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Safety is an important issue in human-robot interaction (HRI) applications. Various
research works have focused on different levels of safety in HRI. If a human/obstacle
is detected, a repulsive action can be taken to avoid the collision. Common repulsive
actions include distance methods, potential field methods, and safety field methods.
Approaches based on machine learning are less explored regarding the selection of the
repulsive action. Few research works focus on the uncertainty of the data-based
approaches and consider the efficiency of the executing task during collision
avoidance. In this study, we describe a system that can avoid collision with human
hands while the robot is executing an image-based visual servoing (IBVS) task. We use
Monte Carlo dropout (MC dropout) to transform a deep neural network (DNN) to a
Bayesian DNN, and learn the repulsive position for hand avoidance. The Bayesian DNN
allows IBVS to converge faster than the opposite repulsive pose. Furthermore, it allows the
robot to avoid undesired poses that the DNN cannot avoid. The experimental results show
that Bayesian DNN has adequate accuracy and can generalize well on unseen data. The
predictive interval coverage probability (PICP) of the predictions along x, y, and z directions
are 0.84, 0.94, and 0.95, respectively. In the space which is unseen in the training data, the
Bayesian DNN is also more robust than a DNN. We further implement the system on a
UR10 robot, and test the robustness of the Bayesian DNN and the IBVS convergence
speed. Results show that the Bayesian DNN can avoid the poses out of the reach range of
the robot and it lets the IBVS task converge faster than the opposite repulsive pose.’

Keywords: safety, human-robot interaction, Bayesian neural network, deep learning, image-based visual servoing

1 INTRODUCTION

With the development in human-robot interaction (HRI) and human-robot collaboration (HRC)
fields, humans have more opportunities to work with robots closely. Safety is an important issue
when designing HRI and/or HRC systems. It can be achieved via various approaches such as low-
level control of robots, motion planning, and human action/motion prediction (Lasota et al., 2017).
Research works have been carried out considering the safety aspect at different levels (Lasota et al.,
2017; Halme et al., 2018). In a study by Fabrizio and De Luca (2016), the authors use multiple depth
cameras to calculate the distance between obstacle and robot to avoid collision in real time. In a study
by Polverini et al. (2017), human skeletons are tracked to avoid collisions. In a study by Wang et al.

'Video demonstration is available at: https://youtu.be/5i248tN4Ovc
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FIGURE 1 | An overview of the scene setup. The camera is in eye-in-
hand configuration. The object is in a triangular shape and is placed on the
table. We define a space on the left side of the robot where the human hand
moves. The quarter-sphere around the TCP for generating repulsive

pose candidates is on the opposite direction of the hand moving space.

(2017), a CNN-RNN model is used to predict the human hand
motion, and a critical distance is used for optimizing the
trajectory to avoid collisions. In addition to the use of
cameras, other sensors are also used to detect obstacles/
humans, such as IMU and a laser scanner (Safeea and Neto,
2019).

Visual servoing is a closed-loop control technique that allows
the robot to move to a reference pose with regard to an object.
Visual servoing can be classified into image-based visual servoing
(IBVS) and position-based visual servoing (PBVS) (Chaumette
and Hutchinson, 2006). IBVS compares the image at the current
pose and the image at the reference pose. The visual errors are
iteratively reduced, and the robot pose is converged to the
reference pose. It can be used in HRI applications for grasping
tasks (Shi et al., 2019).

Considering safety when using IBVS to grasp objects, if a
human hand is moving into a critical distance to the robot’s tool
center point (TCP) during the process that IBVS is driving the
robot to the desired pose for grasping, a repulsive action can be
adopted to avoid the collision with the human (Sadeghian et al.,
2015). One of the possible repulsive actions is moving the robot
TCP to a repulsive pose in the opposite direction of the obstacle.
As indicated in our previous work (Shi et al., 2020), moving the
TCP to a repulsive pose which is around the opposite repulsive
pose can still avoid the collision with the hand, and the image
moment error could be smaller than the opposite pose. We use a
regression ResNet (He et al., 2016; Chen et al., 2020) to predict a
repulsive position. In a study by Chen et al. (2020), it is shown
that using a ResNet for regression outperforms neural network
(NN) and other conventional machine learning regression
algorithms. As shown in Figure 1, we consider a quarter-
sphere space around the robot TCP. The quarter-sphere space
is on the opposite direction of the hand. From this space, we
generate repulsive pose candidates and select the one with the

Bayesian DNN in HRI

least image error as the ground truth repulsive position. We have
trained and evaluated the model using a dataset created in a
simulator; the results showed that the regression ResNet can
generalize well on the test set and the mean absolute errors
(MAEs) in x, y, and z directions are 7.46, 7.61, and 7.63,
respectively. It is also possible to calculate the image moment
errors of the repulsive candidates online. We have shown that
using the NN is faster than calculating online.

