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Choosing the right features is important to optimize lower limb pattern recognition, such as
in prosthetic control. EMG signals are noisy in nature, which makes it more challenging to
extract useful information. Many features are used in the literature, which raises the
question which features are most suited for use in lower limb myoelectric control.
Therefore, it is important to find combinations of best performing features. One way to
achieve this is by using a genetic algorithm, a meta-heuristic capable of searching vast
feature spaces. The goal of this research is to demonstrate the capabilities of a genetic
algorithm and come up with a feature set that has a better performance than the state-of-
the-art feature set. In this study, we collected a dataset containing ten able-bodied
subjects who performed various gait-related activities while measuring EMG and
kinematics. The genetic algorithm selected features based on the performance on the
training partition of this dataset. The selected feature sets were evaluated on the remaining
test set and on the online benchmark dataset ENABL3S, against a state-of-the-art feature
set. The results show that a feature set based on the selected features of a genetic
algorithm outperforms the state-of-the-art set. The overall error decreased up to 0.54%
and the transitional error by 2.44%, which represent a relative decrease in overall errors up
to 11.6% and transitional errors up to 14.1%, although these results were not significant.
This study showed that a genetic algorithm is capable of searching a large feature space
and that systematic feature selection shows promising results for lower limb myoelectric
control.
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1 INTRODUCTION

Motor intent recognition using electromyography (EMG) has the potential to create intuitive control
of prosthetic devices. However, EMG signals are noisy in nature, which makes it challenging to
extract user intent (Phinyomark and Scheme, 2018). To solve this challenge, feature extraction can be
used to improve information density and reduce noise, which leads to better intent recognition.
Numerous feature extraction methods and feature combinations have been proposed (Phinyomark
and Scheme, 2018; Hudgins et al., 1993; Phinyomark et al., 2017; Phinyomark et al., 2018). The best
combination of features can be found by trying out every combination; but with the increase in
possible features over the years, this becomes unfeasible. Therefore, feature selection and dimension
reduction techniques have been used to remove redundant and irrelevant features.

Edited by:
Rong Song,

Sun Yat-sen University, China

Reviewed by:
Evan David Campbell,

University of New Brunswick
Fredericton, Canada

Ying Feng,
South China University of Technology,

China

*Correspondence:
Robert V. Schulte
r.schulte@rrd.nl

Specialty section:
This article was submitted to

Biomedical Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 17 May 2021
Accepted: 23 September 2021

Published: 25 October 2021

Citation:
Schulte RV, Prinsen EC, Hermens HJ

and Buurke JH (2021) Genetic
Algorithm for Feature Selection in
Lower Limb Pattern Recognition.

Front. Robot. AI 8:710806.
doi: 10.3389/frobt.2021.710806

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 7108061

ORIGINAL RESEARCH
published: 25 October 2021

doi: 10.3389/frobt.2021.710806

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.710806&domain=pdf&date_stamp=2021-10-25
https://www.frontiersin.org/articles/10.3389/frobt.2021.710806/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.710806/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.710806/full
http://creativecommons.org/licenses/by/4.0/
mailto:r.schulte@rrd.nl
https://doi.org/10.3389/frobt.2021.710806
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.710806


However, big datasets require more complex methods as
classical methods are not sufficient due to their computational
complexity or lack of the ability to circumvent sub-optimal
solutions (Phinyomark and Scheme, 2018). Therefore, feature
selection methods have been proposed, which are capable of
searching large-dimensional spaces (Phinyomark and Scheme,
2018). Meta-heuristics, such as the genetic algorithm (GA) (Luo
et al., 2017; Karthick et al., 2018; Xi et al., 2018; Rong et al., 2013;
Too et al., 2019), were used for feature selection or optimization
in EMG-based classification. A genetic algorithm is known for its
efficient search of large, possibly noisy solution spaces (Huang
and Wang, 2006; Krömer et al., 2018), and due to its simplicity
and ease of interpretation, it is used in many applications
(Krömer et al., 2018). Luo et al. (2017) applied a genetic
algorithm for feature selection in movement classification
based on EMG. They used a multi-layer perceptron and 10
initial features per channel. The authors showed that the
genetic algorithm is capable of reducing the number of
necessary features while reaching a higher classification
accuracy and improving state-of-the-art by increasing the
accuracy of hand gesture recognition from 91 to 97.7%. Xi
et al. (2018) investigated motor intent recognition using EMG
in the lower limb, focusing on eight different activities of daily
living. They compared feature sets selected with different
methods, ranging from plain correlation analysis to genetic
algorithm–weighted correlation analysis. Using the genetic
algorithm, they were able to reduce the number of features,
increase the quality of the feature set, and increase the
classification accuracy in combination with a support vector
machine. Compared with correlation analysis, they improved
the specificity from 69.5–72.5 to 95.9–100% and sensitivity from
67.2–70.6 to 96.6–100%. Rong et al. (2013) investigated muscle
fatigue classification, comparing neural networks, support vector
machines, and an optimized support vector machine using a
genetic algorithm. They concluded that a genetic algorithm can
optimize support vector machine parameters to increase
classification accuracy, from 66.1% up to 97.6%. Halim et al.
(2020) used a genetic algorithm to reduce the number of sensors
necessary to reach similar performance versus all sensors in the
lower limb. They showed that, with only a decrease of 0.9% in
accuracy from 94.0 to 93.1%, they could reduce the number of
sensors necessary by 54%. Other meta-heuristics were used in
EMG feature selection as well (Phinyomark and Scheme, 2018),
such as particle swarm optimization (Purushothaman and Vikas,
2018; Too et al., 2019; Zhang et al., 2019; Bakiya et al., 2020) and
ant colony optimization (Purushothaman and Vikas, 2018).
Many other meta-heuristics exist which are suited for feature
selection in general, such as tabu search and simulated annealing
(Diao and Shen, 2015). These studies show that meta-heuristics
and especially genetic algorithms are capable of efficiently
improving classification performance.

