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As robots continue to acquire useful skills, their ability to teach their expertise will provide
humans the two-fold benefit of learning from robots and collaborating fluently with them.
For example, robot tutors could teach handwriting to individual students and delivery
robots could convey their navigation conventions to better coordinate with nearby human
workers. Because humans naturally communicate their behaviors through selective
demonstrations, and comprehend others’ through reasoning that resembles inverse
reinforcement learning (IRL), we propose a method of teaching humans based on
demonstrations that are informative for IRL. But unlike prior work that optimizes solely
for IRL, this paper incorporates various human teaching strategies (e.g. scaffolding,
simplicity, pattern discovery, and testing) to better accommodate human learners. We
assess our method with user studies and find that our measure of test difficulty
corresponds well with human performance and confidence, and also find that favoring
simplicity and pattern discovery increases human performance on difficult tests. However,
we did not find a strong effect for our method of scaffolding, revealing shortcomings that
indicate clear directions for future work.

Keywords: inverse reinforcement learning, learning from demonstration, scaffolding, policy summarization,
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1 INTRODUCTION

As robots become capable in tasks once accomplished only by humans, the extent of their influence
will depend in part on their ability to teach and convey their skills. From the youngest of us learning
to handwrite (Sandygulova et al., 2020; Guneysu Ozgur et al., 2020) to practitioners of crafts such as
chess, many of us stand to benefit from robots that can effectively teach their mastered skill.
Furthermore, our ability to collaborate fluently with robots partly depends our understanding of their
behaviors. For example, workers at a construction site could better coordinate with a new delivery
robot if the robot could clearly convey its navigation conventions (e.g. when it would choose to go
through mud over taking a long detour).

While demonstrations are a natural method of teaching and learning behaviors for humans, its
effectiveness still hinges on conveying an informative set of demonstrations. The literature on how
humans generate and understand behaviors provides insight into what makes a demonstration
informative. Cognitive science suggests that humans oftenmodel one another’s behavior as exactly or
approximately maximizing a reward function (Jern et al., 2017; Jara-Ettinger et al., 2016; Lucas et al.,
2014), which they can infer through reasoning resembling inverse reinforcement learning (IRL) (Ng
and Russell, 2000; Jara-Ettinger, 2019; Baker et al., 2009; Baker et al., 2011). Furthermore, humans are
often able to obtain a behavior that (approximately) maximizes a reward function through planning,
which can be modeled as dynamic programming or Monte Carlo tree search (Shteingart and
Loewenstein, 2014; Wunderlich et al., 2012).
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Putting these insights together, we can often expect humans to
be able to model others’ behaviors once equipped with their
reward functions.1 For example, upon seeing a new worker
consistently arrive on time to each workday, a manager will
infer that the worker places high values on punctuality and
consistency and will arrive promptly at other work-related
functions. Thus, the problem of conveying a behavior or skill
can be reduced to conveying the underlying reward function, and
the informativeness of a demonstration can be quantified by how
much information it reveals regarding the reward function
using IRL.

Though IRL offers a principled measure of a demonstration’s
informativeness, human learning is multi-faceted and is also
influenced by other factors, such as the simplicity of
explanations (Lombrozo, 2016). Thus, unlike prior work on
machine teaching that optimizes solely for IRL (Brown and
Niekum, 2019), this paper incorporates insights on how
humans effectively learn to further accommodate human
learners.

In this work, we explore whether augmenting IRL with
insights from human teaching improves human learning over
optimizing for IRL alone. We first employ scaffolding from social
constructivism (learning theory) to encourage demonstrations
that are not just informative but also comprehensible. Specifically,
we assume a general human learner without prior knowledge, and
sequence demonstrations that incrementally increase in
informativeness and difficulty. Noting the cognitive science
literature that suggests humans favor simple explanations that
follow a discernible pattern (Lombrozo, 2016; Williams et al.,
2010), we also optimize for visual simplicity and pattern discovery
when selecting demonstrations. Finally, toward effective testing of
the learner’s understanding, we show that the measure of a
demonstration’s informativeness during teaching can be
inverted into a measure of expected difficulty for a human to
predict that exact demonstration during testing.

Two user studies strongly correlate our measure of test
difficulty with human performance and confidence, with low,
medium, and high difficulty tests yielding high, medium, and low
performance and confidence respectively. Study results also show
that favoring simplicity and pattern discovery significantly
increases human performance on difficult tests. However, we
do not find a strong effect for our method of scaffolding, revealing
shortcomings that indicate clear directions for future work.

2 RELATED WORK

2.1 Policy Summarization and Machine
Teaching
The problem of policy summarization considers which states and
actions should be conveyed to help a user obtain a global
understanding of a robot’s policy (i.e. behavior or skill) (Amir
et al., 2019). There are two primary approaches to this problem.

The first relies on heuristics to evaluate the value of
communicating certain states and actions, such as entropy
(Huang et al., 2018), differences in Q-values (Amir and Amir,
2018), and differences between the policies of two agents (Amitai
and Amir, 2021).

We build on the second approach, which follows the machine
teaching paradigm (Zhu et al., 2018). Given an assumed learning
model of the student (e.g. IRL to learn a reward function), the
machine teaching objective is to select the minimal set of teaching
examples (i.e. demonstrations) that will help the learner arrive at
a specific target model (e.g. a policy). Though machine teaching
was first applied to classification and regression (Zhu, 2015; Liu
and Zhu, 2016), it has also recently been employed to convey
reward functions from which the corresponding policy can be
reconstructed. Huang et al. (2019) selected informative
demonstrations for humans modeled to employ approximate
Bayesian IRL for recovering the reward. This technique
requires the true reward function to be within a candidate set
of reward functions over which to perform Bayesian inference,
and computation scales linearly with the size of the set. Cakmak
and Lopes (2012) instead focused on IRL learners and selected
demonstrations that maximally reduced uncertainty over all
viable reward parameters, posed as a volume removal
problem. Brown and Niekum (2019) improved this method
(particularly for high dimensions) by solving an equivalent set
cover problem instead with their Set Cover Optimal Teaching
(SCOT) algorithm. However, SCOT is not explicitly designed for
human learners and this paper builds on SCOT to address
that gap.