When implementing the deep neural network (DNN) model
to the real system, the model uncertainty needs to be taken into
consideration, especially when dealing with safety. The DNN,
that is, a regression ResNet, does not provide the weight
uncertainty; hence, it cannot provide prediction uncertainty.
When the robot TCP moves to the space that is not included
in the training data, the DNN may have undesired predictions,
and the robot may have an undesired action, for example, out of
the reach range. Bayesian neural networks (BNNs), on the other
hand, take the uncertainties of the model weights into account
during the training such that BNNs can make probabilistic
inferences. Using a BNN for collision avoidance will let the
system be more robust in terms of avoiding the undesired
poses for the robot.

We further develop the previous work (Shi et al., 2020). In this
work, we describe a system that can avoid the collision with
human hands while the robot is executing an IBVS task. The
system consists of three modules, visual servoing, hand
prediction, and repulsive pose prediction (Figure 2). In the
visual servoing module, IBVS with image moments is used to
guide the manipulator to the object of interest. The hand
prediction module detects human hands and predicts the hand
motion. The repulsive pose prediction module uses a Bayesian
DNN based on the regression ResNet to predict the repulsive
pose. We apply a Monte Carlo dropout (MC dropout) (Gal and
Ghahramani, 2016) to convert the DNN into Bayesian DNN. If
the predicted hand position is within a defined critical distance
toward the robot TCP, the manipulator will avoid the human
hand by moving the end effector to the inferred repulsive pose.
We train and evaluate the Bayesian DNN, that is, a Bayesian
regression ResNet, with the synthetic data created in simulation.
The results show that the Bayesian regression ResNet has
adequate accuracy on the test data. The predictive interval
coverage probability (PICP) along x, y, and z axes is 0.84,
0.94, and 0.95, respectively. The Bayesian regression
ResNet also has a more robust performance than the
regression ResNet when the TCP is not in the range of the
training data. We further implement the system with a real
robot and test the inferred repulsive pose and the opposite
repulsive pose. The result indicates that the IBVS can
converge faster by using the inferred repulsive pose for hand
avoidance.

The main contribution of our work is twofold. First, we
present a system using a Bayesian regression ResNet for
collision avoidance by moving the robot to a repulsive pose in
IBVS; compared to the DNN, the Bayesian DNN can avoid
undesired repulsive poses which will let the robot be out of its
reach range. Second, we demonstrate a training method for the
DNN (and Bayesian DNN) model which takes both safety and the
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FIGURE 2 | Overview diagram of the system for safe interaction with the robot.

efficiency of visual servoing tasks into consideration. The model
learns a repulsive position at which the image has the least visual
error regarding the desired pose. The repulsive pose based on the
Bayesian DNN ensures safety by moving in the opposite direction
of the obstacle, and it lets the IVBS converge faster than the direct
opposite repulsive pose. The rest of the article is organized as
follows: in Related Work, we review the related work; in System
Overview and Implementation, we explain the details of the
system and its modules as well as the implementation; in
Results, we show the evaluation results of the Bayesian
regression ResNet and the results of the system, and we
discuss the results in Discussion. The conclusion and future
work are shown in Conclusion and Future Work.

2 RELATED WORK

In a study by Khatib (1986), a potential field approach is used for
collision avoidance. The potential field calculation is based on the
distance, and the potential field is used to transform the control
problem into a velocity-based servo control. In a study by Flacco
etal. (2012), a distance-based repulsive vector is used for collision
avoidance in 3-dimensional space in various scenarios. The depth
is obtained by a RGB-D camera. In a study by Fabrizio and De
Luca (2016), multiple depth cameras are used to estimate the
distance between the obstacles and the points of interest on the
robotic link. The obstacle avoidance is achieved by considering
the distances and orientations between the obstacles and the
points on the robotic link. In a study by Polverini et al. (2017), the
authors use a kinetostatic safety field to control the robot for
collision avoidance. The kinetostatic safety field considers both
the relative position and the relative velocity between an obstacle
and points on a robot. In a study by Sadeghian et al. (2015), the
authors use a distance-based repulsive action during image
moment-based IBVS and keep the object at the center of
the image.

With rapid developments in artificial intelligence, it draws
attention to the robotics research works too. Several works by
Heo et al. (2019), Sharkawy et al. (2020), Cioffi et al. (2020), and
Anvaripour and Saif (2019) deployed artificial intelligence
techniques in the safety issues in HRI. In a study by Sharkawy
et al. (2020), a multilayer feedforward NN is used to detect a

collision and identify the collided robotic link. In a study by Cioffi
et al. (2020), a support vector machine (SVM) classifier is used to
classify if contact to the robot is intentional or is a collision. In a
study by Heo et al. (2019), a DNN model, CollisionNet, is
proposed to detect collision. The model takes joint’s
information and acts as a binary classifier to predict if a
collision happens or not. The authors in Anvaripour and Saif
(2019) use CollisionNet in combination with force myography
sensors attached to the human arm to classify if a collision is
intended or not.