The number of features used in each study, at most fifteen, is
limited compared with the hundreds of possible feature
extraction methods that have been described in the literature.
Phinyomark et al. (2017) identified 58 different feature extraction
methods (Phinyomark et al., 2017; Côté-Allard et al., 2020),
which range from time- to frequency-domain features. In their

work, they evaluated individual features to see in which
“category” the features belong using a mapping method and,
in this way, constructed a feature set based on their topology.
They showed that their method outperforms sequential feature
selection. The downside of this method is that information of the
observer is necessary to evaluate the groups and construct a
feature set that is based on these groups. A meta-heuristic, such as
the genetic algorithm, would make the search more objective and
could perform feature selection on its own. However, the question
arises whether an optimal solution could be found when the
number of features is high, as many possible combinations exist
within the solution space. Furthermore, most of the work on
feature selection in myoelectric control is performed on the upper
limb. Various studies adapt the optimized feature sets for the
upper limb to be used in the lower limb, but the question arises
whether the use of upper limb features would suffice for control
within the lower limb.

In this work, we implemented a genetic algorithm to search a
large feature space to design a feature set suited for myoelectric
control in the lower limb. The expectation is that the feature set
designed by the genetic algorithm outperforms current state-of-
the-art feature sets.

2 MATERIALS AND METHODS

2.1 Data
Two datasets were used within this study. The first is the
ENABL3S dataset containing 10 able-bodied subjects (7 m, 3 f)
which was collected by Hu et al. (2018a). This dataset contains
EMG, joint angle, acceleration, and angular velocity data. EMG
was collected using bipolar electrodes, from sevenmuscles per leg:
rectus femoris, vastus lateralis, biceps femoris, semitendinosus,
tibialis anterior, gastrocnemius medialis, and soleus. Joint angles
in the sagittal plane were collected using electrogoniometers of
the knee and ankle, and 3D acceleration and 3D angular velocity
were measured using IMUs on the lower and upper legs. Data
were collected of sitting, standing, walking, stair ascent/descent,
and ramp ascent/descent.

The second is the MyLeg-Roessingh database for activity
prediction (MyPredict) containing 10 able-bodied subjects
(7 m, 3 f), which was collected for this study. The protocol was
reviewed and approved by Medical research Ethics Committees
United (MEC-U) Nieuwegein, Netherlands. The participants
provided their written informed consent to participate in this
study. This dataset contains EMG, joint angle, acceleration, and
angular velocity data. EMG was collected using bipolar electrodes
(Delsys, Boston, United States), from eight muscles per leg:
gluteus maximus, gluteus medius, rectus femoris, vastus
lateralis, biceps femoris, semitendinosus, tibialis anterior, and
gastrocnemius medialis. Signals were recorded at 1000 Hz. Lower
body kinematics were collected using an MVN Link suit (Xsens,
Enschede, Netherlands), which uses eight inertial measurement
units (IMUs) to reconstruct lower body movement at 240 Hz.
IMUs were placed on the feet, lower legs, upper legs, pelvis, and
sternum. In this work, we used the 3D joint angles from the hip,
knee, and ankle and the 3D acceleration and 3D angular velocity
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of the feet, lower legs, and upper legs. All data were time
synchronized and resampled to 1000 Hz. EMG was filtered
with a zero-lag second-order Butterworth high-pass filter with
a cut-off frequency of 20 Hz. Measurements were conducted at
the Wearable Robotics Lab of the University of Twente, using
obstacles constructed for the Cybathlon by the Department of
Biomechanical Engineering, see Figure 1. Before each
measurement, the maximal voluntary contraction of each
muscle was measured to normalize EMG. Obstacles used were
the stairs (rise 17 cm, run 28 cm), ramp with two different slopes
(15 and 20°), and uneven terrain consisting of stepping stones on
a surface. Forty trials were conducted per subject. A trial consisted
of sitting, standing, walking, stair ascent, walking, stair descent,
walking, ramp ascent, walking, ramp descent, walking, walking
on uneven terrain, walking in confined spaces, walking, standing,
and sitting. Subjects walked at their own preferred speed, and
after ten trials, a small break was administered to avoid fatigue
and check sensor placement. Each trial had a duration of around
1 min 15 s. The total measurement time including subject
preparation, sensor placement, and calibration was around 2 h.

We used data of gait-related activities which were present in
both datasets to have comparable data in both datasets. These
activities were standing, walking, stair ascent/descent, and ramp
ascent/descent.

2.2 Genetic Algorithm
Genetic algorithms search the solution space using a nature-
inspired process based on genetic evolution. The genetic
algorithm uses a population of candidate solutions, which are
evaluated based on their fitness. Solutions with a higher fitness are
more likely to continue in the genetic process, whereas poor

solutions are phased out. These solutions encode the problem at
hand and are comparable with chromosomes containing certain
genes. These “chromosomes” undergo crossover and mutation
operations to evolve into a new population of solutions. This
process is repeated until the process has converged to a solution
or the maximum number of iterations is reached.

2.2.1 Problem Encoding
An important step in genetic algorithm design is problem
encoding. In our case, the solutions were feature sets leading
to a certain accuracy. We encoded features into a binary string. If
the solution contained a certain feature, the value for that feature
will be 1. If not, then the value will be 0. In this way, we encode
every feature for every data type. The datasets contained four
different data types: joint angles (ang), acceleration (acc), angular
velocity (gyr), and EMG (emg). Therefore, the chromosome
looked as follows:

chromosome �
Fang

Facc

Fgyr

Femg

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
f1 f2 . . . fN

f1 f2 . . . fN

f1 f2 . . . fN

f1 f2 . . . fN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠withfn ∈ 0, 1{ }.

