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A frequent concern for robot manipulators deployed in dangerous and hazardous
environments for humans is the reliability of task executions in the event of a joint
failure. A redundant robotic manipulator can be used to mitigate the risk and
guarantee a post-failure task completion, which is critical for instance for space
applications. This paper describes methods to analyze potential risks due to a joint
failure, and introduces tools for fault-tolerant task design and path planning for robotic
manipulators. The presented methods are based on off-line precomputed workspace
models. The methods are general enough to cope with robots with any type of joint
(revolute or prismatic) and any number of degrees of freedom, and might include arbitrarily
shaped obstacles in the process, without resorting to simplified models. Application
examples illustrate the potential of the approach.
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1 INTRODUCTION

Robotic manipulators are a convenient tool for deployment in dangerous and hazardous
environments for humans, for applications such as planetary exploration, on-orbit servicing,
de-orbiting of uncooperative targets, and hazardous material handling in nuclear or chemical
disaster/waste sites. High cost and low to none maintenance possibilities place strong
demands on reliability for robots deployed in such scenarios. The economic cost of a
failure in those environments is usually very high, as analyzed in Ellery et al. (2008).
Thus, one of the major concerns in these situations are the post-failure capabilities of the
robotic manipulator. Even though the redundancy of electronics and mechanics of the joints
significantly reduces the risk, the use of a redundant manipulator adds another layer of safety
for the operation. This paper is focused on the description of methods and tools for risk
analysis and fault-tolerant path planning to ensure the post-failure task execution for such
robotic manipulators.

Most of the literature on safety-critical operations of robotic manipulators considers that if a
failure occurs, it would be a locked joint. A free-swinging joint is another possible failure, but
unlikely to occur given the considerations employed in the mechatronic design of joints. Early
works on fault-tolerant path planning or task design establish a link between robustness to failures
and kinematic dexterity based on the minimum singular value of the post-failure Jacobian, as
presented in Lewis and Maciejewski (1994). This post-failure dexterity is referred to as the
kinematic failure-tolerance measure (kfm). The kfm values are analyzed throughout the
configuration space (C-space) in order to identify configurations of optimal fault-tolerance.
An inverse of the optimal kfm is used to track an end-effector path to anticipate failures and
guarantee post-failure task execution. The methods are demonstrated on a planar manipulator
with three DoF (Degrees of Freedom) realizing a 2-DoF task without obstacles.
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Global methods for fail-safe path planning have also been
considered. A global path planning approach for post-failure
operation by using a redundancy resolution algorithm was
proposed in Paredis and Khosla (1996). At each point along a
desired end-effector path, a set of acceptable fault-tolerant
configurations is estimated. A connectivity graph is constructed
from this set, capturing the pre-image topology along the path. In
case of failure, a graph search discovers alternative trajectories to
reach the goal end-effector pose. The approach is demonstrated on a
4-DoF robot. Another global approach in Lewis and Maciejewski
(1997) discusses the conditions of existence of fault-tolerant regions
of operation inC-space around the start and goal poses. The authors
overcome computational limitations by computing off-line the
self-motion manifolds, which are used to modify the task by
changing the goal pose so that larger self-motion manifolds are
used during the task execution. The path generation method
artificially imposes restrictions on joint limits to avoid possible
failure scenarios. The analysis and proof of existence of a fault-
tolerant path is done using intersections of self-motion
bounding boxes in C-space, representing safe ranges for
operation. The self-motion manifolds are discovered
through a sampling approach, and they are explored by
executing a spiral motion along the manifold to determine
its boundary and connectivity. Joint configuration constraints
on fault-tolerant motion are derived from the intersection of
start and goal self-motion bounding boxes. Potential collisions
of the robot are not included in this method.

A hierarchical method for failure analysis using a least-
constraint framework is presented in Ralph and Pai (1997).
Here, the main task is to reach the goal, and the secondary
task is resolving the null-space configuration to maximize the
utility of redundancy. The task is formulated as a set of
constraints rather than using waypoints, and introduces a
performance measure called longevity, which reflects the
connectivity of the C-space after a given failure. A dynamic
programming task computes the longevity and searches for a
post-failure recovery path using pre-computed recovery strategies
(ease of recovery) required to keep the functionality of the robot.
The method is demonstrated on a 4-DoF robot without obstacles;
an extension of this framework to a 5-DoF robot is presented in
Ralph and Pai (1999). A fault-tolerant path planningmethod for a
7-DoF manipulator is presented in Jamisola et al. (2006). A
locked-joint failure at a start configuration defines failure
hyperplanes. Intersections of these hyperplanes with the goal
pose self-motion manifold define a failure hypercuboid. A web
of paths is generated from the start configuration to a point on
the goal pose self-motion manifold using monotonic paths.
After checking continuity and collisions, an obstacle-free web
of paths is created, defining a failure surface. While the
manipulator configuration stays on the failure surface, it is
guaranteed that the goal end-effector pose can be reached after
any failure occurs. A measure for global failure tolerance is
derived based on the joint range excursion in the self-motion
manifold. The maximization of the size of the self-motion
manifolds was recently proposed in Alkmarkhi and
Maciejewski (2019), by using singularities to identify where
large manifolds might exist.