Different approaches have been proposed, allowing the NN to
make Bayesian inference, such as Bayes by Backprop (Blundell
et al., 2015), Bayesian hypernetworks (Krueger et al,, 2017),
multiplicative normalizing flows (Louizos and Welling, 2017),
Bayes by Hypernet (Pawlowski et al., 2017), and dropout as a
Bayesian optimization (MC Dropout) (Gal and Ghahramani,
2016). Bayes by Backprop learns the distribution of weights in
a NN. The weights are regularized by the variational free energy.
Bayesian hypernetwork consists of two parts, a hypernetwork and
a primary network, that is, the NN of interest. The hypernetwork
learns the parameters of the primary network, and they are
trained together by backpropagation. Dropout as a Bayesian
optimization uses dropout to approximate the Bayesian
inference for a NN. From the perspective of integrating a
Bayesian DNN into real robotics application, dropout as a
Bayesian  optimization has the advantage of easy
implementation upon an existing network by simply adding
dropout layers to the weight layers. MC dropout has been
widely adopted in various research fields. Applications include
camera pose estimation (Kendall and Cipolla, 2016), depth
estimation (Poggi et al., 2020), pedestrian localization (Bertoni
et al, 2019), semantic segmentation (Mukhoti and Gal, 2018),
and electrocardiogram signal detection (Elola et al., 2019).

A more similar work to ours is the work of Kahn et al. (2017);
the authors applied bootstrapping and dropout on an NN to
estimate the uncertainty of collision in unmanned aerial vehicle
(UAV) and autonomous car applications. However, our work has
the following differences with that of Kahn et al. (2017). First, the
NN they used takes the current state, observation, and control as
inputs, and provides the probability of collision as the output. In
our work, we modified the ResNet for a regression task, which
takes the hand position and TCP position as inputs, and provides
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the repulsive position as the output. Second, the Bayesian NN in
the work of Kahn et al. (2017) is further used for reinforcement
learning for collision avoidance. Our Bayesian DNN is directly
used for collision avoidance with shorter convergence iteration
for IBVS. In a study by Michelmore et al. (2020), the authors also
used MC dropout on an end-to-end DNN to control the vehicle
in autonomous driving. Unlike in the work of Kahn et al. (2017),
the DNN acts as an end-to-end controller which takes the images
as inputs and provides the steering angles for the car as the
output. The MC dropout technique is only applied on the last
three fully connected (FC) layers. The MC drop is also used in a
study by Cui et al. (2019) in an end-to-end manner for training.

3 SYSTEM OVERVIEW

Figure 2 gives an overview of the system for safe interaction with
the robot. In the visual servoing module, IBVS with image
moments is used to locate the object. The camera is
configured as the eye-in-hand system. The hand prediction
module detects the human hand and predicts its motion. The
module determines if the hand is within the critical distance. The
repulsive pose prediction takes two inputs, the TCP of the end
effector and the predicted position of the hand. If the hand is in
the range of the critical distance, a repulsive pose will be predicted
by the Bayesian regression ResNet. The robot will move to the
repulsive pose to avoid the potential collision with the hand.

3.1 IBVS With Image Moments

One of the most common controllers used in IBVS applications is
the proportional control law (Chaumette et al., 2016; Copot et al.,
2019), which is defined as follows:

v. = —-AL{e, (1)

where L{ is the Moore-Penrose pseudoinverse of the interaction
matrix L¢ attached to the visual features f. In this study, we make
use of image moments as visual features. A set of image moments
f = [Xu, Yu> an, P, 6, ] is used to design the control law. In order to
design this control law, an exponential decrease of the error é =
—)e = —A(f — f') has been considered. The interaction matrix L¢
for a set of image moments f is given by Tahri and Chaumette
(2005):

-1 0 O a,en —a,(1+en) Yu
0 -1 0 a,(l1+ey) —a,eq; —X,
0 0 -1 —e31 €37 0
Ls = )
0 0 0 Yex Ytuy 0
0 0 0 O Ouy 0
0 0 0 Kpox Gy -1