(1)

Here, F is the feature set for each data type and f is the feature
extraction method.

2.2.2 Fitness
Another important part of the genetic algorithm is the fitness
function. The fitness function determines the fitness of the
solution, which leads to the probability of the solution to
continue in the evolutionary process. The fitness function used
in this work is specific to this application. For lower limb
myoelectric pattern recognition, three performance metrics are
important, which are the overall performance, the steady-state
performance, and the transitional performance. A fitness
function should reflect these important factors for lower limb
pattern recognition. Next for performance, it is important that a
feature set would not be too large as using this feature set would
take up too much time to train and classify. Therefore, we
implemented the following fitness function:

fitness � αov�sov + αss�sss + αtr�str + β

nf
. (2)

Here, �s is the average score over all subjects for overall (ov),
steady-state (ss), and transitional (tr) performances. The
performance was determined using the classification accuracy
of the mode-specific linear discriminant analysis (LDA)
classifiers, as described by Hu et al. (2018b). α is a scaling
factor that determined the importance of each performance
type and was set to 0.25, 0.1, and 0.5 in this work for ov, ss,
and tr, respectively. The data contain mostly steady states, which
means that the overall performance is mostly determined by the
steady-state performance and not by the transitional
performance. To balance this out, the transitional performance
was given a higher weight to counteract the influence of steady
states, as steady states occur more in the data. If the values for

FIGURE 1 | Measurement setup of the MyPredict dataset, with the
ramps and stairs.
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transitions were too high, the overall error would rise, which is
not preferable as well. nf is the number of features used for the
chromosome, and β is a scale factor. β

nf
determined the fitness

based on the number of features used: the lower the number of
features, the higher the fitness value with a minimum number of
features of 1. This part of the fitness function is implemented to
steer the genetic algorithm away from very large feature sets. β
was set to 0.15 in this work as it should not be considered the most
prominent selection criterion, as performance is considered more
important. With these scale factors, the maximal possible fitness
is 1.00.

2.2.3 Crossover
Crossover determines how two selected chromosomes are
combined to form a new chromosome for the next
generation. These parent chromosomes are selected based on
their fitness value, using roulette wheel selection. When the
parents are chosen, two children are created from the pair. For
each data type, a crossover point is randomly selected and the
first part of the first child is coming from parent 1 and the
second part from parent 2. The remaining parts of the parents
form the second child. The process of randomly combining
parents was repeated until the new population was formed. The
population size was set to 64, and the number of parents per
iteration was set to 16.

2.2.4 Mutation
Mutation alters a new chromosome by point mutation, e.g.,
changing a 0 to a 1 or vice versa. The parameter mutation
rate determines if and how often a chromosome was mutated.
In this work, we implemented a dynamic mutation rate: the
mutation rate started out at 10%, and if the best fitness value did
not change for 10 iterations, we increased the mutation rate by 5%
up to 20%. If the fitness increased during 10 iterations, the
mutation rate was decreased by 5% up to as minimum 10%.
The search was stopped if the best fitness value did not increase
after another 10 iterations when the highest mutation rate was
reached. Next to that, the other stopping criterion was the
maximum number of iterations, which was set to 200.

2.2.5 Heterogeneity
From initial tests, it seemed that the population converged
quickly to a homogeneous population in terms of fitness.
Therefore, we implemented a check based on the interquartile
range of the fitness of the population: if the interquartile range
was below 0.002, we would add eight random chromosomes to
the population. To ensure a similar size of the population during
iterations, eight fewer children were created during crossover.

2.3 Feature Extraction and Evaluation
When using feature selection or hyperparameter optimization, one
of the major risks is overfitting, and therefore, it is important to
implement a proper evaluation strategy (Halilaj et al., 2018). To
demonstrate the generalizability of the approach, we optimized the
feature set on 80% of theMyPredict dataset which was collected for
this study and tested this feature set on the remaining 20% of the
MyPredict dataset. By using the last 20%, we try tomimic a real-life

setting, i.e., data that were collected after the training phase. Next to
this, performance was also evaluated on a completely separate
dataset, the ENABL3S dataset. During optimization, a fourfold
cross validation was used to determine the fitness of each
chromosome per subject, as this provides a good trade-off
between speed and accuracy. For final evaluation on the
ENABL3S dataset, a 10-fold cross validation was applied to
determine the performance of the feature set, similarly to that
done by Hu et al. (2018b).

The feature extraction methods are described in Table 1. In
total, 62 feature extraction methods were implemented, resulting
in 67 features. Certain features contain more than one value, such
as autoregressive coefficients (ARCs). The individual values of
such a feature are not taken into account during the feature
selection process. That is, all values of ARCs were used if ARCs
were selected.

The genetic algorithm ran ten times on all sensor modalities,
each time potentially selecting a different optimal feature set due
to its stochastic nature. The best performing feature set (GA-Opt)
was considered for final evaluation on the test sets. Next to GA-
Opt, other feature sets were constructed as well. These feature sets
were based on the occurrence of the features. For example, if a
feature was selected in at least six out of ten runs, it was added to
the feature set GA-06. If a feature was selected at least twice, it was
added to the feature set GA-02. Out of these feature sets, one
feature set was selected for final evaluation on the test sets based
on its performance on 80% of the MyPredict dataset.