In summary, previous works have identified the necessary
conditions under which a redundant manipulator can fulfill a task
after a joint failure, exploiting links between dexterity,
manipulability and robustness to failures. The methods are
commonly based on the analysis of pre-image and self-motion
manifold estimation using discrete sampling and off-line
computations of certain aspects of the algorithms (to
overcome the high computational costs). The constraints
derived from such analysis are used for path verification and
planning. Several measures of robustness to failure were
introduced. Obstacle avoidance, if addressed, relies on
projection of primitives in the C-space. The path-planning
approaches are typically augmented with discrete sampling or
with a null-space controller. The analysis of failure robustness is
performed mainly on a case by case basis. Some works have
considered as well a global overview, as the one provided here, but
generic considerations of obstacles in the environment and
coupling of the methods with path planning algorithms are
scarce in previous works.

This paper builds upon the necessary conditions for existence of
a fault-tolerant path and presents a new approach to fail-safe path
planning and task design. Our framework is based on a global
workspace overview, which allows a direct link between the end-
effector pose and its pre-image bounds in C-space. Not relying on
local exploration, all self-motion manifolds (which compose the
pre-image) for fault-tolerant path planning are revealed, regardless
of the current joint configuration. Pre-image bounds are pre-
computed in the offline phase and used to generate a model that
provides information about robot redundancy within the
workspace and the effects of failures on the end-effector
positioning ability. This information is later used to provide the
required constraints for the on-line fault-tolerant path planning
process. Thus, the method is applicable to arbitrary kinematic
designs and to large DoF systems without further adaptation.
The environment around the manipulator (e.g. the satellite
body) can also be considered in the workspace model and in the
computation of the self-motion manifolds. For this purpose,
collision detection does not rely on C-space projection but it
uses directly the geometry of the environment, therefore, it is
possible to use any common collision detection method within
the approach. Our implementation uses a point-to-primitive check,
which makes the method suitable for online applications utilizing
depth sensor input directly. The framework is applied to different
scenarios that demonstrate the potential of the proposed approach.

2 REACHABILITY AND CAPABILITY MAPS

A redundant manipulator has at least one DoF more than the
number of DoF required for the task at hand. In this paper, a set of
joint values for the manipulator is denoted as θ ∈ RNdof (with Ndof

representing the number of joints), which corresponds to a point
in the C-space for the manipulator. Joint values θ are bounded by
a set of joint limit pairs denoted as Q � θmin, θmax{ }. A forward
kinematics function maps the C-space configuration θ to a task
space pose ξ ∈ SE (3). An inverse kinematics functionmaps ξ→ θ,
and it typically provides multiple solutions for redundant
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manipulators. As there can be many θ mapping to one particular
ξ, self-motion manifolds are present, as discussed in Burdick
(1989).

The workspaceW of a manipulator refers to every possible ξ
that can be reached with a configuration θ within the joint
limits Q. The workspace W can be represented in a discrete
way through the reachability map. It captures all poses
reachable by the robot’s end-effector frame with respect to
the robot base. These maps were initially introduced in
Zacharias et al. (2007) and Diankov (2010), and have been
used in multiple applications including workspace analysis and
robot design in Porges et al. (2015), pre-filtering of inverse
kinematics queries in Porges et al. (2014), robot base
positioning as in Zacharias et al. (2009b); Vahrenkamp
et al. (2013), bi-manual manipulation planning in
Sundaram et al. (2016); Vahrenkamp et al. (2009), path
generation or validation in Zacharias et al. (2009a) and
humanoid robot foot-step planning in Werner et al. (2016).

To obtain the reachability map, the workspace is discretized in a
hierarchy that decomposes the pose ξ ∈ SE (3) into a translation and
a rotation, ξ → (t, R), where t ∈ R3, R ∈ SO(3). Considering the
Cartesian position t → x, y, z and Euler angles R → α, β, c (roll,
pitch, yaw), the mapping functions f(t) → Vi and g(R) → vi,p
discretize the pose ξ using i, p ∈N, where Vi is the i-th voxel and vi,p
is a particular bin value of voxel Vi. An illustration of the
discretization mechanism is presented in Figure 1. The
workspace is discretized with voxels of suitable size. Each
voxel has an associated virtual sphere that discretizes the
end-effector pointing direction (pitch and yaw, β and c Euler
angles) within each voxel. Each discretized pair of β, c has an
associated grid for discretizing the roll angle α. The reachability
map stores binary values for each bin, where a bin represents a
small range of end-effector poses in SE (3): The stored value is
one for reachable or zero for unreachable bins. The level of detail
of a reachability map is then represented by three quantities,
voxel size (e.g. 0.025m), number of approach directions (e.g.
200) and number of roll bins (e.g. 30, thus mapping 200 × 30 �
6,000 orientations in each voxel).

This paper exploits two fundamental functionalities of
reachability maps: pose existence queries and interpreter
functions. A query to a map is denoted as W(ξ), and performs
the mapping of pose ξ into a bin and retrieves its binary value,
which indicates whether the pose is reachable or not. The speed of
this query process is what makes the reachability maps suitable for
on-line applications on robots. The current implementation from
Porges et al. (2014) handles typically about 2000 queries per
millisecond. Interpreter functions help to visualize the workspace
model data based on a desired property. A commonly used
interpreter function called reachability index R summarizes the
results for all discretized orientations inside a voxel in one metric,
thus enabling the workspace visualization. This index is defined by

R(Vi) �
∑nb

p�0vi,p
nb

(1)

Where nb is the number of all discretized orientations inside each
voxel (approach directions times roll directions). The range of the
reachability index is R(Vi) ∈ [0, 1], from totally unreachable (R �
0) to 100% reachable orientations (R � 1) in a voxel.