The parameters from the interaction matrix are calculated as
follows:

e
Xp = AnXg,  Yn = Gn)g  Gn = Z*\/:’ (3)
a
1, I, 1 2
y="0 6= a= —arctan<¢>, 4)
In3 In3 2 Hao ~ Hoo
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where

a =ty t Pop> ) R
L = (psg + 243, + 1) 2+ (Hos + 2t + 1) , (5)
Lip = (psg = 243, = 3py,) 2+ (Hos = 2t = 3p1) > ,
Lis = (psp = 1043, + 5p,,)" + (pos — 1045 + 54)",
and Z" is the desired depth between the visual sensor and the

desired configuration.
The centered moments ; are computed by

b= (=) (=)’ ©)
k=1
with x, = 72, y, =7, and my; = él x;&';c

3.2 Hand Detection and Prediction

To detect the human hands, we use a deep learning-based object
detector, that is, YOLO (Redmon et al., 2016). The object detector
is trained on the COCO dataset (Lin et al., 2014). The detected
object is formed of O = [xp, ¥p, hp, wp], where x;, and y, are the
centers of the bounding box, and wj, and h; are the width and
height of the bounding box, respectively. To predict the bounding
box of the hand, a Kalman filter is implemented (Bewley et al.,
2016). The state vector of the Kalman filter is given below:

X5 = [xb,yb, Zps s > Xbps Yo Zbs db]: (7)

where z; is the depth at the center of the bounding box, 4y, is the
area of the bounding box, and r, is the aspect ratio. We take the
center of the predicted bounding box t, = (X5, ¥}, 2] as the
predicted position of the hand, where X, and y, are the
coordinates in the camera coordinate system. t, is converted
to the TCP coordinate system 1, by using the pinhole
camera model.

3.3 Repulsive Pose Prediction

We use a regression ResNet model (Chen et al., 2020) to predict
the repulsive pose. The results in the study by Shi et al. (2020)
have shown that the MAEs of the model on the test set are less
than 8. For allowing the NN to make Bayesian inference, we apply
the MC dropout technique (Gal and Ghahramani, 2016) to the
regression ResNet.

3.3.1 ResNet for Regression
We use a ResNet-based network for the regression task (Chen
etal,, 2020). The architecture of the network is shown in Figure 3.
Three residual blocks are connected in series, and the output of
the stacked blocks is passed to a batch normalization (BN) (Ioffe
and Szegedy, 2015) layer and an FC layer. In one residual block,
two types of blocks, that is, dense block and identity block, are
used. The details of the blocks are shown in Figure 4. The main
difference between the ResNet and the regression ResNet is that
the convolutional layers and pooling layers in the ResNet are
replaced by FC layers. The FC layers are followed by the BN layers
and rectified linear units (ReLUs) (Nair and Hinton, 2010).
The input of the model is the predicted hand position t, and
the current TCP position t;;, of the robot. We expand the input
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FIGURE 3 | Architecture of the regression ResNet and the Bayesian regression ResNet. The regression ResNet consists of three residual blocks (yellow) and a
BN + FC as readout. The residual block consists of one dense block and two identity blocks. The Bayesian regression ResNet is built upon the regression ResNet, and
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FIGURE 4 | Architecture of the dense block and the identity block in the regression ResNet and the Bayesian regression ResNet. In a dense block, there is FC + BN
in the residual connection, and there is no FC + BN in the residual connection in an identity block.
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with one additional bias element, so the dimension of the input is
7. The output of the regression ResNet is the position of the
repulsive pose, and its dimension is 3. The orientation of the
repulsive pose is the same as the current TCP orientation.

3.3.2 MC Dropout
For an NN with weight W, bias b, and loss function E(,-), the

cost function L is as follows:
L

1Y ~
L=5 Y E(y,7) + A ) (IWil + Ibil3), (8)
i=1

i=1

where y and y are the ground truth and output of an NN,
respectively, and N is the length of the training data. The
second term is a L, regularization term with decay factor A,.
When the dropout operation is applied, some weights in the
network are removed following a Bernoulli distribution. As the
title suggests (Gal and Ghahramani, 2016), the authors proved
that using dropout in an NN is equivalent to approximate
Bayesian inference in deep Gaussian processes. It then gives
the uncertainty in an NN. For approximating the Gaussian
process model, variational inference is used, and Monte Carlo
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integration is used for minimizing Kullback-Leibler (KL)
divergence. The cost function is scaled to

[ (1-p)P
Lep- MCOC— ZE Yo Vi +Adz TIN

i=1

2
Wil +
IWillz + 5
©)

where p; is the dropout rate in the ith layer, 7 is the model
precision, and ! is the prior length scale. The predictive mean and
predictive variance can be obtained by iterating the NN forward
process T times, as given below:

E(y') = ¥ (X, Wi, . W), (10)

.
Mﬂ

i=1

p i AP i i
Var[(y ) ()] = = 27 (Wi W) § (X, Wi, W),

LMH

11

where E is the predictive mean and Var is the predictive variance.
The weight decay A, is calculated by the following equation:

pr

INT (12)

Aa =
However, associating each weight layer with a dropout layer will
let the regularization be too strong during the training for the
network (Alex Kendall and Cipolla, 2017), which will result in a
long training process. Hence, we adapt dropout layers to the
regression ResNet as in Figure 3. A dropout layer is inserted
between each stacked residual block in the network. We
demonstrate that associating each weight layer with a dropout
layer is not necessary for the regression ResNet in Dropout
Placement.