The genetic algorithm ran per modality as well, to select
features per modality instead of selecting features of all
modalities at once. The genetic algorithm ran 10 times per
sensor modality (angle, acceleration, angular velocity, EMG).
The best performing feature sets of each modality were
combined into a new feature set (GM-Opt). As described
before, feature sets were created based on occurrence as well.
The best performing feature set based on occurrence was selected
for the final evaluation on the test sets.

Finally, the four genetic optimized feature sets were compared
against the best performing state-of-the-art feature set. The best
performing state-of-the-art feature set was determined by the
performance of the feature set on 80% of the MyPredict dataset.
Six state-of-the-art feature sets were considered, described by
Atzori et al. (2014), Hu et al. (2018b), Hudgins et al. (1993),
Phinyomark et al. (2013), Phinyomark et al. (2017) and Khushaba
et al. (2014), which are shown in Table 2. The best performing
feature set was selected for final evaluation on the test sets.

The implemented classifiers were subject-specific, mode-
specific LDA classifiers as described by Hu et al. (2018b).
The features were extracted from windows of 300 ms before
each gait event. Hereafter, the features were scaled to have zero
mean and unit variance. Principal component analysis retaining
95% of the variance was used to reduce dimensions before
classifying the data with mode-specific LDA classifiers, as
done by Hu et al. (2018b). We only looked at the
performance in terms of an ipsilateral sensor setup, to mimic
use within a prosthetic device. Only kinematic sensors on the
legs and feet were used, and thus, pelvis/sternum kinematics
were excluded. Performance was split into overall, steady-state,
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and transitional errors. A step was considered a transition when
the state of the previous gait event differed from that of the
current gait event. As most of the data were from steady states,

the overall error was primarily influenced by steady-state errors,
and therefore, transitional errors are shown separately. Feature
extraction methods and the genetic algorithm were

TABLE 1 | The 62 feature extraction methods used in this work. This table is based on the work of Phinyomark et al. (2017), Hu et al. (2018b), and Atzori et al. (2014).

Name Abbreviation Notes Size

Amplitude of the first burst AFB wf � 32 ms 1
Approximate entropy ApEn — 1
Autoregressive coefficients ARC order � 4 5
Cepstrum coefficients CC order � 4 5
Critical exponent analysis CEA — 1
Differenced version of ARC DARC order � 4 5
Differenced version of CC DCC order � 4 5
Detrended fluctuation analysis DFA — 1
Differenced version of LOG DLD — 1
Differenced version of MAV DMAV — 1
Max-to-min drop in PSD ratio DPR — 1
Differenced version of STD DStd — 1
Differenced version of TM DTM order � 3 1
Differenced version of V DV order � 3 1
Differenced version of VAR DVAR — 1
End value EndVal — 1
Frequency ratio FR flb � [20−45], fhb � [95−fmax] 1
Higuchi fractal dimension HG kmax � 128 1
Histogram HIST bins � 3, 10 3, 10
Integrated EMG IEMG — 1
Katz fractal dimension KATZ — 1
Kurtosis KURT — 1
Log detector LD — 1
Second-order moment M2 — 1
Mean absolute value MAV — 1
MAV type 1 MAV1 — 1
MAV type 2 MAV2 — 1
Maximal value MAX — 1
Marginal discrete wavelet transform mDWT wavelet � db7, level � 3 3
Mean MEAN — 1
Minimal value MIN — 1
Mean frequency MNF — 1
Mean power MP — 1
Myopulse percentage rate MYOP Threshold 2e1/2e-2/5e-5 1, 1, 1
Power spectrum deformation OHM — 1
Peak frequency PKF — 1
Power spectrum fractal dimension PSDFD using katz 1
Power spectrum ratio PSR — 1
Root mean square RMS — 1
Sample entropy SampEn — 1
Skewness SKEW — 1
Spectral moment SM order � 2 1
Signal-to-motion ratio SMR frequency: <10 Hz 1
Signal-to-noise ratio SNR — 1
Number of slope sign changes SSC — 1
Simple square integral SSI — 1
Start value StartVal — 1
Standard deviation STD — 1
Time-dependent power spectrum descriptors TDPSD1-6 1,1,1,1,1,1
Absolute temporal moment TM order � 3 1
Total power TP — 1
v-order V order � 3 1
Variance VAR — 1
Variance of central frequency VCF — 1
Willison amplitude WAMP Threshold 2e1/2e-2/5e-5 1, 1, 1
Waveform length WL — 1
Number of zero crossings ZC — 1
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implemented in Python 3.9. Code can be found at https://github.
com/Rvs94/GeneticAlgorithmForFS.

2.4 Statistic Analysis
Feature set error rates were compared with a repeated-measures
ANOVA. The pairwise t-test with Sidak correction was used to
determine significant differences between feature sets.
Normality was visually inspected and confirmed using a
Shapiro–Wilk test. All analyses were performed within IBM
SPSS version 27.

3 RESULTS

3.1 Selected Features—All Modalities
The average fitness over ten runs of the genetic algorithm was
0.749 ± 0.001. The number of iterations differed per run, ranging
from 143 to 200 iterations. The average number of features
selected was 14.1 ± 2.2, 10.4 ± 1.7, 8.6 ± 2.3, and 5.7 ± 2.0 for
joint angle, acceleration, angular velocity, and EMG data,
respectively. An example of the optimization process can be
seen in Figure 2. Out of these ten runs, the feature set with
the highest fitness value was considered to be GA-Opt. GA-Opt
had a fitness value of 0.750, containing 16, 11, 11, and 6 features
for joint angle, acceleration, angular velocity, and EMG data,
respectively, see also Table 3. The average error rates and
standard error of the mean (SEM) were 4.57 ± 0.25% and
16.47 ± 1.22% for overall and transitional errors, respectively,
on 80% of the MyPredict dataset.

