkas N and

Hellwagner H (2021) Information
Distribution in Multi-Robot Systems:

Generic, Utility-Aware
Optimization Middleware.

Front. Robot. AI 8:685105.
doi: 10.3389/frobt.2021.685105

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851051

ORIGINAL RESEARCH
published: 27 July 2021

doi: 10.3389/frobt.2021.685105

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.685105&domain=pdf&date_stamp=2021-07-27
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/full
http://creativecommons.org/licenses/by/4.0/
mailto:michal.barcis@aau.at
https://doi.org/10.3389/frobt.2021.685105
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.685105

On the contrary, indirect approaches assign a utility to the data
being processed during the mission. They communicate the most
valuable (i.e., providing the highest utility) pieces of information,
assuming this would positively impact the mission performance.
A common way to define such utilities is given by information-
theoretic measures such as KL-divergence (Fowler et al., 2020;
Williamson et al., 2009). However, such approaches imply that
the application logic takes into account information uncertainty.
In many practical applications that is not the case, for example,
often outdated information is just used as if it were current.
Therefore, it might be challenging to integrate these solutions into
existing systems. Another indirect approach is to design utility
functions tailored to a specific application (Kassir et al., 2015;
Becker et al., 2009; Mazdin et al., 2020). Often, such approaches
treat information in a myopic manner, i.e., taking into account
only the immediate value of communication without evaluating
its long-term impact. More sophisticated models are rarely
considered (Kassir et al., 2015; Becker et al., 2009; Szer and
Charpillet, 2004). In this work, we present a solution based on an
indirect approach.

Another aspect to consider when speaking about the
information distribution problem is how to define what
information can be exchanged. It is commonly assumed that
the whole state of an agent (e.g., a robot) can be shared during a
single communication event (Best et al., 2019; Unhelkar and
Shah, 2016; Williamson et al., 2009). This approach allows
researchers to avoid the question of what to communicate and
focus only on the question of when to communicate. Although in
many cases it is fair to assume that all information could be
transmitted in a single message, it is not applicable in a generic
setting (Fowler et al., 2020). As an example, suppose the state of
an agent consists of its position, battery level, and camera images.
In that case, it might be enough to regularly send only the first two
components and reduce the rate of resource-hungry transmission
of images.

Such a simplification results in a significant reduction of the
decision space, which enables efficient computations (Best et al.,
2019). In this paper we avoid this assumption, while still
benefiting from a similar reduction of the decision space in
specific situations (see Section 3.2.2 for details). To achieve
this, we categorize all information exchanged among agents
into information types. It is an abstract way to group together
information that possesses similar properties (e.g., only the most
recent information of a given type is important for a robot). For
instance, an information type could be the position of a robot, the
camera image or the map generated by all robots collaboratively.

In this work, we focus on the question of what to
communicate. Although this question is extensively studied in
the context of specific applications, there is still a need for generic
methods addressing it (Tsiogkas and Lane, 2019). Therefore, we
exploit an indirect approach as a way to decouple the information
distribution optimization process from the mission at hand. This
allows us to propose a generic information distribution
optimization middleware that is easily integrable into any
robotic system communicating by exchanging messages,
without any modifications to the application logic.

Our solution consists of two blocks, marked with green color
in Figure 1. The first block is a generic optimization method that
can be transparently incorporated into any application. The
second one is an evaluation model that defines the utility of
information. An evaluation model taking into account the
specifics of a mission at hand can bring application-awareness
into the information distribution middleware.

To the best of our knowledge, this is the first work that
presents an information distribution optimization method
which holds all of the following three properties: it is
transparently integrable into existing systems; it jointly
considers exchange of various information types; and it is able
to work in real-time (online) on robots. The main contributions
of this work are as follows.

• Design of an online and transparent information
distribution middleware that comprehensively (for all
information types) optimizes information exchange in an
MRS taking into account non-myopic, mission-aware
message utilities (Section 2.1).

• Introduction of two techniques to reduce the decision space
of the proposed method, thus facilitating its use in practical
applications (Section 3.2).

• Method for mission characterization based on the difficulty
of the information distribution optimization problem in a
given mission (Section 4.1).

• Proof of concept implemented in Robot Operating System 2
(ROS 2) on mobile robots and a simulation study performed
using a network simulator (ns-3) (Section 4).

2 PROBLEM FORMULATION

In this work, we focus on deciding which messages should be sent
to maximize the obtained utility, constrained by the limited
available communication resources, such as energy or
throughput. Formally, such an objective can be expressed as
the following optimization problem to be solved
collaboratively by the MRS:

FIGURE 1 |Design of the proposed information distribution middleware.
Application logic generates messages that are then intercepted by the
introduced information distribution layer. The optimization method decides
which ones are worth forwarding to the communication layer
(i.e., sending). In order to do so, it utilizes the evaluation model, which can be
adjusted for the mission at hand using utility specifications.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851052

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Mrcv 4M
maximize U(Mrcv)

subject to network constraints (eq. (5)), (1)

whereMrcv is a set of messages received by any agent,M is a set of
all messages that can be generated, and U is an evaluation model
that returns a utility value. The evaluation model U is an
important part of this problem. In practice, many
formulations of U employ compromises to allow for efficient
methods to solve the maximization problem. However, in this
work, we allow for any definition ofU , i.e., we assume it can assign
any value to any subset of messages. Such a formulation of the
problem has a complexity growing exponentially with the
number of messages (Pynadath and Tambe, 2002). The
messages can influence each other in arbitrary ways, thus all
possible subsets need to be considered. Moreover, as the number
of messages is usually high and the decisions need to be made fast,
looking for an optimal solution is infeasible. Hence, most research
efforts tackling this problem (including this paper) are focused on
identifying heuristics that are applicable in practice (Roth et al.,
2006).

2.1 System Design
The system setup considered in this work consists of multiple
agents (e.g., robots) exchanging messages to pursue a common
objective. The agents broadcast messages over a single wireless
channel giving them knowledge of all communication in the
system. It is assumed that agents are working within each
other’s communication range, though in principle multi-hop
connections could also be used. We assume an efficient channel
access method that guarantees a fair usage of the communication
medium and resolves potential message collisions.