2.2 Techniques for Human Teaching
Human teaching and learning is a multifaceted process that has
been studied extensively. Thus, we also take inspiration from
social constructivism (learning theory) and cognitive science in
informing how a robot may teach a skill to a human learner so
that the learner may correctly reproduce that skill in new
situations.

Scaffolding: Scaffolding is a well-established pedagogical
technique in which a more knowledgeable teacher assists a
learner in accomplishing a task currently beyond the learner’s
abilities, e.g. by reducing the degrees of freedom of the problem
and/or by demonstrating partial solutions to the task (Wood
et al., 1976). Noting the benefits seen by automated scaffolding to
date [e.g. Sampayo-Vargas et al. (2013)], we implement the first
recommendation made by Reiser (2004) for software-based
scaffolding, which is to reduce the complexity of the learning
problem through additional structure. Specifically, we
incorporate this technique when teaching a skill by providing
demonstrations that sequentially increase in informativeness and
difficulty.

Simplicity and Pattern Discovery: Studies on explanations
preferred by humans indicate a bias toward those that are simpler
and have fewer causes (Lombrozo, 2016). Furthermore, Williams
et al. (2010) found that explanations can be detrimental if they do
not help the learner to notice useful patterns or even mislead
them with false patterns. Together, these two works support the
idea that explanations should minimize distractions that

1Ng and Russell (2000) suggest that “the reward function, rather than the policy, is
the most succinct, robust, and transferable definition of the task.”
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potentially inspire false correlations and instead highlight and
reinforce the minimal set of causes. We thus also optimize for
simplicity and pattern discovery when selecting demonstrations
that naturally “explain” the underlying skill.

Testing: Effective scaffolding requires an accurate diagnosis of
the learner’s current abilities to provide the appropriate level of
assistance throughout the teaching process (Collins et al., 1988).
A common diagnostic method is presenting the learner with tests
of varying difficulties and assessing their understanding of a skill.
Toward this, we propose a way to quantify the difficulty of a test
that specifically assesses the student’s ability to predict the right
behavior in a new situation.

3 TECHNICAL BACKGROUND

3.1 Markov Decision Process
The robot’s environment is represented as an instance (indexed
by i) of a deterministic2 Markov decision process,
MDPi :� (Si,A,Ti,R, c, S0i ), where Si and A denote the state
and action sets, Ti : Si ×A→Si the transition function, R : S ×
A→R the reward function, c ∈ [0, 1] the discount factor, and S0i
the initial state distribution, and S : ∪iSi the union over the states
of all related instances of MDPs, which we call a domain (to be
described in the following paragraphs).

Finally, the robot has an optimal policy (i.e. a skill) π*i : Si →A
that maps each state in anMDP to the action that will optimize the
reward in an infinite horizon. A sequence of (si, a, s′i) tuples obtain
by following π* gives rise to an optimal trajectory (i.e. a
demonstration) ξ*, where si, s′i ∈ Si, a ∈ A. We assume that R
can be expressed as a weighted linear combination of l reward
features3 ϕ : S ×A→Rl , i.e. R � w*u ϕ (s, a, s′) (Abbeel and Ng,

2004). We also assume that the human is aware of all aspects of an
MDP (including the reward features) but not the weights w*.

Let a domain refer to a collection of related MDPs that share
A,R, c but differ in Si, Ti and S0i . Take for example the delivery
domain, which modifies the Taxi domain (Dietterich, 1998) by
adding mud (see Figure 1). The robot is rewarded for
efficiently delivering the package to the destination while
avoiding the mud if the detour is not too costly. Though
MDPs in this domain may vary in the number and
locations of mud patches and subsequently offer a diverse
set of demonstrations (e.g. see Figure 2), they importantly
share the same reward function R.

Because instances of a domain share R, the various
demonstrations all support inference over the same w*
through IRL. Thus, we overload the notation π* to refer to
any policy of a domain instance that optimizes a reward with
w*. Furthermore, while a demonstration strictly consists of both
an optimal trajectory ξ* (obtained by following π*) and the
corresponding MDP (minus w*), we will refer to a
demonstration only by ξ* in this work for notational simplicity.

Having represented the robot’s environment and policy, we
now define the problem of generating demonstrations for
teaching that policy through the lens of machine teaching.

3.2 Machine Teaching for Policies
As formalized by Lage et al. (2019), machine teaching for policies
seeks to convey a set of demonstrations D of size n (i.e. the
allotted budget for teaching set) that will maximize the similarity
ρ between π* and the policy π̂ recovered using a model M on D

arg max
D∈Ξ

ρ(π̂(D,M), π*) s.t. |D| � n (1)

where Ξ is the set of all optimal demonstrations of π* in a domain.
We assume that the M employed by humans to approximate the
underlying w* is IRL. Once w* (and the subsequent reward
function) is approximated, we assume that human learners are
able to arrive at π*, i.e. the skill, through planning on the
underlying MDP.

FIGURE 1 | (A) A demonstrationD of an optimal policy π in the delivery domain. Agent aims to deliver the package to the destination while avoiding walls and avoiding
mud if the detour is not too costly. (B) The left demonstration can be translated into a set of half-space constraints on the underlying policy reward weights using Eq. 4. The
darker shaded region is where all constraints (the red and light blue lines) hold true, which corresponds to the behavior equivalence class BEC(D|π), see Section 3.3.

2Though we assume a deterministic MDP, the methods described here naturally
generalize to MDPs with stochastic transition functions and policies.
3This assumption can be made without loss of generality as the reward features can
be nonlinear with respect to states and actions and be arbitrarily complex.
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Thus, the teaching objective reduces to effectively conveying
w* through well-selected demonstrations.4 In order to quantify
the information a demonstration provides on w*, we leverage the
idea of behavior equivalence classes.