Next to the feature set with the highest fitness, other feature
sets were constructed. Based on the occurrence of the features
within the runs of the genetic algorithm, eight feature sets were
constructed, GA-01 to GA-08. No feature occurred more than
eight times. GA-01 contained all features that were selected at
least once, GA-02 contained all features that were selected at least
twice, etc. No feature was selected more than eight times. Their
performance is shown in Figure 3A. It can be seen that, in terms
of overall error, GA-01 performs best. No significant differences
were found with GA-02 and GA-03. GA-04 up to GA-08 perform
significantly worse than GA-01 (p � 0.002, p � 0.002, p � 0.0009, p
< 0.0003, p < 1e−4, respectively). For transitional errors, GA-03
performs best. No significant differences were found with GA-02,
GA-04, and GA-05. GA-01 (p � 0.01), GA-06 (p � 0.008), GA-07
(p � 0.0001), and GA-08 (p < 1e−4) perform significantly worse
than GA-03. As GA-03 is not significantly worse than GA-01 in

TABLE 2 | Six state-of-the-art feature sets used in myoelectric control. In this case, the feature set used by Hu et al. (2018b) was the only set that contained separate features
for kinematic data. Feature definitions can be found in Table 1.

Name Features

Atzori et al. (2014) mDWT, HIST10, RMS, MAV, WL, SSC, ZC
Hu et al. (2018b) EMG: MAV, WL, SSC, ZC, ARC kinematics: MEAN, STD, MIN, MAX, StartVal, EndVal
Hudgins et al. (1993) MAV, WL, SSC, ZC
Phinyomark et al. (2013) SampEn, CC, RMS, WL
Phinyomark et al. (2017) DMAV, DStd, WAMP1, ZC, SampEn, MFL, DARC, TDPSD1-6
Khushaba et al. (2014) TDPSD1-6

FIGURE 2 | Progression of fitness during optimization. The maximum
fitness is depicted in red, and the median fitness with interquartile ranges is
depicted in blue. The larger “spikes” in the interquartile range show where the
GA introduced new random samples to the population.

TABLE 3 | Selected features of GA-Opt and GA-03 for each data type. The occurrence of the features is given after each feature for GA-03. Feature definitions can be found
in Table 1.

Type GA-Opt GA-03 (occurrence)

ang AFB, DFA, DLD, DV, DVAR, EndVal, IEMG, M2, MAV, MAV2, OHM, SSI,
STD, TP, VAR, WAMP2

EndVal (8), WL (6), mDWT (6), LOG (5), TP (5), VAR (5), CEA (4), DLD (4), DV (4), MAX (4),
RMS (4), SSI (4), V (4), VCF (4), AFB (3), DMAV (3), DVAR (3), M2 (3), MAV (3), MP (3),
SampEn (3), StartVal (3)

acc AFB, DMAV, IEMG, LOG, MAV, MIN, MYOP3, OHM, SKEW, SSC,
SampEn

LOG (6), SSI (6), MEAN (5), AFB (4), DStd (4), IEMG (4), MAV (4), MYOP3 (4), OHM (4), WL
(4), DV (3), HIST3 (3), RMS (3), SKEW (3), SampEn (3), TM (3), VAR (3)

gyr AFB, CEA, DFA, DMAV, M2, MEAN, MNF, SMR, SSI, VAR, WAMP3 Mean (7), MAX (6), MYOP3 (5), DStd (3), EndVal (3), M2 (3), MAV (3), MYOP2 (3), TM (3),
VAR (3)

emg CEA, DStd, SKEW, SSC, STD, ZC WAMP2 (5), ZC (4), DStd (3), KATZ (3), PSDFD (3)
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terms of overall error while having a smaller number of features
and performs best in terms of transitional errors, GA-03 was
considered to be the best performing feature set out of these eight
constructed feature sets. The average error rates of GA-03 were
4.37 ± 0.25% and 15.06 ± 1.01% for overall and transitional
errors, respectively, on 80% of the MyPredict dataset.

3.2 Selected Features—Per Modality
The average fitness value per modality was 0.738 ± 0.003 for
angles, 0.731 ± 0.002 for acceleration, 0.703 ± 0.003 for angular
velocity, and 0.647 ± 0.014 for EMG data. The number of
iterations was 106–200 for angles, 84–200 for acceleration,
139–200 for angular velocity, and 109–200 for EMG data. Per
modality, the run with the highest fitness value was considered
the optimal feature set for that modality. Hereafter, these feature
sets were combined to form GM-Opt. GM-Opt contained 9, 25,
25, and 5 features for angles, acceleration, angular velocity, and
EMG, respectively. The features of GM-Opt are shown inTable 4.

Next to GM-Opt, multiple feature sets were constructed based
on the occurrence of the features per modality. Ten feature sets
were constructed (GM-01–GM-10) and compared with each
other based on the performance on 80% of the MyPredict
dataset. The average performance is shown in Figure 3B. It
can be seen that, in terms of overall error, GM-05 performs

best. Significant differences were found with GM-08, GM-09, and
GM-10 (p < 1e−4, p < 1e−4, p < 1e−4, respectively). For
transitional errors, GM-06 performs best. Significant
differences were found with GM-01 and GM-10 (p � 0.044,

FIGURE 3 | Average error rates (± SEM) of the constructed GA feature sets (A) and of the constructed GM feature sets (B) on 80% of the MyPredict dataset. A star
indicates a significant difference compared with the best performing feature set. For the GA feature sets (A), the best performing feature set was GA-01 for overall error,
and in case of transitional errors, this was GA-03. For the GM feature sets (B), the best performing feature set overall was GM-05, and for transitional errors, this was
GM-06.