This setup is motivated by a realistic application of MRS where
multiple (between 5 and 10) mobile robots collaboratively execute
a mission. The robots are connected using an IEEE 802.11
wireless network in an ad-hoc mode. Examples of such
applications are presented in our previous works (Barciś et al.,;
Barciś and Bettstetter, 2020; Mazdin et al., 2020; Mazdin and
Rinner, 2021; Rinner et al., 2021). All of these works are
motivated by a use case of a group of UAVs collaboratively
performing a 3D reconstruction of an unknown area.

We design the solution as a transparent middleware that can
be integrated into existing systems. A diagram of the design is
presented in Figure 1. The solution could be perceived as an
additional layer introduced between the application logic and the
network. It consists of two parts: the optimization method, which
is the main contribution of this work, and an evaluation model.
The evaluation model is aware of all messages exchanged in the
network, but it does not modify them in any way. In principle, a
very generic model can be used, possibly completely independent
of the mission at hand. The model introduced in our previous
work (Barciś et al., 2020) is designed specifically to be used in this
setup. It allows the optimization method to make mission-aware
decisions and is able to consider both myopic and long-term
impact of a message (see Section 2.2 for details).

All messages are handled as follows. First, a message is
generated by the application logic. Second, it is processed by

the information distribution middleware deciding to either drop
it or forward it to the network layer (i.e., send it), which finally
transmits it to the other agents. The objective of the information
distribution middleware is to make this decision in such a way
that the received utility, as defined by an evaluation model, is
maximized, taking into account the constraints.

Our approach requires the knowledge of the generation time
of all messages (also the ones that are yet to be generated in the
future). Often reliable mission-specific estimations for these times
can be designed. For instance, an agent could be sending a
message whenever it enters a warehouse or its battery is low.
In this work, we estimate the generation time by assuming the
messages are generated periodically. This assumption often holds
in practical situations. For example, robots generate sensor data,
such as their position, with a predefined, fixed rate. As soon as the
first position message is received, we can estimate the generation
times for all the future position messages.

2.2 Utility-Based Evaluation Model
An integral part of the introduced information distribution
middleware is the evaluation model. It should be able to assign
a numerical value (utility) to any set of exchanged messages.
Although the optimization method introduced in this work does
not depend on a specific evaluation, its design is inspired by the
evaluation model introduced in our previous work (Barciś et al.,
2020). This model is also utilized in our implementation in
Section 4. In the following, we will briefly describe the
essentials of the model. For a more detailed description and
motivation, refer to the publication introducing the model (Barciś
et al., 2020).

The evaluation model introduces the term total utility to
denote the resulting numerical value assigned to a set of all
exchanged messages. It is defined based on message utility
functions. The message utility functions depend on the
information type and describe how the utility of a message of
this type changes throughout the mission. To compute a
numerical value from such a message utility function, it needs
to be integrated over the total mission time. Finally, utility
aggregation functions define how to aggregate (i.e., combine)
utilities from multiple messages over time. This approach
allows us to consider messages in a non-myopic manner,
i.e., taking into account their usage during the whole mission.
It also enables us to express how messages influence each other.
For instance, it is possible to state that a message is not valuable if
previously some other message was received.

An interesting characteristic of this evaluation model is that
the total utility is known only when the mission is finished. After
all, often it is impossible to predict when and how the message
will be useful throughout a mission. Thus, in order to use the
model for information distribution optimization during the
mission, properties of each exchanged message (e.g., reception
time, message content, etc.) have to be estimated. Some
properties, for instance, message reception time, can be
estimated based on the network performance and these are
incorporated into our implementation. However, sometimes
the utility is based on mission-dependent message properties,
like the position of the robot at the time the message was

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851053

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

generated. These properties cannot be reliably estimated in a
generic setting. Providing a mission-specific estimator for such
properties improves the performance of the whole system. Often
even a very simple estimator shows good performance. An
example is given in Section 4.3, which states that in this
specific mission an image will probably contain the same
amount of red pixels as the previous image generated by the
same agent.

3 METHODS

We propose a method to tackle the information distribution
optimization problem based on Monte Carlo Tree Search
(MCTS) (Coulom, 2006; Kocsis and Szepesvári, 2006). MCTS
is a heuristic decision algorithm based on the Monte Carlo
method. It is exceptionally valued in the field of game theory
(Corera, 2016), but has also been successfully applied in other
fields (Pepels et al., 2014), including the information distribution
problem (Best et al., 2018). The algorithm enables an efficient
traversal of a decision tree, considering more promising options
first. It executes a pre-selected number of iterations (also called
play-outs or roll-outs). The higher the number of iterations, the
better is the result, eventually leading to the optimal solution. This
allows us to easily balance the exploration depth (thus better
optimization results) and computation time needed for each
decision. This ability was the main reason why we have
decided to utilize this method. Furthermore, the fact that
MCTS eventually explores the whole tree is also beneficial for
the problem of information distribution. Other heuristic
approaches sometimes discard parts of the solution space as
not worth exploring, which in general might result in a sub-
optimal solution even with unlimited computational resources.
For readers not familiar with the MCTS algorithm, we provide its
detailed description in Supplementary Appendix A.

3.1 Information Distribution Optimization
With Monte Carlo Tree Search
Each time an agent needs to make a decision whether it should
send a message or not, it builds a new MCTS tree. All generated
messages from all agents are incorporated into this tree. Hence,
the agent takes into account other agents, which allows it to make
decisions optimized for the whole system. The information about
messages generated by other agents is not always available and
has to be estimated (for instance, in the case of future messages).
In this work the estimation is done using the assumption about
periodic messages (see Section 2.1) and their expected utilities are
estimated using mission-specific estimators (see Section 2.2 with
examples in Section 4.3). A similar approach would also work for
other setups where message generation times are known or can be
reliably estimated.

Each node at the ith level of the tree represents a decision: whether
the ith message should be sent or dropped. To take into account the
messages that might still be in transfer, we construct the decision tree
including also messages generated in the past. The maximum age of
messages to consider is based on the current network latency.