The reachability index reflects a local dexterity in the task-
space, as it indicates the ability of the manipulator to reach
different position and orientations of the end effector within the
local neighborhood of the current pose. Note that reachability
strictly refers here to the ability to reach all possible orientations
of the end effector at a given point in the manipulator workspace,
as a difference to the manipulability measure derived from the
Jacobian condition number in Yoshikawa (1985), which describes
the ability of the manipulator to move and apply forces in
arbitrary directions, as described in Patel and Sobh (2015).
Further comparison on reachability and manipulability is
provided in Zacharias (2012). A 3D visualization of voxels
with a color-coded reachability value is called a capability
map, as illustrated in Figure 2 using a HSV color scale:
Regions with low reachability are colored in red, while high
reachability regions are colored in blue. To provide a sense of

FIGURE 1 | Hierarchical discretization of the end-effector pose ξ for
efficient generation of the reachability map. The Cartesian space is discretized
with voxels. Each voxel has an associated virtual sphere that discretizes the
possible approach directions (pitch and yaw). Each surface bin in this
virtual sphere has in turn an associated discretization for the roll direction.

FIGURE 2 | Cross-section of the capability map for a KUKA iiwa robot,
with seven DoF (joints j are marked in the figure). The HSV color scale encodes
the reachability index R given by Eq. 1. Map and robot are plotted at the
same scale.
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scale, the capability maps shown in this paper always include a
reference frame, with axis of 1m length, depicting the robot base
position and orientation. Generation methods, performance and
prediction accuracy of these maps are discussed in detail in
Porges et al. (2014).

3 FAILURE MAPS

Since the reachability maps depend on the kinematic design of the
manipulator, they are usually computed off-line, and the
information can later be queried for online processes. In case that
an arbitrary joint of the robot is locked, a set F containing a large
number of reachability maps can be generated to represent the effect
of the locked joint on the robot workspace. LetW j,l be a reachability
map where l is the locked position of the j-th joint,

F � W j,l | j ∈ (1,Ndof ), l ∈ (lmin, lmax){ } (2)

Where lmin, lmax ∈ Qj are the joint limits of the locked joint. For
illustrating the methods in this paper, the 7-DoF KUKA iiwa robot1

is used as a prototypical example. To generateF , each joint is locked,
one at a time, at different successive positions within the joint limits
using a given resolution. This paper uses a resolution of one degree,
which leads to generating 2097 reachability maps. The maps are
generated using forward kinematics, which provides the least
amount of false positive values in prediction of pose reachability,
as discussed in Porges et al. (2014).

Joint locks reduce the capabilities of the manipulator. They
shrink the post-failure workspace and reduce the manipulator’s
dexterity. Figure 3 illustrates the influence of a potential failure at

different joints locked at zero position on the workspace of the
KUKA iiwa robot.

Some workspace locations are more affected than others by joint
failures. To gain a full overview for assessing the risk, workspaces
from the set F are merged into one failure map W f by

W f � ∑
Ndof

j�1
∑
lmax

lmin

W j,l (3)

Two reachability maps can be merged as described in
Sundaram et al. (2016): each bin vi,p ∈ N of the resulting map

FIGURE 3 | Capability maps for the KUKA iiwa robot when each joint is locked at its zero position while all the other joints are fully operational. The cross-section is displayed
using the same scale and the same cutting plane (XZ), but the point of view is changed in somemaps to provide a better 3D visualization. Note that a failure in joint 2 or 4 significantly
affects the workspace volume, while a failure in joints 6 or 7 reduces dexterity throughout the workspace (compare to the original capability map without failures in Figure 2).

FIGURE 4 |Cross-section of the failure mapW f for the KUKA iiwa robot.

1https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
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W f holds an integer value reflecting the number of maps
from the set F that identify this particular bin as reachable.
A new interpreter function called failure index F(Vi) is
computed in an analogue manner to the reachability
index, and defined as

F(Vi) �
∑nb

p�1v
f
i,p

nm*nb
vfi,p � ∑

nm

k�1
v(k)i,p (4)

where v(k)i,p is the p-th bin value of voxel i in reachability
map k, and nm represents the number of maps generated, i.e.
the number of points used to discretize the joint
ranges Q. Figure 4 shows the cross-section of the failure
map for a KUKA iiwa. With the HSV color scale, red
areas are less robust to a general joint failure, while blue
areas are reachable in most failure cases. The combined
failure map W f is used for identifying Cartesian positions
of lower and higher risk due to joint failures, so that locations
with higher risk are avoided when performing critical
operations.

The map in Figure 4 appears intuitive due to its symmetry, as
it is generated for a robot moving in a collision-free environment.
For a real use case, the workspace models can be generated
considering collisions with the known environment, e.g. the
mobile base of the manipulator or the satellite for a space
robot arm, as presented in Porges et al. (2015). A small
obstacle can cause large reachability reductions away from the
obstacle’s vicinity.

The failure index defined in (4) summarizes in a single index
the influence of the joint failure across all orientations. The index
can be tuned to study failures along a specific subset of
orientations, or just in a single orientation, by changing the
limits of the sum in (4).