3.3 Behavior Equivalence Class
The behavior equivalence class (BEC) of π is the set of (viable)
reward weights under which π is still optimal. The larger the
BEC(π) is, the greater the potential uncertainty over w* that is
underlying the robot’s optimal policy.

BEC(π) � {w ∈ Rl
∣∣∣∣ π optimal w.r.t. R � wuϕ(s, a, s′)} (2)

The BEC(π) can be calculated as the intersection of the
following half-space constraints generated by the central IRL
equation (Ng and Russell, 2000)

wu(μ(s,a)π − μ(s,b)π )≥ 0
∀a ∈ argmax

a′∈A
Q*(s, a′), b ∈ A, s ∈ S (3)

where μ(s,a)π � E [∑∞
t�0 c

tϕ(st)
∣∣∣∣∣π, s0 � s, a0 � a] is the vector of

expected reward feature counts accrued from taking action a in s,

then following π after, andQ*(s, a) refers to the optimal Q-value in a
state and a possible action (Watkins and Dayan, 1992).

Brown and Niekum (2019) proved that the BEC(D|π) of a set
of demonstrations D of a policy π can be formulated similarly as
the intersection of the following half-spaces

wu(μ(s,a)π − μ(s,b)π )≥ 0, ∀(s, a) ∈ D, b ∈ A. (4)

Using the Eq. 4, every demonstration can be translated into a
set of constraints on the viable reward weights.

Consider an example in the delivery domain with A � {up,
down, left, right, pick up, drop, exit}, w* � [26,−3,−1]5 and binary
reward features ϕ � [dropped off package at destination, entered
mud, action taken]. The demonstration in the left image of
Figure 1 corresponds to the constraints in the right image.
With a unit cost for each action, the constraints on viable
reward weights intuitively indicate that 1) w*0 ≥ 10 since a total
of 10 actions were taken in the demonstration and that 2)w1*≤ − 2
as the detour around the mud took two actions.

3.4 Set Cover Optimal Teaching (SCOT)
SCOT (Brown and Niekum, 2019) allows a robot to select the
minimum number of demonstrations that results in the smallest
BEC area (i.e. the intersection of the constraints) for an IRL learner.
As it only considers IRL, it serves as a baseline method to the
techniques proposed in this work that augment SCOT with human
teaching strategies.

FIGURE 2 | (A) Sample demonstrations exhibiting scaffolding, simplicity, and pattern discovery.We scaffold by showing demonstrations that incrementally decrease in
BEC area (which appears to correlate inversely with informativeness and difficulty). Simplicity is encouraged by minimizing visual clutter (i.e. unnecessary mud patches).
Pattern discovery is encouraged by holding the agent and passenger locations constant while highlighting the single additional toll between demonstrations that changes the
optimal behavior. (B) Histogram of BEC areas of the 25,600 possible demonstrations in the delivery domain. Cluster centers returned by k-means (k � 6) are shown as
red circles along the x-axis. Demonstrations from every other cluster are selected and shown in order of largest to smallest BEC area for scaffolded machine teaching.

4In principle, a robot could simply convey w* explicitly to a human. However, it can
be nontrivial for humans to map precise numerical reward weights to the
corresponding optimal behavior through planning, especially if there is large
number of reward features. Thus, providing demonstrations that inherently
carry information regarding w* and directly conveying the optimal behavior
can be more a effective teaching method for human learners.

5In practice, we also require that ‖w‖1 � 1 to circumvent the scaling invariance of
IRL solutions and to eliminate the degenerate all-zero reward function (Brown and
Niekum, 2018). We convey the non-normalized w here for intuition.
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The SCOT algorithm is summarized here for completeness.
The robot first translates all possible demonstrations of its policy
in a domain into a corresponding set of BEC constraints. After
taking a union of these constraints, redundant constraints are
removed using linear programming (Paulraj and Sumathi, 2010).
These non-redundant constraints together form the minimal
representation of BEC(π*). SCOT now iteratively runs through
all possible demonstrations again and greedily adds to the
teaching set D the demonstration that covers as many of the
remaining constraints in BEC(π*), until all constraints are
covered.6 These steps correspond to lines 2–13 in Algorithm 1.

4 PROPOSED TECHNIQUES FOR
TEACHING HUMANS

4.1 Scaffolding
The SCOT algorithm efficiently selects the minimum number of
demonstrations that results in the smallest BEC area for a pure IRL
learner (Brown and Niekum, 2019). Such a learner is assumed to
fully grasp these few highly nuanced examples that delicately
straddle decision-making boundaries and find any other
demonstrations redundant. However, we posit that the BEC area
of a demonstration not only inversely corresponds to the amount of
information it contains about the possible values of w*, but also
inversely corresponds to the effort required for a human to extract
that information. Thus humans will likely benefit from additional
scaffolded examples that ease them in and incrementally relax the
degrees of freedom of the learning problem.

We develop a scaffolding method for a learner without any
prior knowledge, outlined as follows. First, obtain the SCOT
demonstrations that contains the maximum information on w*.
If space remains in the teaching budget n for additional
demonstrations, begin scaffolding by sorting all possible
demonstrations in a domain according to their BEC areas.
Then cluster them using k-means into twice as many clusters as
the remaining budget to ensure that no two consecutive
demonstrations are nearly identical in BEC area (see Figure 2).
Randomly draw m candidate demonstrations from every other
cluster. Finally from these n pools of candidate demonstrations,
select the ones that best optimize visuals for the teaching set D (as
described in the next section). See lines 16–21 in Algorithm 1. In
this paper, the algorithm always divided the BEC areas into 6
clusters, considering every other cluster to correspond to “low”,
“medium”, and “high” information respectively.

4.2 Simplicity and Pattern Discovery
Though the BEC area of a demonstration provides an unbiased,
quantitative measure of the information transferred to a pure IRL
learner, human learners are likely also influenced by the medium
of the demonstration, e.g. visuals, and the simplicity and patterns it

affords. For example, visible differences between sequential
demonstrations can highlight relevant aspects, while visual
clutter that does not actually influence the robot’s behavior
(e.g. extraneous mud not in the path of the delivery robot)
may distract or even mislead the human.

