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To fully understand the evolution of complex morphologies, analyses cannot stop at
selection: It is essential to investigate the roles and interactions of multiple processes that
drive evolutionary outcomes. The challenges of undertaking such analyses have affected
both evolutionary biologists and evolutionary roboticists, with their common interests in
complex morphologies. In this paper, we present analytical techniques from evolutionary
biology, selection gradient analysis and morphospace walks, and we demonstrate their
applicability to robot morphologies in analyses of three evolutionary mechanisms:
randomness (genetic mutation), development (an explicitly implemented genotype-to-
phenotype map), and selection. In particular, we applied these analytical techniques to
evolved populations of simulated biorobots—embodied robots designed specifically as
models of biological systems, for the testing of biological hypotheses—and we present a
variety of results, including analyses that do all of the following: illuminate different
evolutionary dynamics for different classes of morphological traits; illustrate how the
traits targeted by selection can vary based on the likelihood of random genetic
mutation; demonstrate that selection on two selected sets of morphological traits only
partially explains the variance in fitness in our biorobots; and suggest that biases in
developmental processes could partially explain evolutionary dynamics of morphology.
When combined, the complementary analytical approaches discussed in this paper can
enable insight into evolutionary processes beyond selection and thereby deepen our
understanding of the evolution of robotic morphologies.

Keywords: selection gradients, morphospace, evolution of morphology, development of morphology, evolutionary
robotics

1 INTRODUCTION

For evolutionary roboticists, grand challenges target finding original designs, closing the
reproduction loop in physical robots, and allowing for open-ended evolution of physical robots
in real environments (Eiben, 2014), which echo the grand challenge from organismal biologists to
integrate the analysis of physical and biological systems in order to understand complexity (Schwenk
et al., 2009). From this perspective, morphology matters for embodied robots in the same ways that it
matters for biological organisms: It permits and constrains individual behavior, and it shapes
properties of populations that matter for evolution (Hochner, 2013; Cappelle, et al., 2016). The
processes that underlie the evolution of complex morphologies are often themselves complex, for
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both biological organisms and evolved robots; a deep
understanding of evolved morphologies requires techniques to
analyze the relevant underlying processes—to answer questions
about what morphological forms occur over generational time,
and how and why they occur.

One standard technique is a straightforward accounting of
forms and traits—e.g., recording which morphological forms or
traits occur over generational time—but it alone cannot answer
all of the relevant questions. In this paper, we describe selection
gradient analysis and morphospace walk techniques from
evolutionary biology, to extend roboticists’ analytical toolkit
for investigating evolved morphology. To demonstrate these
techniques, we investigate the evolutionary dynamics of
populations of biorobots (Webb, 2001; Long, 2012),
i.e., robotic models of biological, organismal systems. The
biorobots in this paper (first described in Aaron and Long,
2021; Hawthorne-Madell et al., 2021) have bioinspired
genomic foundations that result in bioinspired morphologies,
and they are digitally simulated and embodied in the sense that
they operate according to physical rules, with fitness determined
by performance on a simple locomotion task: distance traveled in
an empty, flat, terrestrial environment.

In evolutionary robotics, change in a population’s maximum
fitness over time is commonly used as the first evidence for
adaptation by selection. In comparison, for biologists, the first
evidence of adaptation is often change in specific morphological
traits (Harvey and Purvis, 1991; Grant and Grant, 2006).
Reflecting the observation that traits are not independent
evolutionary entities but are genetically, developmentally, and
functionally correlated, multivariate methods were created to
regress fitness onto morphological traits, generating in a linear
model coefficients that serve as directional selection gradients
(Lande and Arnold, 1983). When normalized by variance or
mean values of the traits, these selection gradients can indicate
which morphological traits are targets of selection in any given
population and generation.

As previously shown in Roberts et al. (2014), selection
gradients may change dramatically over generational time,
suggesting complex evolutionary dynamics even in greatly
simplified biorobotic models. We significantly extend that
previous work by applying selection gradient techniques to
substantially more complicated biorobots and illustrating their
use alongside morphospace techniques. Ultimately, the
presentation of selection gradient analysis in this paper is
intended to serve two purposes: 1) to describe our specific
experimental results, which support conclusions similar to
those of Roberts et al. (2014); and 2) to illustrate its general
applicability to the evolved morphology of robots. Indeed, in
Roberts et al. (2014), analysis was on simple systems—with only 3
traits, 10 generations, and populations of size 18 (6 genotypes,
with 3 clones of each)—whereas selection gradient analysis in this
paper is applied to much more complicated data, requiring
additional quantitative tools to handle the large data set,
thousands of generations, and complex model selection. Our
populations of biorobots demonstrate rich, complex evolutionary
dynamics, with different traits becoming most targeted by

selection in different generations, but with selection not fully
accounting for the resulting morphological change.