Individual bin values inWf indicate the robustness of the end-
effector pose. The bin value vi,p is calculated as a sum of all maps
from F containing the pose ξ associated with it, therefore, vi,p
quantifies the pre-image footprint within Q. In general, the larger
the bin value vi,p, the more failure-tolerant behavior can be
achieved. For example, particular values v1 � 101 and v2 �
1622 mean that the pose associated with v1 is tolerant to
failure in 4.8% of the cases, while v2 is failure-tolerant in
77.3% of the 2097 discretized cases.

Other measures derived from W f help to evaluate the robot
kinematics. A histogram of the bin values is presented in Figure 5.
The maximum bin value in W f is 1813 out of 2097 original joint

FIGURE 5 | Histogram of bin values of all mapped poses ξ in W f .
FIGURE 6 | Histogram of failure index F(Vi) values in W f .

FIGURE 7 | Post-failure workspace volume ofW j,l as a function of l. The
nominal failure-free volume is 3.292 m3.

FIGURE 8 | Post-failure average dexterity in W j,l as a function of l. The
average dexterity for the nominal failure-free workspace is 0.578.
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failure maps, therefore, the maximum possible robustness of a
particular pose in the workspace is 86.46% and the highest failure
index of a voxel is 0.673. The area under the curve is correlated to
the 6-dimensional volume that indicates the portion of task space
robust to failures. A histogram of the failure index is presented in
Figure 6. The area under the curve represents the 3-dimensional
volume (correlated to the number of voxels) that indicates the
portion of the workspace robust to failures. These histograms are
useful for instance to compare different kinematic designs and
verify which ones provide larger volumes of high tolerance to
failures.

Additional indicators of failure robustness are the post-failure
workspace volume (Figure 7) and the post-failure average
dexterity (Figure 8). The post-failure workspace volume
shown in Figure 7 helps to identify joint value ranges in
which a joint failure is dangerous. In this case, joint 2 around
a joint value of 0 is critical. A cross section of this particular post-
failure capability map is shown in Figure 3. The post-failure
workspace volume has almost no change for failures in joints 1
and 7. On the other hand, the average dexterity, shown in
Figure 8, is significantly reduced for joints 2 and 6 around the
joint value 0. A cross section of the capability map for these
failures is shown in Figure 3, for the joints locked at zero position.
When designing the kinematic structure, these indicators can be
used to avoid concentration of risks in one zone of the C-space.
How critical are these C-space locations can only be evaluated for
a particular task specification.

4 FAILURE DIAGRAMS

Previous sections described a metric for failure robustness, and a
global overview of the redundancy of the manipulator kinematics
with insight into risks related to failures of single joints. In order
to guide the task design or to plan fault-tolerant paths, more

insight into the C-space is required. For this purpose, a new tool
called failure diagram, denoted as D(ξ), is introduced. It is a
function of the end-effector pose ξ, and can be generated from the
set F . The set F is queried with additional parameters that
specify the joint and its locked position W j,l(ξ). The failure
diagram D(ξ) is defined as

D(ξ) � {W j,l(ξ) | j ∈ (1,Ndof ), l ∈ (lmin, lmax)} (5)

An illustrative failure diagram is presented in Figure 9. Each
horizontal row represents one joint within its range of motion.
Every colored cell corresponds to a reachability mapW j,l with j, l
according to the plot axes. The color of the cell indicates the
reachability of the pose ξ in the referenced reachability map, green
for reachable and red for unreachable. The pattern of the diagram
shows continuous ranges of green and red cells in each joint,
hereafter called allowed and forbidden ranges, respectively. This
pattern is the pre-image footprint of ξ in Q. Multiple allowed
ranges within one row (joint) indicate disconnected manifolds of
the pre-image. To illustrate this point, a typical failure diagram
(non-normalized) for the KUKA iiwa is presented in
Figure 10 top.

Number and structure of distinct self-motion manifolds
within a pre-image of a redundant manipulator are examined
in Burdick (1989). Two self-motion manifolds are either
(C-space) disconnected or connected through a singularity.
Each self-motion manifold is continuous in its own. As a
result, if a joint is moved within its allowed ranges on the
diagram D(ξ), it is guaranteed that the pose ξ will be post-
failure reachable. If any joint value falls outside the allowed
ranges and a failure occurs there, the pose of D(ξ) is
guaranteed to be unreachable. Transitioning of one joint value
between two allowed ranges is, therefore, not possible. The
combination of allowed ranges (one for each joint) is not
arbitrary. A valid combination of allowed ranges is determined
by the existence of joint values θ for pose ξ that lie within these
ranges, i.e. the allowed range selection is derived from the pre-
image of ξ. This selection process is illustrated in Figure 10. The
joint values in Figure 10 (top, indicated in yellow) are from the
pre-image of ξ for which this diagram was generated. Based on
this robot configuration, a selection of allowed ranges for fail-safe
operation is shown in Figure 10 (bottom). Note that this failure
diagram is obtained starting from capabilty maps, which have
some chosen discretization level. In our case, we are using a voxel
size of 0.025 m, with 200 approach directions and 30 roll bins.
The failure diagram is then the pre-image of all the poses that fall
into the bin containing the desired pose ξ. This tolerance to
reaching the desired pose is of course task-dependent, and should
be set by the user. To increase numerical accuracy, a finer
resolution for discretization should be used, which leads to
higher computational costs.