We perform a greedy sequential optimization for pattern discovery
and then for simplicity. We first encourage pattern matching by
considering candidates from different BEC clusters (which often
exhibit qualitatively different behaviors) that are most visually
similar to the previous demonstration.7 The aim is to highlight a
change in environment (e.g. a newmud patch) that caused the change
in behavior (e.g. robot takes a detour) while keeping all other elements
constant. We then optimize for simplicity. A measure of visual
simplicity is manually defined for each domain (e.g. the number of
mud patches in the delivery domain), and out of the scaffolding
candidates, the visually simplest demonstration is selected.

The proposed methods for scaffolding and visual optimization
come together in Algorithm 1.8 Since the highest information
SCOT demonstrations are selected first then demonstrations are
selected via k-means clustering from high to low information, the
algorithm concludes by reversing the demonstration list to order
the demonstrations from easiest to hardest (line 28).9 N̂[·]
denotes the operation of extracting unit normal vectors
corresponding to a set of half-space constraints, and ∖ denotes
set subtraction. An example of a sequence of demonstrations that
exhibits scaffolding, simplicity, and pattern discovery can be
found at the top of Figure 2.

4.3 Testing
An optimal trajectory’s BEC area intuitively captures its
informativeness as a teaching demonstration. The smaller the
area, the less uncertainty there is regarding the value of w*.

We propose a complementary and novel idea: that the BEC
area can be inverted as a measure of a trajectory’s difficulty as a
question during testing, i.e. when a human is asked to predict the
robot’s trajectory in a new situation. Intuitively, a large BEC area
indicates that there are many viable reward weights for a
demonstration, and thus the human does not need to precisely
understand w* to correctly predict the robot’s trajectory. We can
also use this measure to scaffold tests of varying difficulties to
gauge the human’s understanding of w* and subsequently π*.

6Instead of greedily adding the first demonstration that covers the most remaining
constraints of BEC(π*) at each iteration, one can enumerate all possible
combinations of demonstrations that cover BEC(π*) and optimize for
simplicity and pattern discovery here as well.

7We measure the visual similarity of two states by defining a hash function over a
domain’s state space and calculating the edit distance between the two
corresponding state hashes.
8An implementation is available at https://github.com/SUCCESS-MURI/machine-
teaching-human-IRL.
9In theory, one could order SCOT and k-means demonstrations jointly by BEC
area and potentially allowing them to mix in order. However, a SCOT
demonstration that contributes a maximally informative constraint of BEC(π*)
may in fact have a large BEC area. Thus, showing this SCOT demonstration early
on may actually render a later k-means demonstration as uninformative (i.e. the
SCOT demonstration’s BEC(π*) constraint may cause a later k-means
demonstration’s constraints to be redundant). Instead, showing k-means
demonstrations that iteratively decrease in BEC area, then showing SCOT
demonstrations ensures that the learner receives non-redundant constraints on
w* at each step.
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Algorithm 1 Machine Teaching for Human Learners.

5 USER STUDIES

We ran two online user studies that involved participants
watching demonstrations of a 2D agent’s policy and predicting
the optimal trajectory in new test environments.10 The studies
were designed to evaluate the following hypotheses.

H1: The BEC area of a demonstration correlates 1) inversely to
the expected difficulty for a human to correctly predict it during
testing, and 2) directly to their confidence in that prediction.

H2: The BEC area of a demonstration also correlates 1)
inversely to the information transferred to a human during
teaching and 2) inversely to the subsequent test performance.

H3: Forward scaffolding (demonstrations shown in increasing
difficulty) will result in better qualitative assessments of the
teaching set and better participant test performance over no
scaffolding (only high difficulty demonstrations shown) and
backward scaffolding (demonstrations shown in decreasing
difficulty), in that order.

H4: Positive visual optimization will result in better qualitative
assessments of the teaching set and better test performance over

negative visual optimization (with positive and negative visual
optimization corresponding to the maximization and minimization,
respectively, of both simplicity and pattern discovery).

The two user studies jointly tested H1. The first study tested
H2 and the second study tested H3 and H4.

5.1 Domains
Three simple gridworld domains were designed for this study (see
Figure 3). The available actions were {up, down, left, right, pick
up, drop, exit}. Each domain consisted of one shared reward
feature of unit action cost, and two unique reward features as
follows.

Delivery domain: The agent is rewarded for bringing a
package to the destination and penalized for moving into mud.

Two-goal domain: The agent is rewarded for reaching one of
two goals, with each goal having a different reward.

Skateboard domain: The agent is rewarded for reaching the
goal. It is penalized less per action if it has picked up a skateboard
(i.e. riding a skateboard is less costly than walking).

To convey an upper bound on the positive reward weight, the
agent exited from the game immediately if it encountered an
environment where working toward the positive reward would
yield a lower overall reward (e.g. too much mud along its path).
The semantics of each domain were masked with basic geometric
shapes and colors to prevent biasing human learners with priors.

10Code for the user studies, videos of teaching and testing demonstrations, and the
collected data are available at https://github.com/SUCCESS-MURI/psiturk-
machine-teaching.
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All domains were implemented using the simple_rl framework
(Abel, 2019).

5.2 Study Design
The first and second user studies (US1 and US2, respectively)
used the same domains, procedures, and measures, though they
differed in which variable was manipulated.

US1 explored how BEC area of demonstrations correlates with a
human’s understanding of the underlying policy. Thus, the
between-subjects variable was information class, with three
levels: low, medium, and maximum (i.e. SCOT). The low and
medium information demonstrations were selected from the fifth
and third BEC clusters respectively (see Figure 2). When selecting
multiple demonstrations from a single cluster, we optimized for
visual simplicity and dissimilarity as diversity11 of demonstrations
has been shown to improve human learning (Amir and Amir,
2018; Huang et al., 2019). The number of demonstrations shown in
each domain was set to equal the number of SCOT demonstrations
for fair comparison (2 for delivery and skateboard, 3 for two-goal).