Selection, in that sense, is not enough. Driver mechanisms
other than selection contribute to evolved morphologies (Roberts
et al., 2014), and in this paper we also present and discuss
morphospace analysis and morphospace walk (MW)
techniques as complementary to selection gradient (SG)
analyses. A morphospace is an n-dimensional hypervolume
with each dimension defined by a trait selected by the
investigator, and it is often used in biology to understand the
diversity of evolved body forms (Raup, 1966; McGhee, 2007;
Claverie and Wainwright, 2014). We focus on morphospace as a
geometric space that differentiates morphologies by their position
in that space; for example, with segmented and branching robot
bodies, morphologies could be distinguished by how many
segments and branches occur in each. With this focus on
phenotype rather than fitness or genotype, we can map
“evolutionary walks” of populations through a morphospace
by tracking means or medians of values (e.g., number of
branches or segments in an individual) over generational time;
each step in an evolutionary walk corresponds to a generation,
reflecting generational changes within the morphospace
dimensions. Using random morphospace walk (RMW) analysis,
in which each step in a walk is generated by simple, fully
probabilistic processes—in contrast to steps in evolutionary
walks, which are based on observed evolutionary data—we
compare our evolutionary walks to random walks in the same
morphospace, exploring hypotheses about how possible biases in
driver mechanisms might be reflected in the evolutionary
dynamics of our biorobots. As a methodological note,
morphospace analysis as we employ it thus acknowledges the
importance of explicitly including development in
analysis—morphological development can be a key feature in
evolution (Kriegman et al., 2018; Salazar-Ciudad, 2021). In this
paper, morphospace analyses serve two purposes: 1) presenting a
specific experimental case study suggesting that biases in
development can influence and partially explain morphological
evolution in cases where selection does not fully account for
observed morphological trends; and 2) illustrating in general how
morphospace walk techniques can be broadly applied to analyze
morphologies of robot populations.

With the added control provided by computational methods,
biorobots allow investigations of components of evolutionary
systems that biologists often lack in toto—e.g., the genome, the
rules of development, the rate of mutation, and the precise actions
of selection—to illuminate elements that can otherwise remain
implicit or extricate effects that can otherwise remain conjoined.
Along with that capacity comes a need for caution, however, to
avoid the possible experimenter bias that can accompany a
detailed knowledge of the internal representations. Because
biologists do not have that window into natural, living
organisms, the selection gradient and morphospace walk
methods in this paper rely only on externally observable traits
and properties; this is consistent with some other morphological
analysis of evolved robots (e.g., species determination in Medvet
et al., 2021), but it reflects a complementary perspective to
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analytical approaches founded in knowledge of underlying
genetic encodings (e.g., Miras, 2021).

Indeed, these techniques—1) straightforward accounting of
morphological traits and forms, 2) selection gradient analysis,
and 3) morphospace analysis—are fundamentally grounded in
observed robotic (or organismal) behavior and morphological
traits; taken together, they provide a foundation for illuminating
the integrated effects of evolutionary mechanisms underlying
evolved morphologies, applicable to robot systems even
without experimenter knowledge of the underlying
computational models and algorithmic details. To our
knowledge, the selection gradient techniques in this paper are
substantially more sophisticated than any previous application of
selection gradients to robotics, the morphospace walk techniques
spotlighted in this paper have not previously been applied to
robotics, and biased randommorphospace walks are novel to this
paper. Below, we describe these techniques in more detail and
present results of their application to our populations of
biorobots.

2 OVERVIEW OF THE TECHNIQUES

The three techniques presented in this paper may be used
separately or in combination with each other. In this paper,
we focus on a case that illustrates their combined usage, but the
purposes of each component technique, and their roles in
understanding evolutionary dynamics, remain the same
whether applied in isolation or combination.

• Straightforward accounting: The standard way to record
and illuminate what occurs in the evolution of a
population. It is included here not for its novelty, but
because it is generally useful, and it is used here to provide
foundations for other analytical methods. In this paper, its
uses include recording fitness values, occurrences of
morphological forms, relative prevalence of
morphological traits, and how they all vary over
generational time.

• Selection gradient analysis: Indicates which morphological
traits are targeted by selection over generational time, and to
what extent they are targeted. Investigators first determine a
set of traits to be considered, and analysis is performed with
respect to those traits.

The shortcoming of analyzing each trait as if it were
independent—which can commonly occur with
straightforward accounting (as in our analysis in Section 4.2),
but which is not the case in any integrated agent—can be
overcome by analyzing all traits at the same time; covariance
among traits can be measured, and models of different subsets of
variables can be selected and compared. In each population and
generation, the direct impact of selection on all traits can be
analyzed using multiple linear regression, regressing fitness onto
traits of interest, yielding coefficients for each trait, standardized
by trait variance or mean (see Hereford et al., 2004). These
coefficients, called selection gradients, partition the effect of

directional selection acting on behavior into its impact on
separate morphological traits considered simultaneously
(Lande and Arnold, 1983).

In this paper, we consider sets ofmechanical and sensorimotor
traits of our biorobots (see Section 4.2), and selection gradient
analysis demonstrates the relative importance to selection of each
set, as well as the relative importance of individual components of
each set. It further enables the statistical determination of how
much of the variance in fitness is explained by each set of traits.
The determination that selection does not fully explain variance
in fitness motivates the further investigation using morphospace
techniques, and the indication of the importance of one particular
trait (see below) guides the focus of our attention in our
morphospace analysis.