The reachability map arising from D(ξ) is denoted by
W(D(ξ)). The generation pipeline is described by

θ→ ξ→D(ξ)→W(D(ξ)) (6)

Given a desired configuration θ, the pose ξ is computed. The
failure diagram D(ξ) for this pose is later used to generate the

FIGURE 9 | Normalized failure diagram for a given pose ξ; the ranges of
the seven joints j have been normalized for illustration purposes (naturally,
each joint has its own joint limits, which do not necessarily coincide). Yellow
cells represent the current joint configuration, in this case, the upright
position (all joints at zero). Green/red cells represent reachability mapsW j,l(ξ)
that do/do not contain the pose ξ.
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reachability map W(D(ξ)). To illustrate the pipeline, Figure 11
shows W(D(ξ)) generated from the failure diagram of Figure 10
top. It contains all poses of the end-effector considered fail-safe
with respect to the pose associated with the diagram D(ξ). These
poses can be reached only if the robot configuration stays within a
set of allowed joint ranges (one for each joint). Figure 12 shows
the associated reachability map W(D(ξ)) for those poses, which
are a subset of Figure 11. For practical reasons, the design process
described in Eq. 6 starts from configuration θ.

During task design, we start with an arbitrary inverse
kinematics solution for reaching the desired pose ξ. Failure
diagram D(ξ) reveals all allowed ranges, and the robot
configuration identifies the valid ranges of operation for each
joint. W(D(ξ)) spanned from these identified ranges describes

the task space for fail-safe operations. If a different combination
of allowed ranges is desired (e.g. to move to a range with larger
footprint in Q), the existence of such θ that selects the desired
ranges has to be verified. Note that a post-failure path existence is
guaranteed from an arbitrary pose ξa ∈ W(D(ξ)), θ ∈ D(ξ) to ξ
and not vice-versa. The spanned workspaceW(D(ξ)) is therefore
called post-failure return-safe (pfrs) workspace.

Post-failure reachability can be guaranteed for multiple poses
simultaneously. Let us have two end-effector poses ξ1 and ξ2 and
their respective failure diagrams D (ξ1) and D (ξ2). An operator D
(ξ1) & D (ξ2) is defined analogically to the logical operator &,
where green cells represent the logical value one and red cells
represent the value zero. The result of the operation & is a merged
failure diagram D (ξ1& ξ2). A failure-tolerant path from ξ1 to ξ2

FIGURE 10 | Failure diagrams with one highlighted joint configuration (in yellow). Each row represents one joint (similar to Figure 9). The diagrams are not
normalized as in Figure 9, i.e the joint range spans from -180 to +180 deg. Regions that are out of the joint limits are represented as black cells. Top: Failure diagram
showing all C-space manifold footprints. Bottom: Failure diagram showing only the C-space manifold footprint relevant for the current configuration.

FIGURE 11 | Capability map spanned from the failure diagram in Figure 10 top, and cross-section of the same map. It corresponds to the post-failure return-safe
workspace for all pre-image manifolds.

FIGURE 12 | Capability map spanned from the failure diagram in Figure 10 bottom, and cross-section of the same map. It corresponds to the post-failure return-
safe workspace only for the relevant self-motion manifold.
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exists if the diagram D (ξ1 & ξ2) contains an allowed range for each
joint. Similar to the previous case, a new reachability map is spanned
as W(D(ξ1&ξ2)). Such a map represents a safe workspace to both
poses ξ1 and ξ2, which is significantly smaller with respect to the
individual pfrs workspaces W(D(ξ1)) and W(D(ξ2)). If the robot
configuration stays within the boundaries ofD (ξ1& ξ2), ξ1 and ξ2 are
guaranteed to be post-failure reachable, i.e., a path between ξ1 and ξ2
will exist after any single joint failure.

5 APPLICATIONS

To demonstrate the design and planning capabilities of the
presented tools, three different use cases are discussed: online
grasp selection, path planning, and base positioning for a robot.

5.1 Online Grasp Selection
The increasing amount of orbital debris is a major concern for
space missions nowadays. Many dysfunctional satellites are
occupying valuable orbits, and potential collisions with them
might create more dangerous debris. Robotic manipulators could
be the key technology to enable de-orbiting of uncooperative
targets like ENVISAT, as discussed in Jaekel et al. (2015). On-
orbit servicing is a promising technology to try to keep the orbits
clean. Manned on-orbit service missions helped to keep the
Hubble telescope afloat and functional, however, at a very
high cost. Robotic manipulators could provide the means of
servicing and refueling satellites at a reasonable cost, thus
prolonging their lifetime in orbit. In a de-orbiting or servicing
mission for satellites, a servicer satellite chases a target, or client
satellite. The goal is to capture the target with the manipulator

and perform a docking maneuver with the servicer. The target is
not necessary cooperative, as it can be tumbling at high rotational
velocities. High tumbling velocity and/or significant mass of the
target lead to a high risk of damaging the manipulator on contact.

Reachability maps were previously used for selecting a grasp
on the target satellite structure such that the docking maneuver is
feasible, as presented in Porges et al. (2015). The capability map is
used for obtaining a set of feasible grasps on the target structure.
Figure 13 shows for instance the bar structure mounted on the
TerraSAR-X satellite that should be grasped to pull the satellite
for docking with the servicer.

Now, the method can be enhanced using the tools presented
here such that the chosen grasp pose is robust to joint failures.
The process described in (6) is followed, i.e., the failure diagram
D(ξ) of the desired end-effector pose for the docking maneuver is
computed. The pfrs workspace W(D(ξ)) using only ranges of
failure diagram identified by θ is generated. Now, with W(D(ξ))
we can choose the best grasp location on the structure.
Furthermore, the grasp selection can include the robustness-
to-failure as a quality measure, utilizing the bin values vi,p
from Wf . The grasp selected by maximizing the vi,p value is
the one that maximizes the pfrs. After a successful grasp, path
planning procedures robust to failures can be applied, as
described later in Section 5.2, to ensure that the docking
maneuver is performed safely. Task planning modules are
forced to only assume grasps within the safe workspace, thus
guaranteeing post-failure docking feasibility.