US2 explored how incorporating human learning strategies
impacts a human’s understanding of the underlying policy.
Specifically, it examined how the presence and direction of
scaffolding, and optimization of visuals, would impact the
human’s test performance. The between-subjects variables
were scaffolding class (none, forward, and backward), and
visual optimization (positive and negative). For scaffolding
class, forward scaffolding showed demonstrations according to
Algorithm 1, backward scaffolding showed forward scaffolding’s
demonstrations in reverse, and no scaffolding showed all high
informative examples from the 1st BEC cluster (Figure 2). Five
demonstrations were shown for each domain, always ending with
demonstrations determined by SCOT.

Both US1 and US2 had two additional within-subject
variables: domain (delivery, two-goal, and skateboard,
described in Section 5.1) and test difficulty (low, medium, and
high, determined by the BEC area of the test).

For both user studies, participants first completed a series of
tutorials that introduced them to the mechanics of the domains
they would encounter. In the tutorials, participants learned that
the agent would be rewarded or penalized according to key events
(i.e. reward features) specific to each domain. They were then
asked to generate a few predetermined trajectories in a practice
domain with a live reward counter to familiarize themselves with
the keyboard controls and a practice reward function. Finally,
participants entered the main user study and completed a single
trial in each of the delivery, two-goal, and skateboard domains.
Each trial involved a teaching portion and a test portion. In the
teaching portion, participants watched videos of optimal
trajectories that maximized reward in that domain, then
answered subjective questions about the demonstrations (M2-
M4, see Section 5.3). In the subsequent test portion, participants
were given six new test environments and asked to provide the
optimal trajectory. The tests always included two low, two
medium, and two high difficulty environments shown in
random order. For each of the tests, participants also provided
their confidence in their response (M5). The teaching videos for
each condition were pulled from a filtered pool of 3 exemplary
sets of demonstrations proposed by Algorithm 1 to control for
bias in the results. The tests were likewise pulled from a filtered
pool of 3 exemplary sets of demonstrations for each of the low,
medium, and high difficulty test conditions.

Finally, though the methods described in this paper are designed
for a human with no prior knowledge regarding any of the weights,
the agent in our user studies assumed that the human was aware of
the step cost and only needed to learn the relationship between the
remaining two weights in each domain. This simplified the problem
at the expense of a less accurate human model and measure of a
demonstration’s informativeness via BEC area. However, the effect
was likely mitigated in part by the clustering and sampling in
Algorithm 1, which only makes use of coarse BEC areas.

5.3 Measures
The following objective and subjective measures were recorded to
evaluate the aforementioned hypotheses.

M1. Optimal response: For each test, whether the participant’s
trajectory received the optimal reward or not was recorded.

FIGURE 3 | Three domains were presented in the user study, each with a different set of reward weights to infer from demonstrations using inverse reinforcement
learning. (A) delivery, (B) two-goal, C: skateboard.

11Note that Algorithm 1 already achieves diversity by scaffolding demonstrations
across different BEC clusters and thus benefits instead from visual similarity.
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M2. Informativeness rating: 5-point Likert scale with prompt
“How informative were these demonstrations in understanding
how to score well in this game?”

M3. Mental effort rating: 5-point Likert scale with prompt
“How much mental effort was required to process these
demonstrations?”

M4. Puzzlement rating: 5-point Likert scale with prompt
“How puzzled were you by these demonstrations?”

M5. Confidence rating: 5-point Likert scale with prompt
“How confident are you that you obtained the optimal score?”

6 RESULTS

One hundred and sixty two participants were recruited using
Prolific (Palan and Schitter, 2018) for the two user studies.
Participants’ ages ranged from 18 to 57 (M � 26.07, SD �

8.35). Participants self-reported gender (roughly 67% male,
30% female, 2% non-binary, and 1% preferred to not disclose).
Each of the nine possible between-subjects conditions across the
two user studies were randomly assigned 18 participants (such
that US1 and US2 contained 54 and 108 participants
respectively), and the order of the domains presented to each
participant was counterbalanced.

The three domains were designed to vary in the difficulty of
their respective optimal trajectories. We calculated an intraclass
coefficient (ICC) based on a mean-rating (k � 3), consistency-
based, 2-way mixed effects model (Koo and Li, 2016) to evaluate
the consistency of each participant’s performance across
domains. A low ICC value of 0.37 (p< .001) indicated that
performance in fact varied considerably across domains for
each participant. We subsequently average each participant’s
scores across the domains in all following analyses, potentially
yielding results that are representative of domains with a range of
difficulties.

H1: We combine the test responses from both user studies
as they shared the same pool of tests. A one-way repeated
measures ANOVA revealed a statistically significant difference

FIGURE 4 | Participants were significantly more confident of their responses as test difficulty decreased.

FIGURE 5 | The information class of demonstrations only significantly
influences their perceived informativeness, ironically decreasing from low to
maximum information class. This suggests that a demonstration’s intrinsic
information content (as measured by its BEC area) does not always
correlate with the information transferred to human learners. No significant
effects were found between information class andmental effort or puzzlement.

FIGURE 6 | Though the three scaffolding conditions perform similarly in
aggregate across all tests, “no scaffolding” significantly increases
performance for high difficulty tests.
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in the percentage of optimal responses (M1) across test
difficulty (F(2, 322) � 275.35, p< .001). Post-hoc pairwise
Tukey analyses further revealed significant differences
between each of the three groups, with the percentage of
optimal responses dropping from low (M � 0.89), to
medium (M � 0.68), to high (M � 0.36) test difficulties
(p< .001 in all cases).

Spearman’s rank-order correlation further showed a
significant inverse correlation between test difficulty and
confidence (M5, rs � −.40, p< .001,N � 486). See Figure 4 for
the raw confidence data.