• Morphospace analysis: Projects information about the
occurrence of morphological forms and traits onto an
n-dimensional space, to illuminate and focus the effects
of morphology along those dimensions. In this paper,
with our segmented and branching biorobots that are
selected for reproduction based on locomotion
performance, we focus on the 2-dimensional
morphospace with axes of branches (b) and segments
(s). In this morphospace, we record which forms occurred
in the evolution of our biorobots, to begin to understand
the limits of evolutionary dynamics along these
dimensions. We further represent evolutionary
dynamics using evolutionary walks in morphospace, to
represent how populations varied from generation to
generation along these dimensions, and we compare
evolutionary walks to random morphospace walks,
enabling the investigation of how biases, such as those
that could be implicit in development, might affect
evolutionary dynamics.

As one specific example of the conjoined application of these
techniques to the biorobots in this paper: straightforward
accounting determines that the change in the branch-to-
segment ratio b

s slows after a certain point in generational time;
selection gradient analysis indicates that ratio is an especially
important target of selection, though much of the variance in
fitness of our populations is not explained by selection on
mechanical morphological traits; and morphospace analysis
shows that a possible developmental bias is consistent with the
observed evolutionary change in this ratio over the generations
before the change in b

s slows but not over generations after it slows,
suggesting a role of development in explaining the fitness in
variance that selection does not.

Foundational to these techniques is the atomization of the
robots into component traits, which serve as foundations for
analysis (e.g., the axes of morphospace, the variables over which
regressions are performed). As expected, different choices would
yield different results, but once those key choices are made, these
techniques can be applied broadly. For example, we do not in this
paper explore differences among encoding schemes (cf. Miras
et al., 2018; Veenstra and Glette, 2020; Miras, 2021),
environments (cf. Auerbach and Bongard, 2014),
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morphological descriptors (cf. Miras et al., 2018), diversity
metrics (cf. Samuelsen and Glette, 2014), developmental
processes (e.g., Joachimczak et al., 2014), or forms of
reconfigurable robots (e.g., Kriegman et al., 2018; Medvet
et al., 2021; Talamini et al., 2021), but as long as investigators

identify traits and values to record, fitness metric and
morphospace axes to employ, biases to investigate, etc., these
analytical techniques can be applied broadly.

This paper investigates only robots with a particular bioinspired
genome and development process, but our example is intended to

FIGURE 1 |Morphological diversity of evolved biorobots in the segment-branch morphospace. These biorobots were chosen to highlight the range of mechanical
morphologies that were evolved and to show the indeterminate relation that sometimes exists between morphology and fitness. While two robots both have two
segments and one branch (A, B), Robot A fails to move (lack of a motorized joint; fitness, w � 0), while Robot B moves by flexing the joint (not shown) between the
spheres, rotating, and bouncing away (w � 360). Robot (C) is elongated, with a single branch and multiple segments (w � 132). Intermediate in form between
elongated and dendroidal body architectures are Robots (D) (w � 70) and (E) (w � 11). Dendroidal forms, with almost as many branches and segments, are shown by
Robots (F) (w � 39), (G) (w � 4), and (H) (w � 172). Spherical segments are distorted in some views because of the wide-angle effect of the camera view. Videos of
each robot may be found in the supplemental materials. All biorobots were selected from the experimental treatment of 0.0035 mutation rate.
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illustrate broad applicability of these techniques, not to delimit their
applicability—investigations into other components, dimensions, or
evolutionary dynamics could also be supported by the three
approaches highlighted here. In the sections that follow, we
describe in more detail the biorobots used in our exploratory
study, along with our experiments and analyses that apply these
three techniques.

3 METHODS: BIOROBOTS

The foundations of our work are simulated biorobots with
bioinspired genomes, developmental processes, and

morphological traits. Below, we briefly describe details of our
robots that are most immediately relevant for this paper; for
additional details about the robots and our Embodied
Computational Evolution framework, see Aaron and Long
(2021), Hawthorne-Madell et al. (2021).

3.1 Biorobots
The biorobots are constructed of spherical segments connected by
joints to each other, both in series and in parallel branches. The
size, number, and relative orientation of segments can vary. In the
populations evolved in our study, biorobots had as few as two and
as many as 16 segments (Figure 1), with segments arranged in as
few as one and as many as 12 branches.