An example of a decision tree obtained using MCTS is
visualized in Figure 2. For the sake of the example, we assume
that each message is generated by a different agent. In order to
make the example easy to follow, it consists of only four messages
and shows a result of a relatively low number of iterations of the
MCTS algorithm. This particular tree is constructed in order to
decide if message m3 should be sent or not. In practice the tree
would have been explored much further into the future. However,
even in such a simplified setup it is possible to observe the
asymmetrical growth of the tree. It occurs because the MCTS
explores more promising options first. The red outline marks the
path that is the output of the algorithm. The decisions
represented by this path are likely to provide the highest
utility. Based on it the agent would choose to send message m3.

Even though the MCTS provides decisions for all considered
messages, we use it only to decide about the one just generated.
There are multiple reasons for this design choice. First, before the
next message is generated, the agent’s knowledge might change.
This could influence the estimated utility values and hence
invalidate the previous decisions. Second, a message
considered in the tree might be generated by another agent,
which is able to better estimate its value.

The key design decision in an MCTS-based method is how to
assign rewards for final states and how to calculate scores of
intermittent states. Typically, after each tree expansion step, the
MCTS algorithm simulates the whole execution of the decision
process with random future decisions. However, in our problem,
this is infeasible. Thus, we utilize another common approach:
instead of performing the MCTS simulation step, we score the
states using a scoring function. The scoring function is a problem-
specific heuristic that provides a simple way to determine which
states are better than others. We decided to formulate it based on

FIGURE 2 | Example of a tree constructed by MCTS. The black nodes
represent the message to decide about. Grey nodes represent messages
generated in the past that might have not been received yet. White nodes
represent future messages.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851054

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the ratio between the value of utility in the given state and a
maximum value of utility, achieved by receiving all messages.
Specifically, we use the following scoring function:

S(v) � U(Mv)
ψU(M), (2)

where S is a function assigning a score to a node v of the decision
tree, U is the evaluation model returning the utility of exchanged
messages,Mv is the set of messages exchanged up to node v,M is
the set of all messages that could ever be transmitted during the
mission and ψ is a value representing the progress of the mission.
In our experiments, we set ψ � t

tend
, where t is the generation time

of the message considered in v and tend is the duration of the
mission. In the simulation-based study (Section 4.2) the value of
U(M) is known, but in the practical experiments (Section 4.3)
we estimate it.

For now, we did not explicitly consider any network
constraints. Without this, MCTS could decide to transmit all
messages. An interesting way to include the network constraints
would be to make them a part of U . Such a U could utilize a
network simulator (e.g., ns-3) in order to estimate the expected
value of sending the given subset of messages and, for instance,
taking into account message drop rate and delays that could occur
in a network. Assuming a reliable network simulator, the solution
would take into account that sending too many messages results
in potential loss and latency increase, which in turn decreases
utility. Even though we find such solution interesting, it might be
infeasible given the overhead associated with network simulation.
Hence, in our implementation we estimate the future latency as
an average observed latency and use the technique described in
Section 3.2.1 to introduce network constraints.

An inherent part of such decision problems is a balance
between exploration and exploitation1. To give some intuition,
in our problem an exploitation-only solution would be a greedy
method that sends a message whenever it increases the utility,
whereas an exploration-only approach would prioritize trying
previously untested decisions. To maintain a balance between
these two extremes in MCTS, often the UCT formula (Kocsis and
Szepesvári, 2006) is used to decide which node to go to in the
MCTS selection step (cf. Supplementary Appendix A.1.1).
Always the node with the highest UCT value is chosen. The
UCT formula is:

UCT(v) � S + c

����
ln np

nv

√
, (3)

where S is a mean score (Eq. 2) of all descendants of v, np is the
number of visits of the MCTS algorithm to the parent node of v,
nv is the number of visits to node v, and c is called a discovery
factor. High values of c result in a more exploratory behavior,
whereas low values promote exploitation of the already

constructed tree. In our experiments, we fix c to 0.35 in order
to prioritize high-valued decisions (i.e., sending the message).

3.2 Reduction of Decision Space
In the following, we propose two methods to reduce the decision
space with the aim of increasing the performance of the
optimization middleware. The first method considers network
constraints and is applicable to all information types, albeit
providing only a small performance boost. The second
method, on the other hand, is applicable only to specific types
of information, but is able to reduce the tree growth from
exponential to polynomial.

3.2.1 Reduction Based on Network Constraints
So far, our approach considered any subset of messages to be
sent, even if transmitting them would cause obvious overuse of
resources (e.g., causing network congestion). Unfortunately, it is
difficult to predict how the network will perform under such
stress. In principle, this could be done using a network
simulator. However, such an approach has two major
problems. First, simulating transmission of many messages at
each node of the decision tree requires considerable
computational resources if an advanced simulator is used,
whereas using simple simulations provides less reliable
results. Second, in practice other processes (i.e., not
considered by the information distribution middleware)
might also run in the network and their behavior might be
impossible to simulate (e.g., a system using aggressive
retransmission schemes could cause congestive collapse of an
overloaded network).

To address these problems we introduce the following
reduction. In addition to avoiding resource overuse, it enables
simple simulations to be used and at the same time reduces the
decision space of the MCTS. At the core of the reduction lies the
following predicate:

∀t ∈ [0, tend].|W(t,Msent)|≤A(t), (4)

where Msent is the set of sent messages, W is the windowing
function that returns a subset of all messages affecting resource
utilization at time t (i.e., being transmitted at time t), operator | · |
measures how much resource is used by a subset of messages and
A(t) specifies how much resource is available at time t.
Intuitively, such a predicate is false if and only if there exists a
moment when the resource is overused. To give an example, if
A(t) is a constraint specifying the number of messages that can be
simultaneously transmitted, then the operator | · | is simply a
power of subset returned by a windowing function. In such a case,
the predicate is false if at any time t there are more messages being
transmitted than is allowed by A(t).

However, in practice, evaluating such a predicate for each time
instant is infeasible. Therefore, we introduce an additional
assumption: a message consumes a constant amount of
resources for the whole time of transmission, e.g., it is being
transmitted with a constant speed. This allows us to reduce the
predicate from Eq. 4 to the following one:

∀t ∈ {m.tsent |m ∈ Msent}.|W(t,Msent)|≤A(t), (5)

1The concept refers to the situations in which an algorithm needs to decide to
choose a solution that is known to provide good results (exploit) or test a new
option to look for a better solution (explore).