Objective and subjective results both support H1, that BEC area
can indeed be used as a measure of difficulty for testing. We thus
proceed with the rest of the analyses with “test difficulty” as a
validated independent variable.

H2: A two-way mixed ANOVA on percentage of optimal
responses (M1) did not reveal a significant effect of information
class of the teaching set (F(2, 51) � 1.23, p � .30), though test
difficulty had a significant effect consistent with the H1 analysis
(F(2, 102) � 118.58, p< .001). There was no interaction between
information class and test difficulty (F(4, 102) � 0.67, p � .61).

Spearman’s correlation test only found a significant negative
correlation between information class and perceived
informativeness (M2, rs � −0.28, p � .04,N � 54). Neither
mental effort (M3, p � .08) nor puzzlement (M4, p � .36) were
found to have significant correlations with information class. See
Figure 5 for the raw subjective ratings.

The data failed to support H2. The data suggests that IRL alone
is indeed an imperfect model of human learning, motivating the
use of human teaching techniques to better accommodate human
learners.

There was no correlation between information class and test
performance, likely a result of two factors. First, the number of
demonstrations provided (two or three) across the conditions in
US1 were likely too few for human learners, who are not pure IRL
learners and can sometimes benefit from “redundant” examples
that reinforce a concept. Second, as will be discussed under the

scaffolding subsection in Section 7.2, BEC area is likely an
insufficient model of a demonstration’s informativeness to a
human and warrants further iteration.

Accordingly, maximum information demonstrations provided
by SCOT (M � 0.61) failed to significantly improve the
percentage of optimal responses compared to medium
(M � 0.65) and low (M � 0.67) information demonstrations as
IRL would have predicted. The subjective results further indicate
that people ironically found the maximally informative
demonstrations least informative. We hypothesize that
participants struggled to digest the information contained
within SCOT’s demonstrations all at once, motivating the use
of scaffolding to stage learning into mangeable segments.

H3: A two-way mixed ANOVA on percentage of optimal
responses (M1) revealed a significant interaction effect between
scaffolding and test difficulty (F(4, 210) � 2.79, p � .03). Tukey
analyses showed that no scaffolding (M � 0.46) yielded
significantly better test performance than forward scaffolding
(M � 0.34) for high difficulty tests (p � .05). Though not
statistically significant, a trend of forward and backward
scaffolding outperforming no scaffolding on low
(M � 0.89, 0.89, 0.85 respectively) and medium difficulty tests
(M � 0.69, 0.69, 0.62 respectively) can be observed as well (see
Figure 6).

A two-way mixed ANOVA surprisingly did not reveal a
significant effect from scaffolding (F(2, 105) � 0.02, p � .98)
but did find a significant effect for test difficulty
(F(2, 210) � 167.63, p< .001) on percentage of optimal
responses (M1) as expected.

A Kruskal–Wallis test did not find differences between the
informativeness (H(2) � 5.18, p � .07), mental effort
(H(2) � 1.16, p � .56), or puzzlement (H(2) � 0.59, p � .74)
ratings (M2–M4) of differently scaffolded teaching sets.

The data largely failed to support H3. Forward and backward
scaffolding surprisingly led to nearly identical test performance.
Though no scaffolding performed similarly overall, it yielded a
significant increase in performance specifically for high difficulty

FIGURE 7 | (A) Optimizing teaching demonstration visuals does not significant affect performance on low and medium difficulty tests, but leads to a significant
improvement on high difficulty tests. (B) Ratings on mental effort and puzzlement surprisingly increased for positive visual optimization, likely an artifact of unforeseen
study design effects. No significant effects were found for ratings on informativeness.
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tests. These two surprising results are addressed in the discussion.
The subjective measures did not indicate any clear relationships.

H4: A two-way mixed ANOVA on percentage of optimal
responses (M1) revealed significant effects of test difficulty
(F(2, 212) � 169.21, p< .001) and an interaction effect between
optimized visuals and test difficulty (F(2, 212) � 5.61, p � .004).
Exploring the interaction effect with Tukey analyses revealed that
visual optimization had no effect on test performance on low
(p � .24) and medium (p � .90) difficulty tests, but led to a
significant improvement in performance in high (p< .001)
difficulty tests for positive visual optimization (M � 0.45) over
negative (M � 0.31), see Figure 7. The two-way mixed ANOVA
did not reveal a significant from optimized visuals
alone (F(1, 106) � 2.27, p � .13).

A Mann–Whitney U test surprisingly found that ratings for
mental effort (U(Nneg � 54,Npos � 54) � 1131.5, p � .03) and
puzzlement (U(Nneg � 54,Npos � 54) � 1082.5, p � .02) (M3
and M4) increased for positive visual optimization.
Informativeness ratings were not found to differ significantly
between the two visual optimizations (p � .11).

The data partially supports H4. Optimizing visuals improved
test performance for high difficulty tests. However, optimizing
visuals also yielded counterintuitive results for the subjective
measures on mental effort and puzzlement, which we address
in the following section.

7 DISCUSSION

7.1 Learning Styles
Analyzing the free-form comments provided by participants
throughout the user studies revealed unexpected insights about
their learning styles. Though this paper assumed that participant
learning would only resemble IRL, we discovered it sometimes
resembled imitation learning12, which models humans as
learning the optimal behavior directly from demonstrations (as
opposed to through an intermediate reward function like IRL)
(Daw et al., 2005; Lage et al., 2019). For example, one participant
expounded upon their mental effort Likert rating (M3) with
following description of IRL-style learning: “You need to make
a moderate amount of mental effort to understand all the rules

and outweight [sic] everything and see what is worth it or not in
the game.” In contrast, another expounded upon their used
mental effort rating with the following description of IL-style
learning: “The primary ‘mental effort’ was in memorizing the
patterns of each level/stage and matching the optimal movements
for them.”