FIGURE 2 | Development of the biorobot’s segmented and branched body. (A) Every biorobot is built from 3D spherical segments (represented as circles here)
connected by joints that attach to mounts. Sensorimotor morphologies—sensors, wires, and neurons—are not shown. During development, each segment is added to
the next in order in which it finished development (numbers in circles). The length of a branch is the segments added to the base segment to form the branch. (B) Rules of
segment-branch development in pseudocode. A branch elongates (see branch 1) until the newly added segment runs out of resources, such as open joint mounts
(segment 3). Then the algorithm checks for resources starting back at segment 1, until a mount and a joint are found to form a new branch. Elongation is favored by
occurring before branching in the algorithm. Elongation and branching continue until segments, open mounts, or joints are depleted, at which time development
proceeds to add touch sensors, neurons, and wires to each segment in the order of their segmental development (not pictured).
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Each segment may have a variable number of external mounts
for touch sensors and joints (Figure 2A), as well as a variable
number of neurons located internally. Joints are hinges that may
be one of three possible kinds: 1) motorized, with a single angular
degree of freedom with a given frequency and amplitude; 2) free
to move but lacking a motor; or 3) lacking both a motor and the
ability to change angle. Touch sensors may be mounted anywhere
on the surface of a segment; they are activated when in contact
with the ground or another segment. The activation from a touch
sensor may be transmitted to a motor via a complete
sensorimotor circuit in two ways: 1) a wire connects it directly
to the motor; or 2) a wire connects it to a neuron (group) that is
connected to the motor. In addition to wires connecting sensors
to motors or neurons, wires can connect neurons to each other,
and wires are not necessarily perfect conductors of signal—the
weight that a wire applies to the signal it carries is determined by
regulatory elements in the developmental process (see
Hawthorne-Madell et al., 2021, which also contains many
other details of the biorobots, beyond the scope needed for
this paper). The five types of parts noted here—segments,
joints, sensors, wires, neurons—provide the full composition of
the robots (see Figure 3 in Hawthorne-Madell et al., 2021).

Locomotion is initiated when touch sensors are activated by a
biorobot’s contact with the ground or with itself; a signal is then
sent to a motorized joint that reconfigures the body on either side
of the joint. This reconfiguration can cause new contact points
and stimulate other sensorimotor circuits, thus continuing the
process for locomotion.

Each of our biorobots can be described as having two types of
morphology: 1) mechanical morphology, with segments and
branches that transfer physical momentum; and 2) sensorimotor
morphology, with sensors, neurons, wires, and circuits that connect
sensors to motors. This dichotomy roughly corresponds to concepts
of “external” and “internal” morphology, with a functional
distinction that is commonly categorized as “body” and
“controller” in robotics (although these “controllers,” as described
above, are extremely simple compared to many others in robotics).

3.2 Genetics
Each biorobot has a continuous, single-stranded genome of fixed
length, 16 kb (kilobases), the size of some RNA viruses (Lynch,
2010). Like the biological genome, the bases are quaternary digits;
when contained within a gene, they are read and expressed as
triplet codons. A total of 64 different codons are possible, and
some are redundant at the third base (for example, 000 and 001
both code for a segment). We give a brief overview of the genetic
encoding here, containing only details necessary for the
applications and results in this paper; for complete details, see
Hawthorne-Madell et al. (2021).

Each gene codes for one of the five types of parts mentioned
in Section 3.1: segment, joint, sensor, wire, neuron. Only one
part per gene is expressed during development, and other
sections of the gene express codons that regulate
development by controlling the features of parts (e.g., the
type of joint) and the duration of processes that determine
properties such as the final sizes of segments and the positions
and numbers of mounts for the parts. Each gene is defined by a

start and stop codon; since those codons may be altered by
mutation, the number and length of genes may evolve. During
replication of the genome during reproduction, each base pair
has a probability of randomly mutating, ranging from 0 to
0.005 in increments of 0.0005.

3.3 Development
Development is the genotype-to-phenotype mapping process,
assembling parts into a finished agent. The full developmental
process is explained in detail elsewhere (Hawthorne-Madell et al.,
2021), along with its relation to the genome; we provide a brief
overview here, containing details relevant for the applications and
results in this paper.

An algorithm reads the genome and creates a pool of parts
according to rules about how to translate genes into the five
component types. The parts in the pool are retrieved for assembly
in the order in which they completed development. Assembly
begins by building the main body, connecting segments with
joints; at completion, this process has formed one or more
branches (Figure 2). The process then proceeds as a series of
steps conditional on available resources of segments, joint mounts
on segments, and joints. Segments are added in series, elongating
the initial branch when possible, with each newly added segment
becoming the active point for the next step; once segments are
added, they cannot be moved or destroyed later in the process, a
biorealistic constraint that we refer to as “irreversibility” (see
Figure 2B). If the active segment lacks an available joint mount in
the presence of a new segment and new joint, the process switches
from elongation to branching; this is the only context in which a
new branch may be formed. Proceeding from the original
segment in order of connection, the algorithm looks for an
available mount. The first available mount receives the new
joint and segment, creating a new branch. This new branch is
then elongated until branching is required. Elongation and
branching swap in that order until one of these conditions
terminates this body building: 1) no unattached segments
remain; 2) no joints remain; or 3) no open joint mounts
remain. This developmental process may build a wide variety
of whole-body morphologies. Extreme instances would be purely
dendroidal forms—we use the term dendroidal to describe highly
branched configurations; purely dendroidal forms are those that
branch with every additional segment and never elongate—or
purely elongated forms that never branch; intermediate forms are
also possible.

4 METHODS: EXPERIMENTS AND
ANALYSIS

In this section, we first describe the evolutionary experiments
done with our biorobots (Hawthorne-Madell et al., 2021), which
generated the morphological data to be analyzed using
straightforward accounting, selection gradient analysis, and
morphospace walk techniques. Then, we describe the specific
steps taken to apply each analytical technique, illustrating the
general applicability of the techniques with their application to
our study.
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4.1 Evolutionary Experiments
Nine randomly generated populations of 60 biorobots were
created; each population serves as an independent replicate in
a statistical sense. Each population was subjected to 99 rounds of
selection, mutation, and reproduction (including development),
creating a total of 100 generations in a given run. Each population
was tested at 11 different rates of mutation, starting from the
exact same configuration each time in generation 0, creating a
total of 66,000 individuals per population, for 594,000 overall.