The use of the combined failure map is depicted in Figure 14.
The query poses are defined by pre-computed grasps on the target
surface and passed through the pfrs workspace to obtain
kinematically feasible and fail-safe grasp locations.

5.2 Path Planning
The necessary conditions for the existence of unidirectional and
bi-directional fault-tolerant paths between two particular
configurations were introduced in Section 4. Assuming that
these conditions are met, a failure diagram can be used to
generate a fault-tolerant motion and post-failure recovery path
to reach the desired goal.

Given an initial and a desired goal, the first step is then
verifying that there is a fail-safe tolerant path between them,
as explained in Section 4. If this is the case, then a path can be
obtained using any traditional path planning method, for
instance, Rapidly-exploring Random Trees (RRT), which relies
on random sampling of the C-space (LaValle et al., 2001). The
only condition required to integrate the failure diagrams into the
RRT planning approach is to use the bounds provided by the
failure diagram (e.g. the bounds in Figure 10 bottom) for
retrieving samples for the RRT process. In other words, each
random joint position can only be retrieved from the joint ranges
provided by the failure diagram for the desired end effector pose.
This integration leads to a failure-tolerant RRT variant, as
samples entering the RRT building process are inherently fail-
safe.

On the onset of failure, the instantaneous joint configuration
lies within the failure diagram, and the existence of a path to the
goal pose is guaranteed. To obtain such path, the RRT planning

FIGURE 13 | Online grasp selection for spacecraft docking using the
plain reachability map for the manipulator. On the client satellite structure
(left), green points show the kinematically feasible grasp locations, while red
shows unfeasible locations for this particular relative pose between
servicer and client.
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process can proceed further by randomly sampling the remaining
Ndof − 1 joints using still the joint ranges provided by the failure
diagram; the locked joint does not change its value in the
successive robot motions.

An example of this approach is shown in Figure 15. A goal
pose is defined, and a random feasible configuration is chosen
as starting configuration. We could have used an RRT to plan
the path between both poses; for simplicity, we used a simple
joint interpolator to execute the path between the start and the
goal configurations, respecting the joint bounds given by the
failure diagram. This nominal path is visualized in Figure 15.
Several random failures are simulated, one per each joint,
during the path execution. For each one of them, we use an
RRT planner for the remaining active joints to find an after-
failure path to achieve the goal pose ξ, as shown in Figure 15
and in the attached video. As a result, the end-effector travels
within the associated pfrs workspace depicted in Figure 12,
and the end effector pose is achieved, within the tolerances
given by the discretization used to build the required
reachability maps.

5.3 Task Design and Base Positioning
A robotic manipulator mounted on a planetary rover allows tasks
such as collection of soil samples, self-maintenance, or image-

based diagnostics with an in-hand camera. Taking samples
usually requires scratching and drilling on a rock or into the
ground. Once samples have been collected, they need to be
transported for devolatilization to a number of scientific
instruments, and optionally to the storage area for later
retrieval. Additional constrains on required end-effector poses
can be given by actions such as visual self-inspection, where a
predefined camera pose is desired.

The application of reachability maps for defining the
mounting point of a manipulator on the rover structure was
presented in Porges et al. (2015). Deciding the mounting point
for the arm is a one-time task. However, if we use the failure
maps considering the effect of collisions with the body on the
resulting manipulator workspace, we can obtain a
configuration that guarantees the execution of the tasks
even in the case of a joint failure. The poses for the on-
board instruments and for taking diagnostic pictures can be
chosen based on bins with high values vi,p. Maximizing vi,p also
maximizes the pfrs workspace that spans from the associated
poses. Bi-directional fail-safety for post-failure reachability
can be guaranteed by using fused failure diagrams. The pfrs
workspace can also be used to position the rover with respect to
the task by following the inversion of reachability for base
positioning introduced in Vahrenkamp et al. (2013). This

FIGURE 14 | Grasp selection for fail-safe spacecraft docking. The figure depicts only the bar structure used for grasping (the structure mounted on the client
satellite is shown in Figure 13), and shows how the grasp possibilities change depending on the target location with respect to the servicer. The color of the structure
corresponds to the vi,p value; blue areas are preferred for grasping. The grasp pose selected must lie in a region with high vi,p across all the maneuver sequence.

FIGURE 15 | Failure-tolerant path. Left: nominal, failure-free path. Right: collection of paths to recover from random failures in each joint (as indicated by the
corresponding color code).
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workspace inversion is done only once, hence, it is not
computationally demanding at the time of application.
Thus, the method would provide a full 6-DoF base
placement solution with respect to the task.

6 DISCUSSION

This paper demonstrated how the concept of reachability maps is
applied for analysis and design of fail-safe operations of robotic
manipulators. Using failure maps, general dangerous zones can
be identified both in task space (with pfrs workspaces) and
C-space (with failure diagrams), and zones with high pre-
failure redundancy can be selected for critical operations.