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851055

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

wherem.tsent is the moment whenm is sent. This predicate allows
us to check the same condition but can be evaluated only in
discrete moments, i.e., when a message is sent.

Such a predicate can be defined for a variety of resources, e.g.,
network throughput, or energy. For each tree node in the decision
process, we check the truth values of such predicates. If any of them is
false, we do not consider the node nor its descendants in the decision
process. The additional computational complexity of this check depends
on the specific definitionof apredicate, but formanypractical predicates
(e.g., limited network throughput) it can be realized in amortized
constant time2 [for details see our implementation (Barcís, 2020)].
In the following paragraphs we present analytical results summarizing
the efficiency of the proposed constraint. The derivations of these results
are provided in Supplementary Appendix B.

Many of such predicates can be simplified to a constraint that
allows to send only less than r messages in a window. In such a
case, the number of nodes at the ith level of the tree is equal to:

2i − 2i−k∑k
j�r(k

j
) − (2i−k − 1)(k − 1

r − 1
), where k is the number of

messages generated in a window.
The decision space with such constraints still grows

exponentially with the number of messages. If the resource is
very limited, the reduction can be significant. However, when the
resource is abundant, there is almost no impact on the size of the
tree. To give some intuition: in the case when all messages can be
sent, the constraint has no impact, i.e., the number of nodes stays
the same and is equal to 2i. When r ≈ k

2, the number of nodes is
approximately 2i−1, so it allows us to consider one more message
with the same computational effort. Finally, if only a few
messages can be sent (specifically, r < < k), the number of tree
nodes is reduced to below 2i−k, allowing us to consider up to k
more messages with the same computational cost.

In our experiments, we use one such predicate for a network
throughput constraint: we define A as a constant function
returning fixed maximum network throughput, operator | · | as
the sum of the sizes of all messages in a subset divided by the
window length, and use the following windowing function:

W(t,Msent) � {m ∈ Msent | t ≤m.tsent ≤ t + T}, (6)

where T is a parameter defining the window length. Low values of
T result in a constraint that does not allow many messages to be
sent at similar times. High values of T provide fewer restrictions,
but might result in a temporary resource overuse. For the
experiments we have empirically set this value to T � 0.5 s,
since it provides a middle-ground between the two described
extremes and works well in our experimental setup.

3.2.2 Reduction for Markovian Information Types
Many information types used in MRS exhibit a Markovian
property, i.e., only the most recent message of such a type is
useful (brings utility). In this section, we present a reduction

method that significantly limits the decision space for such
information types.

Let us recall that the messages in the tree are ordered by
generation time. We define the state of a node in the decision tree
as a set {τp | p ∈ P}, whereP is the set of all information types and

τp � {mp,last if p isMarkovian,
Mp otherwise,

(7)

where mp,last is the most recently received message of type p and
Mp is the set of all messages of this type received so far.

If two nodes at the same level of the decision tree are sharing
the same state3, we will call them tantamount nodes. We observe
that any decision made in a descendant of one tantamount node
has exactly the same influence on the mission as a corresponding
decision in any other tantamount node. Consequently, the
utilities achieved from these future decisions are also equal.
Therefore, it is enough to consider a tantamount node that
brings the highest utility, as the other ones will for sure not
perform better. It means that all tantamount nodes with utility
lower than the highest one do not have to be expanded anymore.

At each level of the decision tree there is a finite number of
states equal to:

2n̂ ∏
p∈PM

np, (8)

where n̂ is a number of messages from non-Markovian
information types, PM is the set of Markovian information
types and np is the number of messages of type p generated so
far. For each state, all tantamount nodes are reduced to a single
node. Thus, after this reduction the number of nodes in the tree
grows exponentially only with respect to messages of non-
Markovian information types. For Markovian information
types it grows polynomially.

This observation can be incorporated into the MCTS
algorithm by maintaining a set ξi of the best nodes for all
states at each level i of the decision tree. Each time the tree is
expanded, the algorithm checks if the newly expanded node v is
better than its tantamount node v′ in the set ξi of the current level.
If this condition holds, the descendants of v′ are attached to v, v′ is
replaced by v in ξi, and all statistics of the tree are updated to
accommodate this change. In a case where v achieves worse utility
than v′, the expansion is canceled and not considered in the
future.

This modification introduces only a small computation
overhead of maintaining a set of states after each simulation
of MCTS. To analyze computational cost we assume there are n
messages in the tree. If, for the implementation of this specific set,
a tree-based set is used, additional O(log(n)) operations per
simulation are needed. Whereas, when using hash table, the
expected number of additional operations is just O(1) and in

2This means that the check would on average require constant time, but sometimes
might incur more computations. In our case, the first check requires a number of
operations proportional to the size of the window and the next ones can be done in
constant time.

3For completeness, the state should also contain an information about the network
constraint utilization. It is not included for the sake of simple presentation. In
particular, the presented considerations hold without changes if the constraint
from Eq. 5 is used with window size smaller than the publishing periods of
Markovian message types.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851056

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the worst case it is O(n). Both of these solutions introduce a
negligible cost in practice, because each simulation has to perform
O(n) operations anyway. The overhead is small compared to the
benefit of greatly reduced decision space.

4 EVALUATION

In this section we present a twofold result. First, in a simulation
study (Section 4.2) we show that the introduced method
produces good results in a multitude of applications. Second,
through a robotic proof of concept (Section 4.3), we present the
applicability of the proposed method in a real-world scenario.

However, arguing about the performance of a solution to an
information distribution problem is inherently complicated due
to the multitude of applications and conditions to consider. For
instance, a method adjusted for distributed photogrammetry
might not work well for a multi-robot search and rescue
mission. Nevertheless, state of the art publications addressing
the problem of information distribution are usually ignoring this
aspect and evaluating the solutions using specific applications
(Marcotte et al., 2019; Best et al., 2019; Unhelkar and Shah, 2016;
Williamson et al., 2009; Fowler et al., 2020; Roth et al., 2006).
Hence, in Section 4.1 we propose a novel evaluation
methodology that presents the performance of our solution in
different scenarios. Then, we use it to present the rest of the
results.