Each individual was digitally instantiated in a physics engine
(https://bulletphysics.org; v2.82) simulating an empty, flat,
terrestrial world. (Additional details about the computing
environment, which might be needed for strict replicability,
are available upon request.) In each selection trial, each
individual was given 501 timesteps of uniform duration
(i.e., 501 iterations in a simulation loop) in which to move;
each robot starts with its lowest point 0.1 units above the
ground (to avoid “cheating” that can occur in simulations with
physics engines; see Lehman et al., 2020), and the resulting small
drop to the ground initiates its motion. The fitness metric was the
distance moved: the linear distance from its starting point to
wherever it ended up, measured in the horizontal plane.

The fitness values were used to apply truncation selection to
populations. The 30 individuals with the highest fitness
values—i.e., greatest distances locomoted—reproduced
asexually, with offspring replacing the parents in the
succeeding generation: the three highest-ranked robots each
made four offspring, robots ranked 4–9 each made three
offspring, robots ranked 10–18 each made two offspring, and
robots ranked 19–30 each made one offspring; these offspring
fully comprise a new population of 60 individuals, maintaining
the same population size as in previous generations. Mutation
was applied at one of the 11 rates during replication of the parent
genome. Other than mutation, there was no randomness in
reproduction or development, so a mutation rate of 0 meant
that parents cloned themselves, reducing population variation
with each generation.

4.2 Straightforward Accounting: Fitness and
Separate Traits
Among the typical ways to understand how populations respond
to selection is to measure changes in fitness over generational
time. It is also useful to separately record and examine how each
morphological trait changes over generational time, to construct a
first approximation of which traits correlate positively or
negatively with fitness.

In the experiments described in this paper, we measured the
fitness of each of our biorobots by a behavioral measure, distance
locomoted. At each level of mutation, locally weighted regressions
(LOESS curves, from geom_smooth, R v.4.0.3, with span of 0.75,
window of 80 points, and y ∼ x) describe the smoothed mean
and 95% confidence interval of populations’ mean fitness over
time; LOESS is a non-parametric polynomial regression method
that fits models robustly to a running window of the data
(Irizarry, 2019). This standard analysis can detect and visualize
differences between experimental conditions. Complementary

information is provided by analyzing minimum, median, and
maximum fitness values of populations, which can differentiate
population-level evolutionary responses; median fitness is an
especially important factor in the example in this paper,
because truncation selects the highest half of the population to
reproduce.

We also recorded the quantities of 12 morphological traits that
occurred in our biorobots. Of the 12 traits, 4 were mechanical
morphological traits (Figure 2A): quantity of segments s;
quantity of branches b; ratio of branches per segment b

s; and
average branch length,where the length of a branch is the number
of segments added to the base segment to form the branch, as
shown in Figure 2. (Symbols are introduced here only for traits
that later appear in our morphospace analysis.) The other 8 traits
considered were sensorimotor morphological traits: quantity of
sensors, quantity of wires, quantity of neurons, quantity of
circuits, and then the ratios of those four traits per segment.
For the analyses presented here, each trait was pooled across
populations, separated by level of mutation, and plotted over
generational time.

In general—in our analyses and elsewhere—when an agent
is atomized into components for an analysis of this type, an
implicit assumption is that those components may evolve
independently from each other. That assumption ignores
the integrated nature of the locomotor behavior that is the
basis of fitness for our biorobots, but nonetheless, the patterns
of separate trait evolution are important correlates to help
begin to understand how the selection of individuals impacts
the evolution of populations.

4.3 Selection Gradient Analysis: Targets of
Selection
To apply selection gradient (SG) analysis to our biorobot
populations, our first round of modeling addressed which
morphological traits are targets of selection acting on
behavior, and whether those targets change over generational
time or with different mutation rates. In each population,
generation, and level of mutation, individual fitness was
regressed against the 12 morphological traits described in
Section 4.2 above: 4 mechanical morphological traits, and 8
sensorimotor morphological traits. Stepwise linear regression
with Akaike Information Criterion (AIC) for model selection
was run (R v.4.0.3) on 9,000 populations (9 replicates, 10
mutation rates, 100 generations); the mutation rate of 0 was
not run since clones eliminate the variance needed for regression.
The stepwise regression (mixed forward and backward) with AIC
was configured to compare all possible models of the set of traits;
the best model was the subset with the lowest AIC value, a balance
between the goodness of fit and the simplicity of the model. The
best model for each population, generation, and mutation level
provided the raw regression coefficients of the selected traits;
coefficients β were calculated by normalizing the raw coefficients
by the mean of the traits (Hereford et al., 2004).

Our second round of selection gradient modeling focused on
the types of morphological traits identified above—the
mechanical and the sensorimotor—and addressed a different
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question: Which type explains more of the variance in individual
fitness? In each population, generation, and level of mutation,
individual fitness was regressed separately against two sets of
morphological traits, mechanical (4 traits) and sensorimotor (8
traits). Multivariate models were compared using coefficient of
determination R2, to compare the explanatory value of the full
mechanical and sensorimotor models, without distinguishing the
contribution of each component variable to the significance of the
model (as was done in the first round of SG analysis).