4 IMPLEMENTATION

We use the same method as in the study by Shi et al. (2020) to
create the training data. The training data are generated in a
simulator instead of collecting the data from the real robot. The
advantage is that the time used will be significantly shorter
(Bateux et al., 2018). We limit the hand position and TCP
position w1th1n certain ranges. The repulsive pose candidates
are limited to a quarter-sphere space which is in the opposite
direction of the hand and the TCP.

4.1 Training

The training data for the DNN and Bayesian DNN are created in
a simulator. The simulation environment is generated in
CoppeliaSim, and MATLAB is used as the interface to the
simulation environment. Figure 1 shows the overview of the
simulation environment. We use a triangular-shaped object. The
object is placed on the table. For the IBVS, a desired image is
required so that the robot can move to the desired pose for further
actions. We first take a desired image at the desired pose. Then a
set of 10,000 TCP poses around the desired pose is considered for
the visual servoing task, and for each of the TCP pose, 100

Bayesian DNN in HRI

repulsive pose candidates are generated. Each TCP pose
candidate has a related image and a related set of visual
features. From the 10,000 TCP poses, we select 1,000 poses
and generate real data samples in the real robot setup. We
validate the synthetic data with the real data to eliminate the
errors between the real setup and the simulation setup.

The repulsive pose candidates are in the opposite direction
of the hand position and are distributed on a quarter of a
sphere with respect to the TCP pose. We did not consider the
whole sphere since our motivation is to find a repulsive pose
around the direct opposite repulsive pose that can avoid the
collision with the hand. If the whole sphere is considered, we
may select a repulsive candidate which will lead the robot to
move toward the hand. Using a quarter of a sphere will lead
the robot to move away from the hand. The candidates’
distribution follows a Gaussian distribution. Figure 5
shows an example. We process the images taken from the
repulsive pose candidate to obtain the image visual error. We
first apply thresholding to get the binary image. Then the
image moments are extracted based on Eq. 6. Next, we
calculate the image moment errors between each of the
100 repulsive pose candidates and the desired pose. The
selected repulsive pose candidate is the one that has the
least L, image moment error. The position of the hand can
deviate with + 300mm from its initial position
(840,-350,5) with respect to the robot base in mm. In
total, 500 hand positions are generated. For each hand
position, it is combined with the 10,000 TCP poses. The
training data thus will have 5,000,000 samples in total.

The selected repulsive pose candidates are processed to get the
ground truth for the training. The final ground truth is calculated
as follows:

gt =0.05 X (tip = 1) + topes (13)

where t, is the position of robot TCP and #,; is the position of
the selected repulsive pose candidate.

The training data are divided into a training set, a validation
set, and a test set, and the split ratio is 0.8, 0.1, and 0.1,
respectively. The sizes of the training set, the validation set,
and the test set are 4,000,000, 1,000,000, and 1,000,000,
respectively. The Bayesian DNN is trained with 200 epochs.
The batch size is 2000. L; loss function and Adam optimizer
are used for the training. The learning rate is 0.001. The weight
decay of the optimizer A, is calculated by Eq. 12. The model
precision 7 is le — 6, the prior length scale I is 0.01, and the
dropout rate p is 0.1 for all dropout layers. The hidden units of FC
layers are 32. After each epoch, the model is validated, and the
final model is the one with the least validation loss.

4.2 Implementation Detail

To implement the total system, we use Universal Robots UR10
robot and ROS for controlling the UR10. The RealSense D435
camera is used to obtain RGB-D images. The YOLO object
detector is also implemented in ROS (Bjelonic, 2018). VISP
(Marchand et al.,, 2005) is used for IBVS with image moments.
The model is trained with PyTorch. The trained model is then
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converted to a C++ model so that it can be integrated into the
robotic system.

5 RESULTS

We demonstrate the evaluation of the Bayesian regression ResNet
in this section. We perform experiments on test datasets
generated in the simulator and experiments on the real robot.
In the experiments on test datasets, we test model parameters and
the model architecture. We further compare the performances of
Bayesian DNN and DNN on the test datasets whose space is
unseen. In the experiments on the real robot, we first see the
performances of Bayesian DNN and DNN on the real robot.
Next, we compare the IBVS convergence speed by applying the
Bayesian DNN and the opposite repulsive pose. The results are
organized as follows. First, the Bayesian regression ResNet is
evaluated on the test dataset to see how differently T' (Inference
Iterations) and dropout placement (Dropout Placement) affect the
model. Next, we see how the Bayesian regression ResNet will
perform in the unseen space in Data From Unseen Space. We
generate new test datasets whose data are not in the range of the
original test dataset, and compare the Bayesian regression ResNet
with the regression ResNet. Then we conduct experiments with
the real robot to see the performance. Last, we evaluate the
convergence speed in Comparison With Opposite Repulsive Pose.