4.1 Evaluation Method
Instead of focusing on a specific application, we introduce a
mission characteristic that intuitively describes the difficulty of

the information distribution problem for that mission. Then, we
present three scenarios with different characteristics and show
how our approach performs in them.

As a characteristic of a mission, we could use a distribution of
utilities of all generated messages in the mission: what percentage
of messages provided high utility, what low, etc. Such a
characteristic would allow us to identify how important it is to
optimize information distribution for a given application.
However, sending one message influences the utility of other
messages. Thus, it is not straightforward to obtain such statistics.
For instance, in one execution of the mission a message could be
very valuable, whereas in the other it could provide almost no
utility, because the same information was shared using a different
message. Hence, instead of using a distribution of utilities we
approximate the distribution of expected utilities of all messages.
In order to acquire the proposed statistics, we first perform
experiments using an algorithm that randomly drops messages
with different probabilities. Then, for each message exchanged
during all experiments we compute how much utility it provided
for the mission and plot the distribution of these values. The
results in Figure 3 are obtained by running 30 simulations with
different message drop rates, resulting in around 12,000
exchanged messages.

We consider three scenarios. In scenario (a) a majority of
messages are very important for the mission, hence have a high
utility value. An example of such a mission could be an
application of unmanned aerial vehicles (UAVs) to map an
unknown area and share with others map fragments that were
not yet explored. Then, each map fragment is equally important
and hence brings similarly high utility. In such a mission even if
the information distribution optimization is realized perfectly,

FIGURE 3 | Results of comparison between the baseline randommethod and the Information Distribution Middleware in the simulation study. In scenario (A)most
of the exchanged messages are of high utility. In scenario (B) there is a uniform distribution of messages with respect to utility. Finally, in scenario (C) most of the
messages are of low utility. These plots can be reproduced by running the DropRateVsUtility experiment in our software framework (Barciś, 2020).

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851057

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the benefit is very low, because even a random method would
choose to send most of the valuable messages. On the other hand,
in scenario (c) a majority of messages is not useful and there are
just a few very important messages. For this case an example
could be a search and rescue mission performed by UAVs, which
are periodically sharing their status. For most of the time UAVs
are just reporting the fact that they did not locate a victim.
However, the messages stating that the victim has been found are
much more valuable, but also relatively rare. In this scenario the
main goal of the information distribution optimization is to find
and deliver these important messages. For such applications it is
fairly simple to showcase the superiority of some information
distribution approach over a random scheme. Even a very simple
solution that transmits only the high-valued messages would
provide results much better than a random approach. Apart from
these two extremes one can think about scenarios in between,
with similar numbers of messages of different utility. We will refer
to this middle-ground as scenario (b). An example of such a
scenario could include UAVs measuring pollution around a
building with an assumption that measurements made closer
to the building are more important. The characteristics of these
three scenarios are depicted in the bottom row of Figure 3 as
histograms. The expected utilities of messages are normalized
w.r.t. the message with the highest utility value and characterized
with adjectives “low”, “medium” and “high”. Additionally, the
empirical cumulative distribution function (eCDF) for this data
set is plotted with a green line.

4.2 Simulation
Each scenario is implemented and evaluated in the network
simulator ns-3. We have configured the simulator to be as
close as possible to our robotic setup, i.e., using an ad-hoc
IEEE 802.11 b/g network with messages broadcast in a non-
reliable manner using UDP. In all simulated scenarios there
are 10 agents—this number is motivated by the practical
applicability of systems of this size and similar to the number
of robots we used for practical experiments (8, described in
Section 4.3). Simulations with lower and higher (up to 16)
number of agents were also conducted, but for the sake of
compactness, are not presented in this publication. The longer
the experiment, the more consistent the results. Hence, instead of
performing multiple experiments and averaging results, for each
set of parameters we run an experiment for a predefined time. We
have empirically determined the mission duration of 100 s to
provide consistent outcomes. The software is open source and
available online to make the results reproducible (Barciś 2020).

Throughout the whole experiment, each agent generates with
a frequency of 1 Hz a piece of information about itself, e.g., its
battery level or position. The actual semantics of a message is not
important, as we are pursuing an indirect approach and only
consider the utility provided by an evaluation model. As
evaluation model, we use the approach described in Section
2.2. Message utility functions are set to be linearly decreasing
functions with variable slope and initial value. This allows us to
specify for each message how long it generates utility, how much,
and express the fact that the information could be overwritten by
another message. They are not based on real-world information

types. This definition allows us to introduce a variation between
utilities of single messages and also to vary how messages
influence each other.

The difference between three scenarios is introduced by
splitting all messages into ten sets, numbered from 0 to 9.
Then the utility provided by the message from ith set is
multiplied by weight ωi. For scenario (a), ωi � 3i+1; for
scenario (b), ωi � 1000i + 1; and for scenario (c), ωi � i0.1 + 1.

The MCTS is performing 1,500 iterations for each decision,
which in our implementation takes around 0.3 s using a personal
laptop computer (Intel Core i7–7500U, 2.7 GHz). This value has
been chosen to keep the duration of experiments manageable.
Higher number of iterations provides better results, at the cost of
longer decision time.

The results are presented in the top row of Figure 3. The y axis,
labeled% of utility refers to the ratio between achieved utility and
maximum possible utility, i.e., obtained by exchanging all
generated messages without delays. We compare our
optimization method (red ×) with a randomized one (blue +).
Each sample is a result of a single 100 s long experiment. For each
algorithm we ran 30 experiment runs. In the case of a random
method each experiment is run with a different probability of
dropping a message. For our method the number of messages to
send is constrained using Eq. 5 and also varies with different
experiments. The plotted value is based on the received messages,
so the loss naturally occurring in the network is also taken into
account.

We observe that our method performs very well in comparison
to a method that randomly drops messages if there are many low-
value messages (scenario (c)). It means that our approach is able
to identify which messages bring high utility and sends them. On
the other hand, in scenario (a), most of the messages bring high
utility. It does not matter which ones are chosen, hence our
algorithm cannot perform much better than the randomized
method. Scenario (b) presents a middle-ground between the
other two extremes.