4.4 Morphospace Walks: Randomness,
Development, and Evolution
In general, when applying morphospace techniques, investigators
must choose the morphospace axes—the dimensions along which
populations will be analyzed (McGhee, 2007). For the
morphospace analysis and morphospace walk (MW)
techniques in this paper, we analyze our biorobots’ evolved
morphologies on two dimensions (Figure 3): number of
segments in individual robots (s); and number of branches in
individual robots (b). These dimensions were chosen because
they permit insights into morphology at the level of whole-
body architecture, including elongated or dendroidal forms
(see Section 3.3), and being mechanical morphological traits,
they are thought to be tightly connected to the locomotor
performance targeted by selection. Although straightforward
accounting can show what forms occur at different points in

generational time or under different experimental conditions
(here, mutation rate), MW techniques enable explorations of
the roles and comparative impacts of randomness,
developmental bias, or selection on the resulting forms.

In our analyses, we use MW models and randomized
morphospace walk (RMW) techniques to serve three purposes:
1) to show the adaptive trajectory of evolution through the s-b
morphospace; 2) to contrast random walks with the evolved
movement of populations in the s-b morphospace, to help
illustrate the directional effects of selection by comparison to
an unbiased random trajectory; and 3) to compare biased random
walks with unbiased random walks and the evolved movement of
populations in the s-bmorphospace, to investigate the effects of a
possible developmental bias (the irreversibility bias, see below).

To further connect developmental trajectories of
individuals—based either on hypothesized developmental
biases or on observed evolutionary data—to the possible
evolutionary moves of a population in morphospace, we make
a number of simplifying assumptions. First, we note that in our
system, evolution proceeds by asexual reproduction. If an asexual
parent produces an offspring with an identical genome, then that
offspring would occupy the same position in the morphospace.
Thus, offspring inherit their developmental trajectory in (s-b)
morphospace from their parents, and moves over generational
time are constrained by what is possible developmentally. With
this foundation for relating development to evolution, we can
build an RMWmodel in which a single point represents either an

FIGURE 3 | Morphospace: limits and morphological configurations. Because they represent important aspects of the overall morphological configuration (see
Figure 1) and development (see Figure 2) of the biorobots, the quantity of segments s and branches b were chosen as the dimensions in this 2D morphospace. This
morphospace has limits imposed by development. The upper boundary (gray diagonal) is determined by the developmental rule that one branch has a minimum of two
segments, hence s> b. The lower boundary (horizontal gray line at b � 1) is determined by the developmental rule that elongation may proceed on a single branch
until resources are depleted and the agent’s development is complete. Note that the right-hand side of the morphospace has no limit as figured here, with forms of s>20
and b> 20 possible.
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individual during development or a median value of a population.
Note that our simple RMWmodels are substantial abstractions of
the underlying evolutionary processes, lacking any explicit
reference to the genome or developmental rules.

The s-b morphospace (Figure 3) is asymmetric, due to two
limits beyond which body forms are impossible. The lower limit is
b � 1, since by design any working robot must have at least one
branch connecting two segments; this limit represents an extreme
of elongated forms. The upper limit is b � s − 1, representing the
constraint that the robot must have at least one branch less than
the number of segments; this limit represents an extreme of
dendroidal forms. The two limits intersect at (2, 1), which
represents the simplest possible robot. Note that within these
boundaries, there is no upper limit to s or b.

In general, the details of RMW models are determined by
experimenters, including boundary conditions, starting points of
walks, and what steps are permitted in a walk. (In the text that
follows, we let db stand for the change in b and ds stand for the
change in s.) In this paper, for simplicity, we restrict db and ds to
be −1, 0, or 1 in each step; we handle boundary conditions by
treating a call for a robot to move outside of morphospace
boundaries as a null step in the relevant dimension(s)—the
robot maintains its current value of s or b (or both) until the
next step in the walk. In total, we consider five different RMWs in
our experiments, described here:

• Fully random (unbiased) walk: At each step, there are nine
equiprobable moves—db and ds are −1, 0, or 1, computed
independently.

• Irreversibility bias (s-first) walk: Intended to represent a
potential developmental bias that if development leads to
an individual with (s, b) segments and branches,
continuing that developmental trajectory could not add
a branch without also adding a segment—i.e., the
previous configuration of branches cannot be
reconfigured later in development. The reasoning
stems from the fact that an asexually reproduced
offspring must develop on the same pathway as the
parent (same numbers of s and b), and ds � 1
represents extending that pathway, possibly (but not
necessarily) enabling a new branch, while ds � −1
indicates truncating that pathway, possibly (but not
necessarily) preventing a branch from forming;
similarly, a change in b is forbidden when ds � 0. So, a
step in this walk proceeds by first determining whether ds
is −1, 0, or 1 (equiprobable); if ds ≠ 0, we model as
equiprobable whether db � 0 or db � ds. This results in
five possible (ds, db) steps—(0, 0), (1, 0), (1, 1), (−1, 0,),
or (−1,−1)—which may in principle be altered by
boundary conditions as described above.