5.1 Inference Iterations

In this subsection, we show the effect of different inference
iterations T. As indicated in Eq. 10, forwarding the input to
the Bayesian DNN T times is necessary to make Bayesian

TABLE 1 | RMSE and PICP of different inference iterations T.

T=5 T=10 T=15 T=20 T=25
PICP (x) 0.8 0.84 0.85 0.85 0.85
PICP () 0.9 0.94 0.96 0.96 0.97
PICP (2) 0.91 0.95 0.97 0.98 0.98
RMSE 21.93 20.41 19.87 10.6 19.2

inference. The evaluation is performed on the test set
(Implementation). The PICP and the root mean square error
(RMSE) are used to evaluate the model with different inference
iterations T. The PICP is calculated as follows:

Number of predictions in prediction intervals
Total number of predictions '

PICP = (14)
The detailed calculation is described in the study by Pearce et al.
(2018).

Table 1 shows the PICP for the prediction in the single-axis
direction and the RMSE. With the increased T, the PICP and
RMSE get better. However, after the inference iteration is higher
than 10, the improvements on the PICP and RMSE get smaller.
In the meantime, a higher number of iterations mean longer
inference time, which needs to be considered in real-time
applications. Figure 6 provides a visualization example for
the results in Table 1. The plots display the first 200 samples
in the test data. The inference running iteration T = 10. For
most of the mean predictions, the ground truth falls in the
prediction interval. Selecting T =10 is adequate for making
Bayesian inference.
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FIGURE 6 | Plots of x, y, and z of the first 200 samples in the test data. The blue solid line represents the mean prediction of the Bayesian regression ResNet and the
red dotted line is the ground truth. The yellow region is 95% of the prediction interval.

TABLE 2 | RMSE and PICP of different placements of dropout layers.

PICP (x) PICP (y) PICP (2) RMSE Epoch
DO-inter 0.84 0.94 0.95 20.41 200
DO-full 0.71 0.94 0.94 22.49 1,200

5.2 Dropout Placement

We see the performance of two different dropout placements, that
is, DO-Inter and DO-Full in the network architecture. DO-Inter
refers to the arrangement that dropout layers are placed between
residual blocks, as shown in Figure 3. DO-Full associates a
dropout layer with each FC layer. These two dropout
arrangements are evaluated on the test set (Section 4). The
inference iteration is T =10 for DO-Inter and DO-Full
Table 2 summarizes the results. DO-Full is trained with 1,200
epochs, and DO-Inter is trained with 200 epochs. DO-Full has a
longer training process, and the performance on the test set is
lower than that of DO-Inter. For a regression ResNet architecture,

it is not necessary to associate a dropout layer with each FC layer
in order to transform the DNN into the Bayesian DNN.

As indicated in Table 1, 2, the PICPs in x direction are lower
than those in y and z directions. In the training data, the range in x
direction is smaller than that in y and z directions. This causes the
lower PICP in x direction. When we create the training data, the
object needs to be in the image. If the range in x direction
increases, the object will not appear in the image.

5.3 Data From Unseen Space

The data used to train the model are limited to certain spaces.
Additionally, we form three new test sets to see how the
regression ResNet and the Bayesian regression ResNet model
will perform on the data that are out of the range of the data we
used for training, validation, and test. In the first new test set, the
hand space is out of range and the TCP space is within the same
range. In the second new test set, the hand space is the same and
the TCP space is out of range; and in the third one, both the hand
space and the TCP space are out of range. The data for training
the regression ResNet are the same as the data for training the
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TABLE 3 | RMSE and PICP of the test in the unseen space. DNN is the regression
ResNet and the Bayesian DNN is the Bayesian regression ResNet.

Hand TCP Hand and TCP
Bayesian DNN PICP (x) 0.84 0.69 0.69
PICP (y) 0.94 0.68 0.68
PICP (2) 0.95 0.76 0.76
RMSE 20.58 22.53 22.73
DNN RMSE 11.43 28.41 28.59

Bayesian regression ResNet. The training details are the same as
in the study by Shi et al. (2020). The inference iteration T for the
Bayesian regression Resnet is 10.