4.3 Proof of Concept Using Mobile Robots
In contrast to deterministic simulations, in the real world the
changing environment makes it very hard to reproduce similar
experiments on robots in a reliable fashion. Hence, the aim of the
proof of concept presented in this section is to show that the
approach is applicable in practice on affordable hardware and to
qualitatively confirm the results of the simulation-based study.
We also utilize this opportunity to present how the layered design
of our method enables fast and easy integration into existing
systems.

The use case is prepared using eight Pololu Balboa robots
modified for our previous work (Barciś et al., 2019). The platform
allows us to easily achieve mobility and integrates a very popular
computing platform, Raspberry Pi 3B+ with Raspberry Pi Camera
Module V2. It is set up to work in an IEEE 802.11 b/g ad-hoc
network with multi-hop connection support provided by the
Babeld protocol. The software is built in Python on top of a Robot
Operating System 2 Eloquent Elusor (ROS 2) robotic framework
with a default eProsima Fast RTPS implementation of the Data
Distribution Service (DDS) standard. The robots’ real-time clocks

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851058

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

are synchronized using Chrony with a root mean square (RMS)
clock discrepancy offset below 0.1 ms.

By using an ad-hoc network together with ROS 2 we create a
fully distributed system, i.e., without any single point of failure
enabling robots to join and leave the mission freely.

The application is designed to simulate a surveillance mission.
The robots move around and send a stream of 640 × 480 px
images from their cameras to the operator’s computer. The aim of
the system is to monitor red objects. This is a simplification made
in order to clearly present our goals, but a similar system could
additionally classify objects and look for some particular classes,
e.g., cars. Alternatively, an infra-red camera could be used. Then,
the red color could suggest presence of people or animals.

Figure 4 presents the characteristics of this mission obtained
using data containing all generated messages from a single
experiment and processed in the same way as in Section 4.1.
We present it mainly to demonstrate that the introduced concept
of characteristics can be used to analyze practical missions, but
also to show that even in a simple application a randomly
dropping algorithm would not perform well.

As a baseline, the system has been implemented purely in ROS
2 without the use of our information distribution middleware.
The performance was mediocre. When pictures were sent rarely
enough not to overflow the network, the refresh rate was low
(around 1.5 Hz). Setting a higher refresh rate resulted in a
network congestion. Even though we used a communication
scheme without retransmissions (non-reliable setting of DDS),
delays of image frames increased above 3 s and the variation of
frame rates was high. This resulted in a situation where it was
possible to completely miss a red object, even when it was
positioned in front of a robot for a couple of seconds.

Then, we have incorporated our method in three simple steps:
intercepting image messages sent by the original system, defining
utility functions for them to be dependent on the amount of red
pixels in the image, and specifying that an image is expected to
have the same number of red pixels as the previous one.
Specifically, we have used the following utility function:

Um(m, t) � { 0 if t <m.trcv
Uvid(m, t)(1 + αm.red) otherwise

, (9)

where m is a message, t is a moment at which we want to
evaluate the utility function, m.trcv is the message reception
time, and m.red is a percentage of red pixels in the transmitted
image. Uvid is a utility of a message that ensures a good quality of
experience taking into account human perception. It assumes
that doubling the frame rate of image stream improves the
experience of a person observing it by a constant factor. The
exact definition of Uvid is taken from the paper introducing the
evaluation model (Barciś et al., 2020) (Eq. 28). Low values of
parameter α prioritize frequent updates from each robot,
whereas high values prioritize the images with red pixels. In
the experiments α � 10, which we determined empirically to
provide a good viewing experience. The number of MCTS
simulations needed to be tuned and set to 300, which
resulted in a reasonable balance between low latency and
good system performance.

These modifications greatly increased the system usefulness.
A screenshot of a running application is presented in Figure 5. It

FIGURE 4 | Characteristics of the proof of concept, which show that a
random algorithm would not perform well in this setting as most of the
messages are of low utility.

FIGURE 5 | Screenshot of the demonstrator in which the robots are exchanging images and our method maintains a limited throughput constraint while giving
preference to images containing more red pixels.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6851059

Barciś et al. Information Distribution in Multi-Robot Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

can be seen that a robot seeing a red fire extinguisher transmits
images the most frequently. The robots that see some red pixels
(e.g., wheels of other robots) are also sending information more
often than other ones, but overall the link is shared fairly. As
soon as a robot sees a red object, the frame rate of its video
stream increases. We cannot show this in a picture, but it can be
observed in a video attached to this publication. Note that this
behavior emerges autonomously, no additional logic was
programmed.

On the downside, our method increases latency of the system
because of the added computational overhead. This overhead
depends mainly on the number of simulations performed by
MCTS. In the presented scenario, with MCTS performing 300
simulations, the latency caused by the optimization method was
around 0.1 s for each message. Before the introduction of the
middleware, when the network was not overloaded, images were
received approximately 0.2 s after being generated. Afterward, the
latency grew to approximately 0.3 s. For the presented scenario, this
is not a big issue: if one is looking for a red object, it is better to see it
with a delay than to miss it completely. Furthermore, the proof of
concept was not programmed with performance as the main
priority and makes use of inefficient technologies, e.g., the
Python programming language.

Finally, the goal of the demonstrator is not to show this particular
behavior. After all, a similar application could be realized in a more
efficient way if it was designed specifically for this use case. We show
that our method is applicable in practice and can easily transform a
relatively simple application into a much more sophisticated one.
Furthermore, the simulation-based study shows that the method
provides similar benefits to more complex systems, for which
designing a specific information distribution optimization scheme
might be infeasible.

5 CONCLUSIONS AND OUTLOOK

Wepresented a genericmethod to optimize information distribution
that can be integrated into any robotic system that exchanges
messages. The proposed method allows the agents to select and
exchange the most relevant information types, increasing the
mission performance. In addition to the performance benefits,
the proposed method is easy to integrate. The only step needed
to benefit from it involves defining the utility functions for each used
information type. The proposedmethod shows good performance in
diverse scenarios and is demonstrated both in simulation and in
experiments involving mobile robots.