To better understand the types of learning employed by our
participants, we analyzed their optional responses to the
following questions: “Feel free to explain any of your
selections above if you wish:” (asked in conjunction with
prompts for ratings of informativeness, mental effort, and
puzzlement of demonstrations in each domain, i.e. up to three
times) and “Do you have any comments or feedback on the
study?” (asked after the completion of the full study, i.e. once).
Similar to Lage et al. (2019), we coded relevant responses from
participants regarding their thought process as resembling IRL
(e.g. “So, the yellow squares should be avoided if possible and they
possibly remove two points when crossed but I’m not sure”) or as
resembling IL (e.g. “I did not understand the rule regarding
yellow tiles. It seems they should be avoided, but not always.
Interesting. . .”), or as “unclear” (e.g. “After some examples I feel
like I’m understanding way better these puzzles.”). A second
coder uninvolved in the study independently labeled the same set
of responses, assigning the same label to 79% of the responses. A
Cohen’s kappa of 0.64 between the two sets of codings further
indicates moderate to substantial agreement (Landis and Koch,
1977; Altman, 1990; McHugh, 2012). Please refer to the
Supplementary Material for the responses, labels, and further
details on the coding process.

As Table 1 conveys, both coders agreed that more responses
resembled IRL than IL and “unclear” combined, suggesting that
people perhaps employed IRL more often than not. However, we
note that the way the tutorials introduced the domains may have
influenced this result. For example, explicitly conveying each
domain’s unique reward features and clarifying that a trajectory’s
reward is determined by a weighting over those features may have
encouraged participants to first infer the reward weights from
optimal demonstrations (e.g. through IRL) and then infer the
optimal policy (as opposed to directly inferring the optimal policy
e.g. through IL).

Examining the percentage of each response across the two
user studies reveals another interesting trend. Responses were
far more likely to be coded as IRL in US2, where participants got
to see five demonstrations as opposed to US1, where
participants only got to see two or three demonstrations.
This echoes the observation of Lage et al. (2019) that people
may be more inclined to use IL over IRL in less familiar
situations, which may be moderated in future studies

TABLE 1 | Coding of qualitative participant responses as resembling inverse reinforcement learning (IRL) or imitation learning (IL), or “unclear.”

Learning style Raw counts (across user studies) Percentages (across coders)

Coder 1 Coder 2 User study 1 (%) User study 2 (%)

IRL 25 27 32 68
IL 7 9 27 12
Unclear 15 11 41 20

12Note that the term “behavior cloning” is sometimes used instead to refer to the
process of directly learning the optimal behavior. Accordingly, “imitation learning”
is sometimes used to refer to the broad class of techniques that learn optimal
behavior from demonstrations, encompassing both behavior cloning and IRL (Osa
et al., 2018).
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through more extensive pre-study practice and/or additional
informative demonstrations that better familiarize the
participant to the domains.

Finally, out of 15 participants who provided more than one
response, coders agreed that eight appeared to employ the same
learning style throughout the user study (e.g. participants 129 and
142 in US2 only provided responses resembling IRL), four
appeared to have changed styles through the user study (e.g.
participants 59 in US1 and 20 in US2 provided various responses
that resembled IL, IRL, or were unclear), and three were
ambiguous (i.e. one coder coded a consistent learning style
while the other did not). Though we controlled for learning
effects by counterbalancing the order of the domains, participants
likely found the domains to vary in the difficulty of their
respective optimal trajectories (as suggested by the ICC score).
Furthermore, certain conditions led to significant differences in
subjective and objective outcomes (e.g. maximum information
demonstrations were ironically perceived to be least informative
(H2) and positive visual optimization improved performance for
high difficulty tests (H4)). We thus hypothesize that the varying
difficulties in domains and conditions non-trivially influenced the
learning styles at different times [e.g. by moderating familiarity
(Lage et al., 2019)].

Future work: The multi-faceted nature of human learning can
be described by a number of models such as IRL and IL. Lage et al.
(2019) show post hoc that tailoring the teaching to the human’s
favored learning style can improve the learning outcome. Thus,
predicting a human’s current learning style a priori or in situ (e.g.
by using features such as the human’s familiarity of the task or
domain) and matching the teaching appropriately in real time
will be an important direction of future work.

7.2 Scaffolding
Though BEC area is a well-motivated preliminary model of a
demonstration’s informativeness to a human, backward
scaffolding’s unexpected on-par performance with forward
scaffolding suggests that it is insufficient and our scaffolding
order likely was not clear cut in either direction. In considering
possible explanations, we note that Eq. 4 presents a
computationally elegant method of generating BEC constraints
via sub-optimal, one-step deviations from the optimal trajectory.
However, these suboptimal trajectories do not always correspond
to the suboptimal trajectories in the human’s mind (e.g. which
may allow more than one-step deviations). This sometimes leads
to a disconnect between a demonstration’s informativeness as
measured by BEC area and its informativeness from the point of
view of the human.

Furthermore, forward and backward scaffolding (each
comprised of low, medium, and high information
demonstrations) yielded higher performance for low and
medium difficulty tests, and no scaffolding (comprised of only
high information demonstrations) yields significantly higher
performance for high difficulty tests. Improved performance
when matching the informativeness and difficulty of teaching
and testing demonstrations respectively (which yields similar
demonstrations) further suggests that IL-style learning may
have also been at play.

Finally, participants across each condition never achieved a
mean score of greater than 0.5 for high difficulty tests, indicating
that they were largely unable to grasp the more subtle aspects of
the agent’s optimal behavior. While the five demonstrations
shown in US2 should have conveyed the maximum possible
information (in an IRL-sense), they were not as effective in
reality. One reason may be that human cognition is
constrained by limited time and computation (Griffiths,
2020), and at times may opt for approximate, rather than
exact, inference (Vul et al., 2014; Huang et al., 2019).
Approximate inference (and even IL-style learning) indeed
would have struggled with high difficulty tests whose optimal
behavior could often only be discerned through exact
computation of rewards. In addition to potentially showing
more demonstrations (including “redundant” demonstrations
that reinforce concepts and are still useful for approximate
IRL), we believe that more effective scaffolding that further
simplifies the concepts being taught while simultaneously
challenging human’s current knowledge will be key to
addressing this gap, as we discuss next.