The reachability maps are based on a discretization of the
workspace; its prediction accuracy was previously studied in
Porges et al. (2014). In the case of failure diagrams, which is
the crucial component for the computation of a failure-tolerant
path, the chosen discretization must be considered carefully, as it
also defines the tolerance allowed for reaching the desired end
effector pose after a failure occurs. For the computation of failure
diagrams, it is suggested to generate the reachability maps using
forward kinematics, since it leads mostly to false positives on the
boundary of the real workspace, as explained in detail in Porges
et al. (2014). After the generation, the allowed ranges in the failure
diagram (green cells in Figure 10 top) can be reduced by one bin
on each side of the range to obtain conservative bounds for the
fail-safe paths.

The computational requirements for the initial generation
phase depend on the workspace volume (to the third power),
as explained in Porges et al. (2014). In the case of KUKA iiwa,
which was the robot used for the examples presented in this
paper, approximately 4.5 CPU h (single core) were required for
generating each one of the 2097 reachability maps with a locked
joint, accounting for a total of approximately 9500 CPU h of a
standard desktop computer. Generation of failure diagrams D(ξ)
typically takes under 1 s, and spanning a fail-safe workspace
W(D(ξ)) takes in the order of 5–10 min (volume-dependent).
Although this computational cost is very large, this process is
entirely performed offline, and the results are directly used for
online queries or fail-safe path computations, as presented in
Section 5.

The introduction of failure diagrams allows the search of a
fault-tolerant path to reach one or multiple target poses. It can
also be used to add constraints for established planning and
execution methods, to find paths in case that a joint failure
occurs. The planning time of fail-safe paths using RRTs

extended with the failure diagrams is not strongly affected
by using the failure diagrams, as they only modify the valid
ranges for each joint used for the RRT sampling procedure.
Therefore, the expected planning times are in the order of
seconds, and depend on the particular situation. In general, a
fail-safe path is found faster than an unconstrained path, since
the search space is reduced by the boundaries imposed to get a
fail-safe path.

The presented methods scale to kinematic chains with any
number of DoF and joint types without further adaptations.
Obstacles known at generation time can be incorporated into
the computation of the initial reachability maps, while runtime
obstacles can be incorporated according to the selected planning
method.

While the presented methods and tools work for single joint
failures, they are not easily extensible to two or more
simultaneous failures due to the combinatorial increment of
possible failure modes, which entails a much higher
computational complexity. However, chances of two or more
joint failures are slim, due to the redundancy used in the design of
the robotic manipulators for space.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors upon request.

AUTHOR CONTRIBUTIONS

OP developed and implemented the method. DL helped to setup
the examples with the DLR iiwa. MR co-developed the method.

ACKNOWLEDGMENTS

The authors want to thank Dr. Roberto Lampariello and Dr.
Markus Grebenstein for initial discussions regarding the design of
failure tolerant systems.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.710021/
full#supplementary-material

REFERENCES

Alkmarkhi, A., and Maciejewski, A. A. (2019). Maximizing the Size of Self-Motion
Manifolds to Improve Robot Fault-Tolerance. IEEE Robotics Automation Lett.
4, 2653–2660. doi:10.1109/LRA.2019.2913994

Burdick, J. W. (1989). On the Inverse Kinematics of Redundant
Manipulators: Characterization of the Self-Motion Manifolds, in IEEE

Int. Conf. Robotics and Automation, 264–270. doi:10.1109/
ROBOT.1989.99999

Diankov, R. (2010). Automated Construction of Robotic Manipulation Programs,
(Pittsburgh, Pennsylvania: Carnegie Mellon University). Ph.D. thesis. ISBN:
978-1-124-53547-0.

Ellery, A., Kreisel, J., and Sommer, B. (2008). The Case for Robotic On-Orbit
Servicing of Spacecraft: Spacecraft Reliability Is a Myth. Acta Astronautica 63,
632–648. doi:10.1016/j.actaastro.2008.01.042

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 71002110

Porges et al. Fail-Safe Trajectories for Robotic Arms

https://www.frontiersin.org/articles/10.3389/frobt.2021.710021/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.710021/full#supplementary-material
https://doi.org/10.1109/LRA.2019.2913994
https://doi.org/10.1109/ROBOT.1989.99999
https://doi.org/10.1109/ROBOT.1989.99999
https://doi.org/10.1016/j.actaastro.2008.01.042
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Jaekel, S., Lampariello, R., Panin, G., Sagardia, M., Brunner, B., Porges, O., et al.
(2015). Robotic Capture and De-orbit of a Heavy, Uncooperative and Tumbling
Target in Low Earth Orbit, in Workshop on Advanced Space Technologies for
Robotics and Automation - ASTRA.

Jamisola, R. S., Maciejewski, A. A., and Roberts, R. G. (2006). Failure-tolerant Path
Planning for Kinematically Redundant Manipulators Anticipating Locked-
Joint Failures. IEEE Trans. Robot. 22, 603–612. doi:10.1109/tro.2006.878959

LaValle, S., and Kuffner, J. (2001). Randomized Kinodynamic Planning. Int. J.
Robotics Research. 20, 378–400. doi:10.1177/02783640122067453

Lewis, C. L., and Maciejewski, A. A. (1994). Dexterity Optimization of
Kinematically Redundant Manipulators in the Presence of Joint
Failures. Comput. Electr. Eng. 20, 273–288. doi:10.1016/0045-7906(94)
90021-3