We see multiple ways future work could be developed. First of all,
there is certainly a need for a unified benchmark or data set in order to
make comparisons with other approaches quantifiable. The mission
characteristics presented in this work could be a first step toward a
more general solution. Furthermore, the comparisons with state of the
art are relatively hard, because usually no code is provided and the
evaluation is done using hand-crafted applications. Hence, a
standardized set of experiments could facilitate the future work and
make similar research more reproducible.

In addition, the properties of different information types can
be investigated and exploited to develop efficient methods for

information distribution. Ideally, such methods could be then
incorporated into a generic system to increase its performance for
that given information type (similarly to the approach presented
in this paper for Markovian information types).

Finally, automating the generation of utility specifications and
estimators would minimize the user effort to integrate the
proposed middleware into existing applications. One potential
approach could be to utilize statistical/machine learning-based
methods to autonomously determine utility specifications and
obviate the need for any additional application-related
modifications.

DATA AVAILABILITY STATEMENT

The software developed and used in this study is available at
http://github.com/zeroos/infdist.

AUTHOR CONTRIBUTIONS

HH and MB initiated the research and chose the methodology;
HH managed the funding and the project administration; MB
implemented the method and performed the simulation study;
AB implemented the robotic experiment; MB and AB performed
the experiments and the formal analysis; MB, AB, and NT tested
the software; all authors participated in the conceptualization of
the research, design of the experiments, manuscript preparation,
reviewing and editing process.

FUNDING

This work was supported by the Karl Popper Kolleg on
Networked Autonomous Aerial Vehicles (KPK NAV) at the
University of Klagenfurt, Austria, and Flanders Make/VLAIO:
SBO MULTIROB.

ACKNOWLEDGMENTS

We would like to acknowledge all members of the KPK NAV
team for extensive discussions, constant feedback and ideas
that made this research possible. In particular, we would like
to thank Mahin Atiq from Silicon Austria Labs GmbH and
Petra Maždin from KPK NAV for their extensive involvement
in the improvement of this manuscript. Additionally, we
thank all the editors and reviewers working for Frontiers
on this manuscript for their work toward enhancing its
quality.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/
full#supplementary-material

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 68510510

Barciś et al. Information Distribution in Multi-Robot Systems

http://github.com/zeroos/infdist
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.685105/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

REFERENCES

Allotta, B., Costanzi, R., Ridolfi, A., Colombo, C., Bellavia, F., Fanfani, M., et al.
(2015). The ARROWS Project: Adapting and Developing Robotics
Technologies for Underwater Archaeology. IFAC-PapersOnLine 48 (2),
194–199. doi:10.1016/j.ifacol.2015.06.032

Amigoni, F., Banfi, J., Basilico, N., Rekleitis, I., and Quattrini Li, A. (2019). “Online
Update of Communication Maps for Exploring Multirobot Systems under
Connectivity Constraints,” in Distributed Autonomous Robotic Systems.
Springer Proceedings in Advanced Robotics. Editors N. Correll, M. Schwager,
and M. Otte (Cham: Springer), Vol. 9, 513–526. doi:10.1007/978-3-030-
05816-6_36

Anderson, J., and Hollinger, G. A. (2021). Communication Planning for
Cooperative Terrain-Based Underwater Localization. Sensors 21 (5), 1675.
doi:10.3390/s21051675

Barciś, A., Barciś, M., and Bettstetter, C. (2019). “Robots that Sync and Swarm: A
Proof of Concept in ROS 2,” in Proc. IEEE Int’l Symp. on Multi-Robot and
Multi-Agent Systems (MRS), New Brunswick, NJ, August 22–23, 2019 (IEEE).

Barciś, A., and Bettstetter, C. (2020). Sandsbots: Robots that Sync and Swarm. IEEE
Access 8, 218752–218764. doi:10.1109/access.2020.3041393

Barciś, M., Barciś, A., and Hellwagner, H. (2020). Information Distribution in
Multi-Robot Systems: Utility-Based Evaluation Model. Sensors 20 (3), 710.
doi:10.3390/s20030710

Barciś, M. (2020). Information Distribution Optimization Middleware. Available
at: https://github.com/zeroos/infdist.

Becker, R., Carlin, A., Lesser, V., and Zilberstein, S. (2009). Analyzing Myopic
Approaches for Multi-Agent Communication, Comput. Intell. 25 (1), 31–50.
doi:10.1111/j.1467-8640.2008.01329.x

Best, G., Forrai, M., Mettu, R., and Fitch, R. (2018). “Planning-Aware
Communication for Decentralised Multi-Robot Coordination,” in Proc.
IEEE Int’l Conf. on Robotics and Automation (ICRA), Brisbane, QLD,
Australia, May 21–25, 2018 (IEEE), 1050–1057.

Best, G., Cliff, O. M., Patten, T., Mettu, R. R., and Fitch, R. (2019). Dec-MCTS:
Decentralized Planning for Multi-Robot Active Perception, Int’l J. Robotics Res.
38 (2-3), 316–337. doi:10.1177/0278364918755924

Corera, G. (2016). “Google Achieves AI ’breakthrough’ at Go,” BBC News.
Coulom, R. (2006). “Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search,” in Proc. Computers and Games, Turin, Italy, May 2006 (Springer-
Verlag).

Fowler, M. C., Clancy, T. C., and Williams, R. K. (2020). Intelligent Knowledge
Distribution: Constrained-Action POMDPs for Resource-Aware Multiagent
Communication. IEEE Trans. Cybern., 1–14. doi:10.1109/tcyb.2020.3009016

Hoshino, S., Seki, H., and Naka, Y. (2008). Development of a Flexible and Agile
Multi-Robot Manufacturing System, IFAC Proceedings Volumes. Proc. 17th
Int’l Fed. Automatic Control. World Congress 41, 15786–15791. doi:10.3182/
20080706-5-kr-1001.02669

Kassir, A., Fitch, R., and Sukkarieh, S. (2015). Communication-Aware Information
Gathering with Dynamic Information Flow. Int. J. Robotics Res. 34, 173–200.
doi:10.1177/0278364914556911

Kocsis, L., and Szepesvári, C. (2006). “Bandit Based Monte-Carlo Planning,” in
Machine Learning: ECML. Lecture Notes in Computer Science. Editors
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Berlin, Heidelberg:
Springer), 282–293. doi:10.1007/11871842_29

Mansley, C., Weinstein, A., and Littman, M. L. (2011). “Sample-Based Planning for
Continuous Action Markov Decision Processes,” in Proc. Int’l Conf. on
Automated Planning and Scheduling (ICAPS) ICAPS’11 (Freiburg,
Germany: AAAI Press), 335–338.