TABLE 4 | Selected features of GM-Opt and GM-06 for each data type. The occurrence of the features is given after each feature for GM-06. Feature definitions can be found
in Table 1.

Type GM-Opt GM-06 (occurrence)

ang DV, DVAR, EndVal, RMS, SM, SMR, StartVal, VAR, mDWT mDWT (10), DVAR (7), StartVal (7), DV (6), EndVal (6)
acc AFB, CEA, DMAV, EndVal, HIST10, LOG, MAV1, MEAN, MIN, MP, MYOP2,

OHM, RMS, SNR, SSC, SSI, STD, TDPSD1, TDPSD2, TDPSD5, TM, VAR, WL,
ZC, mDWT

MEAN (10), AFB (9), mDWT (8), RMS (8), CEA (7), EndVal (7), ApEn (6), LOG (6),
OHM (6), SNR (6), SSI (6), WAMP2 (6)

gyr AFB, CEA, DFA, DMAV, DStd, DVAR, EndVal, KATZ, LOG, MAV, MAV2, MDF,
MEAN, MYOP3, OHM, RMS, SNR, SSC, SSI, STD, StartVal, TP, V, WL, mDWT

MEAN (10), mDWT (10), SSI (9), CEA (8), DPR (8), DStd (8), MAV2 (8), AFB (7), DLD
(7), EndVal (7), IEMG (7), LOG (7), MIN (7), RMS (7), MAV (6), MAX (6), SM (6), SNR
(6), STD (6), V (6), WAMP2 (6)

emg DMAV, FR, HG, SampEn, WAMP2 HG (10), WAMP2 (10), SampEn (7), ApEn (6)

FIGURE 4 | Average error rate (± SEM) of the state-of-the-art feature
sets on 80% of the MyPredict dataset. A star indicates a significant difference.
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p � 0.048, respectively). As no significant difference was found
between GM-05 and GM-06 in terms of transitional and overall
errors, we considered GM-06 to be the best feature set as this set
contained less features than GM-05. GM-06 was used in the final
evaluation.

3.3 State-of-the-Art Features
The performance of the state-of-the-art feature sets on 80% of the
MyPredict data is shown in Figure 4. The Atzori and Hu feature
sets significantly outperform the Hudgins feature set (p � 1 <
1e−4, p � 0.002, respectively), Phinyomark 1 feature set (p < 1e−4,
p � 0.001, respectively), Phinyomark 2 feature set (p � 0.001, p �
0.030, respectively), and Khushaba feature set (p < 1e−4, p < 1e−4,
respectively). In terms of transitional error, the Hu feature set
performs best, significantly outperforming the Atzori (p < 1e−4),
Hudgins (p < 1e−4), Phinyomark 1 (p < 1e−4), Phinyomark 2 (p <
1e−4), and Khushaba (p < 1e−4) feature sets. The Khushaba
feature set is significantly outperformed by the other feature sets
(p < 1e−4). As there was no significant difference in terms of the
overall error rate between the Atzori and Hu feature sets, but a
significant difference in terms of the transition error rate, the Hu
feature set was considered the best performing state-of-the-art
feature set. The average error rates of the Hu feature set were
4.90 ± 0.25% and 16.89 ± 1.09% for overall and transitional
errors, respectively, on 80% of the MyPredict dataset.

3.4 Final Evaluation
Five feature sets were selected for the final evaluation on the test
sets: the remaining test set of the MyPredict dataset and the
ENABL3S dataset. The five feature sets were the best performing
state-of-the-art feature set (Hu), the feature set based on the best
run of the genetic algorithm for all modalities (GA-Opt) and for
each modality (GM-Opt), and the feature set constructed from
the occurrence of selected features by the genetic algorithm for all
modalities (GA-03) and per modality (GM-06). The error rates of
these features on the test set of theMyPredict dataset are shown in
Figure 5A, and the error rates on the ENABL3S dataset are shown
in Figure 5B. Looking at Figure 5A, it can be seen that the GM-
Opt feature set outperforms the Hu feature set (p � 0.048) in

terms of overall error. The average overall error rates were 4.14 ±
0.23%, 4.24 ± 0.24%, 4.12 ± 0.22%, 3.94 ± 0.21%, and 4.66 ± 0.31%
for GA-03, GA-Opt, GM-06, GM-Opt, and Hu, respectively. In
terms of transitional error, GM-06 outperforms GA-Opt (p �
0.018). The average transitional error rates were 15.22 ± 0.82,
16.44 ± 1.03%, 14.92 ± 1.00%, 16.31 ± 1.04%, and 17.36 ± 1.28 for
GA-03, GA-Opt, GM-06, GM-Opt, and Hu, respectively.

Looking at the error rates on the ENABL3S dataset in
Figure 5B, it can be seen that the GM-Opt feature set
outperforms the Hu feature set (p � 0.046) in terms of overall
error. The average overall error rates were 3.18 ± 1.16, 3.40 ± 1.11,
3.10 ± 1.12%, 3.00 ± 1.05%, and 3.48 ± 1.07 for GA-03, GA-Opt,
GM-06, GM-Opt, and Hu, respectively. The average error rates
were 9.53 ± 2.98%, 10.45 ± 2.97%, 9.47 ± 3.08%, 9.88 ± 3.08%, and
10.32 ± 2.97% for GA-03, GA-Opt, GM-06, GM-Opt, and Hu,
respectively.