Future work: We propose two directions for future work on
scaffolding. First, we note that our selected demonstrations often
revealed information about multiple reward weights at once,
which could be difficult to process. Instead, we can further
scaffold by teaching about one weight at a time, when
possible. Second, Reiser (2004) suggests that scaffolding should
not only provide structure that reduces problem complexity but
at times induce cognitive conflict to challenge and engage the
learner. The current method of scaffolded teaching assumes that
the learner has no prior knowledge when calculating a
demonstration’s informativeness (e.g. Algorithm 1 considers a
repeat showing of a demonstration to a learner to be equally as
informative as the first showing). But when filtering for teaching
and testing sets for the user studies, we sometimes observed and
accounted for the fact that demonstrations with the same BEC
area could further vary in informativeness or difficulty to
different learners based on whether it presented an expected
behavior or not. We believe that providing demonstrations which
incrementally deviate from the human’s current model will be
more informative to a human and would be better suited to
scaffolding.

7.3 Simplicity and Pattern Discovery
Optimizing visuals improved test performance, but only for
high difficulty tests. This suggests that simplicity and pattern
discovery could produce a meaningful reduction in complexity
for only high information demonstrations (which contain the
insights necessary to do well on the high difficulty tests), while
those of low and medium information were already
comprehensible.

We found counterintuitive results on mental effort or
puzzlement ratings (M3–M4) for H4, where ratings for mental
effort and puzzlement increased from negative to positive visual
optimizations. One factor may have been the open-ended
phrasing of the corresponding Likert prompts that failed to
always elicit the intended measure. For example, one
participant expounded upon their mental effort rating by
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saying “it takes a bit of efford [sic] remembering that you can quit
at any time,” referencing the difficulty of remembering all
available actions rather than the intended difficulty of
performing inference over the optimal behavior.

Similarly, the open-ended prompt for puzzlement failed to
always query specifically for potential puzzlement arising from
(a potentially counterintuitive) ordering of the demonstrations.
Instead it sometimes invited comments such as ‘I think i [sic]
saw the same distance to the objective 2 times and 2 differnt [sic]
outcomes,’ and interestingly informed us of possible unforeseen
confounders on puzzlement such as limited memory. As
participants were not allowed to rewatch previous
demonstrations to enforce scaffolding order, similar
demonstrations (in correspondingly similar environments)
were sometimes mistaken to have shown different behaviors
in the same environment.

Future work: Future iterations would benefit from
“marking critical features” that “accentuates certain
features of the task that are relevant”, as suggested by
Wood et al. (1976). For example, imagine showing two
side-by-side demonstrations in the delivery domain, one
where the robot exits because of the many mud patches in
its path and one where the robot completes the delivery
because of one fewer mud patch in its path. Outlining the
presence and absence of the critical mud patch with a salient
border in the two demonstrations respectively would help
highlight the relevant cause for the change in robot behavior
to the learner.

7.4 Testing
Objective and subjective results strongly support BEC area as a
measure of test difficulty for human learners. Following studies
may thus use tests of varying BEC areas and difficulties to evaluate
and track the learner’s understanding throughout the learning
process.

Future work: Effective scaffolding is contingent on
maintaining an accurate model of the learner’s current
abilities. Though this work assumed disjoint teaching and
testing phases, learning is far more dynamic in reality. Future
work should therefore explore how to select an initial set of tests
that can accurately discern the learner’s current knowledge, and
also to know when to switch between teaching and testing
throughout the learning process.

7.5 Real-world Applicability
Though the proposedmethod of machine teaching is theoretically
general, there are additional considerations that must be
addressed for real-world applicability.

First, a robot’s policy may be a function of many
parameters. Though performing IRL in a high-dimensional
space may sometimes be warranted, humans naturally exhibit
a bias toward simpler explanations with fewer causes
(Lombrozo, 2016) and can only effectively reason about a
few variables at once (e.g. Halford et al. (2005) suggest
the limit to be around four). Thus, future work may
examine approximating a high-dimensional policy with a

low-dimensional policy that can be conveyed instead with
minimal loss. Additionally, scaffolding methods that
explicitly convey only a subset of the reward weights at a
time should be developed as previously noted.

Second, a robot’s entire trajectory will not always be necessary
or reasonable to convey if it is lengthy. Thus techniques that
extract and convey only the informative segments along with
sufficient context will be important. For segments that are
infeasible to convey in the real world (e.g due to necessary
preconditions not being met), demonstrations may be given in
simulation instead.

8 CONCLUSION

As robots continue to gain useful skills, their ability to teach
them to humans will benefit those looking to acquire said
skills and also facilitate fluent collaboration with humans. In
this work, we thus explored how a robot may teach by
providing demonstrations of its skill that are tailored for
human learning.

We augmented the common model of humans as inverse
reinforcement learners with insights from learning theory and
cognitive science to better accommodate human learning.
Scaffolding provided demonstrations that increase in
informativeness and difficulty, aiming to ease the learner into
the skill being taught. Furthermore, simple demonstrations that
conveyed a discernible pattern were favored to minimize
potentially misleading distractions and instead highlight
critical features. Finally, a measure for quantifying the
difficulty of tests was proposed toward effective evaluation of
learning progress.

User studies strongly correlated our measure of test difficulty
with human performance and confidence. Favoring simplicity
and pattern discovery when selecting teaching demonstrations
also led to a significant increase in performance for high difficulty
tests. However, scaffolding failed to produce a significant effect on
the test performance, informing both the shortcomings of the
current implementation and the ways it can be improved in
future iterations. Finally, though this work assumed disjoint
teaching and testing phases with a static human model,
effective scaffolding requires the teacher query, maintain, and
leverage a dynamic model of the student to tailor the learning
appropriately. We leave this as an exciting direction for
future work.
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