Marcotte, R. J., Wang, X., Mehta, D., and Olson, E. (2019). OptimizingMulti-Robot
Communication under Bandwidth Constraints. Auton. Robot 44, 43–55.
doi:10.1007/s10514-019-09849-0

Mazdin, P., Barciś, M., Hellwagner, H., and Rinner, B. (2020). “Distributed
Task Assignment in Multi-Robot Systems Based on Information
Utility,” in Proc. 16th Int’l Conf. on Automation Science and
Engineering (CASE), Hong Kong, China, August 20–21, 2020 (IEEE).

Mazdin, P., and Rinner, B. (2021). Distributed and Communication-Aware
Coalition Formation and Task Assignment in Multi-Robot Systems. IEEE
Access 9, 35088–35100. doi:10.1109/access.2021.3061149

Pepels, T., Winands, M. H. M., and Lanctot, M. (2014). Real-Time Monte Carlo
Tree Search in Ms Pac-Man. IEEE Trans. Comput. Intell. AI Games 6 (3),
245–257. doi:10.1109/tciaig.2013.2291577

Pynadath, D., and Tambe, M. (2002). The Communicative Multiagent Team
Decision Problem: Analyzing Teamwork Theories and Models. J. Artif.
Intell. Res. 16, 389–423. doi:10.1613/jair.1024

Rinner, B., Bettstetter, C., Hellwagner, H., and Weiss, S. (2021). Multidrone
Systems: More Than the Sum of the Parts. IEEE 54 (5), 34–43. doi:10.1109/
MC.2021.3058441

Roth, M., Simmons, R., and Veloso, M. (2006). “What to Communicate?
Execution-Time Decision in Multi-Agent POMDPs,” in Proc. Distributed
Autonomous Robotic Systems (DARS), Minneapolis, MN, July 2006. Editors
M. Gini and R. Voyles (Tokyo: Springer-Verlag). doi:10.1007/4-431-
35881-1_18

Szer, D., and Charpillet, F. (2004). “Improving Coordination with Communication
in Multi-Agent Reinforcement Learning,” in Proc. IEEE Int’l Conf. on Tools
with Artificial Intelligence, Boca Raton, FL, November 15–17, 2004 (IEEE),
436–440.

T. Cazenave, S. Abdallah, and S. Nathan (2019). in Computer Games (Springer).
Tsiogkas, N., and Lane, D. M. (2019). “Towards an Online Approach for

Knowledge Communication Planning: Extended Abstract,” in Proc. Int’l
Symp. on Multi-Robot and Multi-Agent Systems (MRS), New Brunswick,
NJ, August 22–23, 2019 (IEEE).

Unhelkar, V. V., and Shah, J. A. (2016). “ConTaCT: Deciding to Communicate
during Time-Critical Collaborative Tasks in Unknown, Deterministic
Domains,” in Proc. Conf. on Artificial Intelligence (AAAI), Phoenix, AZ,
February 12–17, 2016 (Menlo Park, CA: AAAI Press).

Williamson, S. A., Gerding, E. H., and Jennings, N. R. (2009). “Reward Shaping for
Valuing Communications during Multi-Agent Coordination,” in Proc. Int’l
Conf. on Autonomous Agents and Multiagent Systems (AAMAS), Budapest,
Hungary, May 2009 (International Foundation for Autonomous Agents and
Multiagent Systems).

Yazdani, F., Blumenthal, S., Huebel, N., Bozcuoğlu, A. K., Beetz, M., and
Bruyninckx, H. (2019). Query-Based Integration of Heterogeneous
Knowledge Bases for Search and Rescue Tasks. Robotics Autonomous Syst.
117, 80–91. doi:10.1016/j.robot.2019.03.013

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Barciś, Barciś, Tsiogkas and Hellwagner. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 68510511

Barciś et al. Information Distribution in Multi-Robot Systems

https://doi.org/10.1016/j.ifacol.2015.06.032
https://doi.org/10.1007/978-3-030-05816-6_36
https://doi.org/10.1007/978-3-030-05816-6_36
https://doi.org/10.3390/s21051675
https://doi.org/10.1109/access.2020.3041393
https://doi.org/10.3390/s20030710
https://github.com/zeroos/infdist
https://doi.org/10.1111/j.1467-8640.2008.01329.x
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1109/tcyb.2020.3009016
https://doi.org/10.3182/20080706-5-kr-1001.02669
https://doi.org/10.3182/20080706-5-kr-1001.02669
https://doi.org/10.1177/0278364914556911
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/s10514-019-09849-0
https://doi.org/10.1109/access.2021.3061149
https://doi.org/10.1109/tciaig.2013.2291577
https://doi.org/10.1613/jair.1024
https://doi.org/10.1109/MC.2021.3058441
https://doi.org/10.1109/MC.2021.3058441
https://doi.org/10.1007/4-431-35881-1_18
https://doi.org/10.1007/4-431-35881-1_18
https://doi.org/10.1016/j.robot.2019.03.013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Information Distribution in Multi-Robot Systems: Generic, Utility-Aware Optimization Middleware
	1 Introduction
	2 Problem Formulation
	2.1 System Design
	2.2 Utility-Based Evaluation Model

	3 Methods
	3.1 Information Distribution Optimization With Monte Carlo Tree Search
	3.2 Reduction of Decision Space
	3.2.1 Reduction Based on Network Constraints
	3.2.2 Reduction for Markovian Information Types

	4 Evaluation
	4.1 Evaluation Method
	4.2 Simulation
	4.3 Proof of Concept Using Mobile Robots

	5 Conclusions and Outlook
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