4 DISCUSSION

In this work, we investigated the use of genetic algorithms to
construct optimized feature sets to be used in lower limb
prosthetic control. After ten runs of the genetic algorithm on
all modalities, two different optimized feature sets were
constructed, GA-Opt and GA-03. Next to that, the genetic
algorithm ran for 10 runs on each modality, and again, two
feature sets were constructed, GM-Opt and GM-06. These four
optimized feature sets were compared against the best performing
state-of-the-art feature set, the Hu feature set, on two different
datasets. All optimized feature sets outperformed the state-of-the-
art feature set on the MyPredict dataset, and most optimized
feature sets (except GA-Opt) outperformed state-of-the-art on
the ENABL3S dataset. We considered GM-06 as the best
performing feature set with the lowest transitional errors. GM-
06 reduced the overall error from 4.66 to 4.12% and transitional
error from 17.36 to 14.92% on the MyPredict dataset and reduced
the overall error from 3.48 to 3.10% and transitional error from
10.32 to 9.47% on the ENABL3S dataset. GM-06 relatively
decreased the overall error by 10.9–11.6% and transitional

FIGURE 5 | Average error rate (± SEM) of the selected feature sets on 20% of the MyPredict dataset (A) and on the ENABL3S dataset (B). A star indicates a
significant difference.
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error by 8.2–14.1% compared with state-of-the-art on both
datasets. Therefore, this study shows that feature selection
using a genetic algorithm reduces overall and transitional
errors, and it is worthwhile to use a genetic algorithm for
feature selection in lower limb myoelectric control.

The results of this study show that even though the feature
search space was greatly increased, the combined results of the
genetic algorithm still outperformed the state-of-the-art feature
sets. Other than the work by Phinyomark et al. (2017) or Qin and
Shi (2020), we decided not to investigate the individual impact of
each feature, as features combined may show added benefit in
terms of performance. In our case, we wanted to have the genetic
algorithm come up with a feature set, without looking into the
groups features could belong to, to not restrict the genetic
algorithm in its search. Compared to other studies involving
meta-heuristics, we implemented over sixty different features
which greatly increased the search space. For example, Luo
et al. (2017) used ten features as input to their genetic
algorithm, and Xi et al. (2018) used five features, which
indicates a smaller search space than that used in this study. It
can be concluded that the genetic algorithm is suited for feature
selection within a vast search space.

The overall error rate of GM-06, 3.10–4.12%, is comparable
with the results found in the literature. Spanias et al. (2018)
reached an overall error rate of 4.03% in eight transfemoral
amputees using a similar classification strategy to that in our
work using the Hu feature set. Liu et al. (2017) reached an overall
error rate of 4.2% in three able-bodied subjects and two
transfemoral amputees, using mechanical information only. Su
et al. (2019) used a convolutional neural network for classification
and reached an overall error rate of 5.85% in ten able-bodied
subjects. Halim et al. (2020) reached an average overall error of
6.0% using a random forest classifier on the ENABL3S dataset.
Hu et al. (2018b) reported an average error rate of 2.09 ± 0.27%
and 5.94 ± 0.84 for overall and transitional errors, respectively,
using an ipsilateral sensor setup. These error rates are lower than
the reported performance of the Hu feature set on the ENABL3S
dataset in this study, 3.48 ± 1.07% and 10.32 ± 2.97% for overall
and transitional error rates, respectively, although the same
dataset was used for evaluation. The authors used a random
10-fold cross validation, which could decrease the error rate. This
decrease is caused by steps that are close to each other in time and
could end up in the separate training and test sets. This could
cause the training and test sets to be more alike, which could in
turn result in a lower error rate. We decided not to shuffle our
data, to keep these steps close together, but this could have led to a
slightly higher error than that reported by Hu et al. (2018b).

Phinyomark et al. (2017) clustered features based on their
properties: features representing the amplitude and power of a
signal (e.g., RMS), non-linear complex features (e.g., sample
entropy), features representing frequency information (e.g.,
zero crossings, median frequency), time-series modeling (e.g.,
autoregressive coefficients), or unique features that capture a
combination of information types (e.g., time-domain power
spectral descriptors). The best performing optimized feature
set based on all modalities was GA-03. It can be seen that
most features for angular data are related to amplitude or

power, except for mDWT (frequency), VCF (unique feature),
and SampEn (non-linear complex). Acceleration features and
angular velocity features contain more different feature types,
although most of the selected features are related to amplitude
and power. Looking at the kinematic features in the Hu feature
set, we can see that all features fall in the amplitude and power
groups. This could indicate that amplitude- and power-related
features could be enough to represent kinematic data. When
looking at GM-06, where features were selected per modality, we
see something slightly different. Angle and angular velocity
features are mostly amplitude or power related as seen before.
Half of the features selected for acceleration are related to
amplitude or power; however, frequency (mDWT), non-linear
complex (ApEn, WAMP2), time-series modeling (SNR), and
unique features (CEA, OHM) are seen as well. This suggests
that acceleration feature sets could be improved by using features
from different feature groups as well.

The number of EMG features is limited in GA-03, but mostly
features related to the non-linear complex group are seen. Two
out of five features coming from the non-linear complex group
(WAMP2, KATZ) and one other feature are also related to
entropy (PSDFD). The EMG features in GM-06 are all from
the non-linear complex group, and most are based on entropy
(HG, SampEn, and ApEn). This corresponds to the findings
reported by Phinyomark et al. (2017), as they indicated that
SampEn would be the most useful feature for EMG if used by
itself. These findings support the idea that EMG is a non-linear
signal and could best be represented by non-linear features, such
as entropy-related features.