Table 3 shows the results of the test on the new data whose
space is out of the range from the dataset used for training. When
the hand space is out of range, the PICP and RMSE of the
Bayesian regression ResNet and the regression ResNet are
comparable with the ones that are tested in the seen space.
When the test of the TCP is out of range as well as both the hand
and TCP are out of range, the PICPs and RMSEs of both models
are worse than the situation when only the hand space is out of
range. The RMSE of the regression ResNet is smaller than that of
the Bayesian regression ResNet when the TCP is in the seen
space. On the other hand, when TCPs are out of the range of the
simulation-generated TCPs used for the training, validation,
and test, the RMSEs of the regression ResNet are larger than
those of the regression ResNet. The Bayesian regression ResNet
has a more robust performance when the robot TCP is out
of range.

Next, we compare the regression ResNet and the Bayesian
DNN on the real robot. In the experiment, we need the hand
positions in two trials and the triggering time of hand avoidance
to be exactly the same in order to evaluate the regression ResNet
and the Bayesian DNN quantitatively. But it is not feasible in the
real experimental setting. Hence, we conduct the experiment with
the following steps: first, we use a fixed hand position for all the
trials in the experiment; second, we trigger the hand avoidance at
the same iteration for both networks. We test the two networks in
50 TCP positions which are not in the range of the dataset created
in the simulator. Table 4 shows the result on the real robot. For
the regression ResNet, 22 out of 50 of the repulsive poses based on
regression ResNet predictions are out of the reach range of the
robot. All repulsive poses based on Bayesian DNN predictions are
within the reach range of the robot.

5.4 Comparison With the Opposite

Repulsive Pose

We evaluate the repulsive pose based on Bayesian DNN
prediction with the opposite repulsive pose by comparing the
convergence iteration of IBVS. The gain A of IBVS (Eq. 1)
determines how fast the robot will react to the visual error. At
the beginning of the IBVS task, the visual error is large, and large
A enables the robot to move faster toward the desired pose. When
the robot is close to the desired pose, the large A will let the robot
oscillate around the desired pose. Thus, we set A = 0.4 when the

Bayesian DNN in HRI

TABLE 4 | Performances of the regression ResNet and the Bayesian DNN on the
real robot.

Trials out of Total trials
robot reach range
Regression ResNet 22 50
Bayesian DNN 0 50

IBVS task is started, and we calculate the sum squared error of
image moments f, as follows:

sse = ||f||2 (15)

When sse is smaller than 0.005, we set A = 0.1. Figure 7 shows an
example of the trail on the real robot. The image moments and
output velocity during the IBVS task are indicated in the figure.
From iteration 0 to 100, the IBVS task is in execution; this means
the robot is moving to the desired pose for further action. At the
100th iteration, a hand is detected within the critical range, and a
repulsive pose is generated. The robot pauses the IBVS and moves
to the repulsive pose to avoid the collision with the hand. When
the robot has moved to the repulsive pose, the IBVS is continued.
At the 428th iteration, the sse is smaller than 0.005, and A is
switched to 0.1.

As described in Data From Unseen Space, it is difficult to
perform a new trial so that the hand is detected in the exact
position and at the exact time as in the previous trial. We adopt
similar settings to compare the opposite repulsive pose with
Bayesian DNN prediction-based repulsive pose. A constant
hand position is used for both repulsive poses. In total, 20
TCP poses are tested. The TCP poses are not in the space for
training the networks. For each of the 20 TCP poses, an opposite
repulsive pose and a Bayesian DNN prediction-based repulsive
pose are generated. Figure 8 shows an example. The repulsive
pose will be calculated at the same robot TCP with constant hand
position and the robot moves to the repulsive pose, then the IBVS
task continues. When sse is smaller than 0.005, the gain is
switched to 0.1. We evaluate the convergence speed by
comparing the iterations from the robot that has moved to the
repulsive pose to the gain that has switched. Table 5 shows the
results of convergence speed. The convergence speed for Bayesian
DNN is significantly faster than that of the opposite repulsive
pose. When the hand is within the critical distance towards the
robot TCP, Bayesian DNN can let the robot move to the final
desired pose faster than moving to the opposite repulsive pose.