• b-first walk: Similar to the irreversibility bias walk except
with the roles of s and b inverted, representing the
possible developmental bias that developmental
pathways only result in adding segments when
branches are added. (We investigators felt this was less
developmentally plausible than the irreversibility bias,
but we included it as part of the exploration in this

exploratory study.) A step in this walk proceeds by
first determining whether db is −1, 0, or 1
(equiprobable); if db ≠ 0, we model as equiprobable
whether ds � 0 or ds � db. This results in five possible
(ds, db) steps—(0, 0), (0, 1), (1, 1), (0,−1), or
(−1,−1)— which may in principle be altered by
boundary conditions as described above.

• s-first, no upper boundary walk: To explore the role of
constraints imposed by the b � s − 1 boundary, we also ran
the irreversibility bias walk without restricting b to be at
most s − 1. Other than this change in the effect of boundary
conditions, the walk is identical to the irreversibility
bias walk.

• b-first, no upper boundary walk: Similarly, we ran the
b-first walk without restricting b to be at most s − 1. Other
than this change in the effect of boundary conditions, the
walk is identical to the b-first walk.

All of our RMW analyses were run in R, with all walks started
at the same position, (s, b) � (5, 3), the grand mean of the
starting values for all nine populations of biorobots. Each step
in a random walk is represented by a single (s, b) value; in the
comparative evolutionary walks in our experiments, each step
showed the median of a population of 60. To enable comparisons,
the same random seed was used for an unbiased walk as for a
biased walk to which it was compared. To enable comparison to
evolutionary walks, both biased and unbiased RMWs were run
for the same number of steps as there were generations of
evolution; the final positions, at the last generation or final
iteration, were compared. Dimensions b and s, and their ratio
b
s, were each analyzed separately with a Kruskal-Wallis test,
followed by a Wilcoxon’s test for each pairwise comparison,
with Bonferroni correction for multiple test, alpha level 0.05.

Biased RMWmodels can help provide insight into the impact
of biases on evolution, isolated from other possible biases. By
comparing data from these biased walks to other walks, we can
explore impacts of these biases in contrast to a null model (an
unbiased walk) and experimentally observed evolutionary
dynamics (the evolutionary walks).

5 RESULTS

The evolution of nine populations of 60 individuals under 11
different mutation rates over 100 generations yielded 594,000
individuals of variable morphologies and fitnesses (see Figure 1
and Supplementary Videos). The resulting evolution of
morphology is varied and complex. Unless otherwise
indicated, all lines plotted in figures are LOESS curves,
representing the local conditional mean, with a 95%
confidence interval envelope.

5.1 Straightforward Accounting: Fitness and
Separate Traits
When populations are subjected to selection for improved
locomotion, mean fitnesses rapidly increase from their
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randomly generated starting conditions at generation 0 to
generation nine; this occurs for every rate of mutation μ
(Figure 4A). From generations 9 to 42, the rate of change in
fitness drops. By generations 72 to 99, fitness in populations in
some of the μ conditions has plateaued. Because populations
without mutation evolve by simple cloning, the minimum fitness
of individuals in those populations is higher compared to
populations where novel variants are being generated in each
reproductive cycle; the presence of individuals at or near zero
fitness in every generation shows that mutation can disrupt

adapted but brittle asexual genomes (Figure 4B). In spite of
these genomic disruptions, as was the case with mean fitness, the
populations’ median fitness increases and plateaus (Figure 4C).
With mutation generating variation, the maximum fitness of
individuals increases at a linear pace for all 100 generations
(Figure 4D). Each of the nine populations undergoes
evolution under 11 different rates of mutation from 0 to 0.005
in 0.0005 increments; note that the condition for the best
overall population fitness (μ � 0.0005, see Figures 4A,C)
does not produce the best individuals (μ � 0.0035, in 4D).

FIGURE 4 | Adaptive evolution. (A)Mean fitness. No matter the rate of mutation, populations increase their mean fitness rapidly from generation 0 to 9 in a primary
burst. The dashed vertical lines indicate transitional and representative generations that will be sampled in detail to examine the influences of development and selection.
Points are means, pooled across populations (n � 9). Lines are fourth-order polynomial fits, with gray shading representing the local 95% confidence interval. (B) The
minimum individual fitness is low in every generation except when mutation is absent (violet line), indicating that mutation in asexual lineages disrupts the genomes
of at least some of the adapted morphologies. (C) Median individual fitness marks the point of truncation for the selection algorithm. (D) In contrast to the populations’
mean (A), minimum (B), and median (C), the maximal fitness of individuals increases steadily when mutation is present. For (B–D), the lines are locally-weighted
regressions (LOESS) representing the mean of that measure, pooled across populations, with gray shading representing the local 95% confidence interval (n � 540).
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Fitness, however, does not immediately reveal the entire
morphological story: When morphological traits are each
analyzed independently, the patterns (Figure 5) do not map

consistently onto fitness patterns (Figure 4). Consider, for
example, the changes in values of traits over the first 24
generations, which show variation across different rates of