When looking at Table 3, it can be seen that relatively many
angular features were used, whereas the number of EMG
features was limited. This suggests that the data from
angular features and to a lesser extent the acceleration and
angular velocity features contain more useful information than
EMG features. The most selected angular feature was EndVal,
which selected eight out of ten runs. For EMG, it was WAMP2,
which selected only five out of ten times. One explanation is
that EMG features would be interchangeable due to the
stochastic nature of EMG, and thus, no EMG features had
as high occurrence as angular features. When looking at
Table 4 in combination with the fitness values per
modality, we can see something similar. Modality angle and
acceleration had the highest fitness values of 0.738 and 0.731,
respectively, indicating the highest performance. Joint angle
information could be captured with a limited amount of
features while reaching a high performance, whereas more
features were necessary for acceleration data. The angular
velocity needed many features as well, for a slightly worse
performance. EMG could be captured with a limited number of
features. However, EMG performed much worse than the
other three modalities. This indicates that EMG by itself
will not result in an optimal performance but still has some
added benefit as seen in the literature as well. Young et al.
(2014) showed that adding EMG decreased the transitional
error from 18 to 12%, although EMG by itself would result in
transitional errors of around 25%. Tkach and Hargrove (2013)
showed that adding EMG to mechanical sensor data reduces
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the overall mean error from 7.8 to 2.3%, but EMG by itself
results in overall errors of more than 30%. Spanias et al. (2015)
showed that adding EMG did reduce the transitional error by
approximately 3%, but adding additional mechanical sensor
information reduced the transitional error further by almost
6%, resulting in a transitional error of approximately 13%.
However, in clinical settings, the added effect of EMG can be
doubted according to Liu et al. (2017), due to the large
variability of EMG and susceptibility to movement and
varying conditions. Therefore, they decided not to measure
EMG at all and still reached low error rates of around 4.2% in
an amputee population. In another work, Spanias et al. (2018)
showed that the transitional error decreased by adding EMG to
the sensor setup when using the non-adaptive version of their
algorithm. However, no significant differences were seen in the
error rate between mechanical sensors only and the addition of
EMG when using their adaptive algorithm, although they
reached lower error rates compared with the non-adaptive
algorithm. This would indicate that a better classifier strategy
has more influence on the error rate than adding EMG
information. If we relate the findings in the literature to
those in our work, this would indicate that the reason for
an under-representation of EMG features is mostly due to the
limited information one could get from EMG.

Compared with other feature sets in the literature, the found
feature set is quite large and contains features with a high
computational load, such as entropy-based features. This
might impact the computational time and the computational
load of a prosthesis, possibly increasing the energy requirement
and introducing a delay. However, as microprocessors get more
energy efficient and more computationally powerful, we do not
expect the computational load to be a bottleneck. Next to this, the
energy requirement for torque generation is an order of
magnitude larger, and one could expect that a microprocessor
processing a large feature set does not have a large impact on the
energy consumption of a prosthetic device overall.

We decided to implement a genetic algorithm with one
addition, heterogeneity. Heterogeneity was implemented to
ensure that the population would not converge too quickly to
one solution. The downside of this approach is that the room for
potential better solutions could be limited by introducing random
solutions. However, when looking at Figure 2, it can be seen that
solutions quickly converge to the maximum fitness, and thus, the
difference between the median and maximum fitness is reduced.
By introducing random samples to the population, the population
became more diverse for a couple of generations and leading to
better solutions. After a couple of generations, the population
seems to converge again and the process starts over. This resulted
in the “spikes” which are visible in the image. Would we not have
implemented this strategy, the population would quickly
converge to a solution that would be possibly less optimal, and
by introducing random samples, the genetic algorithm is able to
search outside this local optimum.

In this study, we have focused on the genetic algorithm,
although many more meta-heuristics exist. It is important to
identify potential meta-heuristics that are suitable for feature
selection. A broad range of metaphor-based meta-heuristics can

be seen in the field, ranging from spotted hyena optimizers,
elephant herding optimizers, to super-bug algorithms and
raindrop algorithms. These “novel” optimizers are not novel at
all, but just adaptations of already existing meta-heuristics
(Sorensen et al., 2017). Hence, the decision to stick with a
known and often used meta-heuristic.

A limitation of our study compared with the aforementioned
studies is that our evaluation is performed on able-bodied
subjects, although application is aimed toward a population
with a gait impairment, such as amputees. Therefore, the
question arises whether these results can be translated toward
a population with gait impairments. Next to their evaluation on
able-bodied subjects, Hu et al. (2018b) implemented their
classification strategy in a prosthesis as well and showed that
similar performance can be reached in an amputee population.
Therefore, it can be expected that the classification strategy would
work equally well in a population with impairments. Another
limitation of our study is that we did not investigate the influence
of sensor selection on the error rate. One could expect based on
the literature that, by using sensor selection, the error rate could
be reduced even further, such as shown by Young et al. (2014), or
that the computational time can be reduced while not decreasing
the error rate as shown by Halim et al. (2020). Sensor selection
next to feature selection could be performed by a genetic
algorithm, but this would greatly increase the search space,
and thus, the question would arise again whether this search
space is not too large. However, results from our study encourage
finding the limitations of a genetic algorithm or other meta-
heuristics in terms of feature and sensor selection.

5 CONCLUSION

The goal of this study was to investigate the use of a genetic
algorithm for feature selection to enhance myoelectric control
of the lower limb. The optimized feature set GM-Opt and the
constructed feature set GA-03 and GM-06 both reduced error
rates compared with state-of-the-art feature sets on two
different databases. GM-06 outperformed the state-of-the-art
feature set by relatively reducing overall errors up to 11.6% and
transitional errors up to 14.1%, although these results were not
significant. This study shows the importance and potential of
feature selection in myoelectric control of the lower limb and
the suitability of a genetic algorithm to search a large
feature space.
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