Lewis, C. L., and Maciejewski, A. A. (1997). Fault Tolerant Operation of
Kinematically Redundant Manipulators for Locked Joint Failures. IEEE
Trans. Robot. Automat. 13, 622–629. doi:10.1109/70.611335

Paredis, C. J. J., and Khosla, P. K. (1996). Fault Tolerant Task Execution through
Global Trajectory Planning. Reliability Eng. Syst. Saf. 53, 225–235. doi:10.1016/
s0951-8320(96)00050-6

Patel, S., and Sobh, T. (2015). Manipulator Performance Measures - a
Comprehensive Literature Survey. J. Intell. Robot. Syst. 77, 547–570.
doi:10.1007/s10846-014-0024-y

Porges, O., Lampariello, R., Artigas, J., Wedler, A., Borst, C., and Roa, M. A. (2015).
Reachability and Dexterity: Analysis and Applications for Space Robotics, in
Workshop on Advanced Space Technologies for Robotics and Automation -
ASTRA.

Porges, O., Stouraitis, T., Borst, C., and Roa, M. A. (2014). Reachability and Capability
Analysis for Manipulation Tasks, in ROBOT2013: First Iberian Robotics Conference
(Berlin, Germany: Springer), 703–718. doi:10.1007/978-3-319-03653-3_50

Ralph, S. K., and Pai, D. K. (1999). Computing Fault Tolerant Motions for a Robot
Manipulator, in IEEE Int. Conf. Robotics and Automation, 486–493.
doi:10.1109/ROBOT.1999.770024

Ralph, S. K., and Pai, D. K. (1997). Fault Tolerant Locomotion for Walking Robots,
in IEEE Int. Symp. Computational Intelligence in Robotics and Automation,
130–137. doi:10.1109/CIRA.1997.613849

Sundaram, A. M., Porges, O., and Roa, M. A. (2016). Planning Realistic
Interactions for Bimanual Grasping and Manipulation, in IEEE-RAS Int.
Conf. Humanoid Robots, 987–994. doi:10.1109/humanoids.2016.7803392

Vahrenkamp, N., Asfour, T., and Dillmann, R. (2013). Robot Placement Based on
Reachability Inversion, in IEEE Int. Conf. Robotics and Automation,
1970–1975. doi:10.1109/icra.2013.6630839

Vahrenkamp, N., Berenson, D., Asfour, T., Kuffner, J., and Dillmann, R. (2009).
Humanoid Motion Planning for Dual-Arm Manipulation and Re-grasping
Tasks, in IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2464–2470.
doi:10.1109/iros.2009.5354625

Werner, A., Henze, B., Rodriguez, D. A., Gabaret, J., Porges, O., and Roa, M. A.
(2016). Multi-contact Planning and Control for a Torque-Controlled
Humanoid Robot, in IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
5708–5715. doi:10.1109/iros.2016.7759840

Yoshikawa, T. (1985). Manipulability of Robotic Mechanisms. Int. J. Robotics Res.
4, 3–9. doi:10.1177/027836498500400201

Zacharias, F., Borst, C., and Hirzinger, G. (2007). Capturing Robot Workspace
Structure: Representing Robot Capabilities, in IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, 3229–3236. doi:10.1109/iros.2007.4399105

Zacharias, F., Borst, C., and Hirzinger, G. (2009a). Online Generation of Reachable
Grasps for Dexterous Manipulation Using a Representation of the Reachable
Workspace, in IEEE Int. Conf. Advanced Robotics, 1–8.

Zacharias, F. (2012). Knowledge Representations for Planning Manipulation Tasks,
Vol. 16. Berlin, Germany: Springer. doi:10.1007/978-3-642-25182-5

Zacharias, F., Sepp, W., Borst, C., and Hirzinger, G. (2009b). Using a Model of the
Reachable Workspace to Position mobile Manipulators for 3-d Trajectories, in
IEEE-RAS Int. Conf. Humanoid Robots, 55–61. doi:10.1109/
ichr.2009.5379601

Conflict of Interest: OP was employed by the company Agile Robots

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Porges, Leidner and Roa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 71002111

Porges et al. Fail-Safe Trajectories for Robotic Arms

https://doi.org/10.1109/tro.2006.878959
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1016/0045-7906(94)90021-3
https://doi.org/10.1016/0045-7906(94)90021-3
https://doi.org/10.1109/70.611335
https://doi.org/10.1016/s0951-8320(96)00050-6
https://doi.org/10.1016/s0951-8320(96)00050-6
https://doi.org/10.1007/s10846-014-0024-y
https://doi.org/10.1007/978-3-319-03653-3_50
https://doi.org/10.1109/ROBOT.1999.770024
https://doi.org/10.1109/CIRA.1997.613849
https://doi.org/10.1109/humanoids.2016.7803392
https://doi.org/10.1109/icra.2013.6630839
https://doi.org/10.1109/iros.2009.5354625
https://doi.org/10.1109/iros.2016.7759840
https://doi.org/10.1177/027836498500400201
https://doi.org/10.1109/iros.2007.4399105
https://doi.org/10.1007/978-3-642-25182-5
https://doi.org/10.1109/ichr.2009.5379601
https://doi.org/10.1109/ichr.2009.5379601
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Planning Fail-Safe Trajectories for Space Robotic Arms
	1 Introduction
	2 Reachability and Capability Maps
	3 Failure Maps
	4 Failure Diagrams
	5 Applications
	5.1 Online Grasp Selection
	5.2 Path Planning
	5.3 Task Design and Base Positioning

	6 Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