6 DISCUSSION

In this work, we propose a system for safety in HRI applications.
When a robot is executing an IBVS task and if a human hand is
moving close to the robot TCP, a repulsive pose is predicted, and
the robot moves to the repulsive pose to avoid hand collision. For
hand prediction, we use the YOLO object detector to detect the
hand and Kalman filter to predict the motion of the detected
bounding box. We did not implement state-of-the-art approaches
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FIGURE 7 | Image moments (top) and output velocities (bottom) of IBVS. At the 100th iteration, the hand position is predicted within the critical distance to the
TCP, and a repulsive pose is applied to the robot. At the 428th iteration, the gain is switched from 0.4 to 0.1.

for human motion prediction since our main focus is on  with various network architectures, this will lead to longer
predicting the repulsive position by Bayesian DNN. It does  training epochs due to the strong regularization. In a study by
not affect our contribution to the use of Bayesian DNN. Alex Kendall and Cipolla (2017), the authors have shown that
The Bayesian regression ResNet model is used to learn a  placing the dropout layer between encoders and decoders is
repulsive position to avoid hand collision. We generate  sufficient to let the whole network be able to make Bayesian
training data in a simulator. The repulsive position should let  inference. In our work, we test this strategy on a regression
IBVS converge faster than the opposite repulsive pose and ensure ~ network with residual blocks. Our result also shows that putting
the hand avoidance at the same time. To achieve this, we generate ~ dropout layers between residual blocks is sufficient to make
repulsive pose candidates in a quarter-sphere range around the = Bayesian inference.
robot TCP. The quarter-sphere range is in the opposite direction When the robot is executing IBVS tasks, it may happen that
of the hand position. From the repulsive pose candidates, we  the robot TCP and the hand position are in the space that the
select the one with the least image moment errors regarding the  training data do not cover when the distance between hand and
IBVS desired pose. The Bayesian DNN model is transformed  TCP is in the critical range. Using a deterministic NN could
from the regression ResNet by adding dropout layers (Gal and  predict undesired repulsive position, which will lead the robot to
Ghahramani, 2016). In the original study, a dropout layer is  be out of its reach range. We perform two experiments to
placed before each layer that has weights in an NN. For DNNs  demonstrate that Bayesian DNN can avoid the undesired
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FIGURE 8 | The top plot is the output velocities of the repulsive pose based on Bayesian DNN prediction. The bottom plot is the output velocities of the opposite
repulsive pose. The repulsive pose based on Bayesian DNN prediction and the opposite repulsive pose are generated at the same robot TCP, and it is moved to the
repulsive pose at 100th iteration with a constant hand position. Gain is switched to 0.1 when sse is smaller than 0.005.

TABLE 5 | Average convergence iterations from repulsive pose to gain switching
for Bayesian DNN and opposite repulsive pose.
Average convergence iteration Total tested TCPs

201.3
869.28

20
20

Bayesian DNN
Opposite

repulsive pose. First, we create new datasets to evaluate the
regression ResNet and the Bayesian DNN when the hand is in
the unseen space, TCP is in the unseen space, and both are in the
unseen space. The results show that when the robot TCP is in the
unseen space, the RMSE of ResNet is higher than that in the seen
space, and the PICP of Bayesian DNN are also lower. This means
that the predicted repulsive position will have higher uncertainty
when TCP is in the unseen space. When the hand is in the unseen

space, the predicted repulsive positions are less affected. Second,
we test on a real robot with 50 TCPs which are not in the unseen
space. 22 repulsive poses based on regression ResNet predictions
are out of the robot reach range. All repulsive poses based on
Bayesian DNN predictions are within the reach range.

We further test the convergence speeds of Bayesian DNN and
the opposite repulsive pose. We test with 20 TCPs that the
Bayesian DNN converges significantly faster than the opposite
repulsive pose. On average, the opposite repulsive pose needs 667
more iterations until the sse is lower than 0.005. By moving to the
opposite repulsive pose, the robot will take a longer time to move
to the desired pose. Using Bayesian DNN will decrease IBVS time
compared to using opposite repulsive pose. It can increase the
efficiency of the robotic task.

Although the Bayesian regression ResNet is trained for faster
convergence of the IBVS in our case, it is not limited to the IBVS
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case. The Bayesian DNN approach can be adapted to other
approaches. In our work, the Bayesian regression ResNet is
trained with the ground truth which has the least image
feature error. This criterion can be changed when a different
approach is used. For instance, when using PBVS instead of IBVS,
the ground truth can be the repulsive pose candidate with the
least object pose error.

7 CONCLUSION AND FUTURE WORK

In this work, we describe a system for collision avoidance when
the robot is executing IBV'S tasks. When a hand is detected under
the critical distance to the robot TCP, the robot will avoid the
collision by moving to a repulsive pose. The repulsive pose is
determined based on a Bayesian DNN, that is, a Bayesian
regression ResNet. The Bayesian DNN allows the IBVS to
converge faster than the opposite repulsive pose. It can also
prevent the robot from moving to undesired positions when
the robot TCP is not in the space that the training data cover.

Currently, we use the YOLO object detector to obtain the
bounding box of the hand and use Kalman filter to predict the
movement of the bounding box. As soon as the predicted box is
within the critical distance, we move the robot to a repulsive pose.
If the user is using two hands near the robot, when one of the
hands falls in the critical distance with regard to the robot TCP,
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