FIGURE 5 | Evolution of morphology as separate traits. The quantity of segments, the quantity of branches, and the ratio of branches to segments (top row)
change dramatically in the first 24 generations, stabilizing in most conditions by generation 42. In contrast, the sensorimotor morphologies, beginning with the neurons,
are more variable over time and between conditions. Lines are means with gray 95% confidence intervals.
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FIGURE 6 | Selection gradient analysis: morphological targets. The subset of significant mean-standardized directional selection gradients chosen by AIC from all
12 traits are shown by population (different shades). The mutation condition μ � 0.0005 is shown here because it evolves the populations with the highest mean fitness
(see Figure 4); we see similar trends at other non-zero levels of mutation.
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mutation. There is a consistent pattern of increasing values at low
μ and decreasing values at high μ among the s, b, and b

s traits of
mechanical morphologies (top row, Figure 5); by comparison,
the patterns are highly variable for the traits of sensorimotor
morphologies over both mutation rate and generation. In

addition, there is no apparent correlation between these
morphological trait patterns and the fitness patterns
(Figure 4) over the first 24 generations. This variation across
traits and experimental conditions is intriguing, and it shows the
challenge of interpreting the evolution of morphology piece by

FIGURE 7 | Selection gradient analysis: switching morphological targets. A median of one mechanical (A) and one sensorimotor (B) morphology is targeted by
selection at each level of mutation. The occurrence of the different mechanical morphological traits (C) diverges as the rate of mutation increases, with b

s increasing to
nearly 40% while the occurrence of the other traits decreases. This pattern is absent in the occurrence of the different sensorimotor traits. Each mutation rate contains
900 models (A, B), with a single point summarizing the rate of occurrence for a given trait (C, D).
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piece—and, thus, the importance of methods for addressing this
challenge, such as selection gradient analysis.

5.2 Selection Gradients: Morphological
Targets
In the context of selection and its targets, correlations among
traits are assessed by multivariate models that regress individual
fitness onto all 12 morphological traits simultaneously. For μ of
0.0005, selected as an example because it was the rate that
produced populations with the greatest mean fitness (see
Figure 4), the mean-standardized selection gradients β have
larger magnitudes, positive or negative, for the traits of
mechanical morphology than for those of sensorimotor
morphology (Figure 6).

Further analysis of the traits targeted by selection shows a
number of interesting patterns (Figure 7). Even though there are
only 4 mechanical traits, compared to 8 sensorimotor traits, a
median of one of each type is represented in each model,
independent of the level of mutation (Figures 7A,B). Note
that the distributions of the two types differ: In all but the two
lowest levels of mutation, mechanical traits have interquartile
range between 0 and 1, and sensorimotor traits have interquartile
range between 1 and 2. Each of the 12 traits occurs in at least 10%
of the models (Figures 7C,D). As levels of mutation increase, the
occurrence of the ratio of branches to segments, b

s, increases
dramatically to nearly 40% of the models, even as other
mechanical morphologies decrease and as sensorimotor
morphologies are relatively stable. This indicates that b

s is the
trait most often targeted by selection.

Complementary to the AIC-stepwise approach, in which
different subsets of variables are selected in each model, linear
regression models that force inclusion of the full mechanical and
sensorimotor data sets represent the upper limit for morphology
explaining the variance in fitness in a linear model (Figure 8).
Keeping in mind that these two sets of models are not statistically
independent, since they are part of the same data set, the
coefficients of determination (R2 value) show that these sets of
mechanical and sensorimotor traits explain a mean of 20 and 24%
of the variance in fitness, respectively. Note also that analyzing
different sets of traits (e.g., the descriptors in Miras et al., 2018)
could of course yield different results, but our traits enable
analysis regarding all of the kinds of parts coded by our
robots’ genomes (see Section 3.1), as well as a measure of
how relatively elongated or highly branched a form is (bs) and
other ratios to normalize quantities by the number of body
segments in a morphological form.

This selection gradient analysis thus demonstrates that
directional selection on these traits only accounts for a
portion of the change in fitness over generational time.
Some of the remaining variance may be correlated with non-
linear (i.e., non-directional) selection, either disruptive or
stabilizing selection (Blows and Brooks, 2003). These
nonlinear selection effects are detected with quadratic terms,
and are of small effect, relative to directional selection, in
natural systems (Kingsolver et al., 2001). Unlike when
studying natural systems, with biorobotic evolution we know
the selection pressure; since it was directional (“linear”) here,
we only looked for those effects. Also, this decision to use linear
gradients minimizes concerns about over-fitting and

FIGURE 8 | Selection gradient analysis: morphology explains only part of the variance in fitness. Two multivariate regression models were run on each population
(see equations, above) at each level of mutation and each generation: (A) the full set of four mechanical morphologies and (B) the full set of the eight sensorimotor
variables. The four mechanical morphologies explain about 20% (grand mean) of the overall variance in fitness as measured by the coefficient of determination. The eight
sensorimotor morphologies explain about 24% (grand mean) of the variance in fitness as measured by the coefficient of determination.
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computational problems with least-squares models when there
are correlations among variables.

5.3 Morphospace Analysis
Selection gradient analysis demonstrates that selection does not
fully account for the observed variance in fitness. Morphospace
analysis suggests that development may also be a factor in this
variance.

The 594,000 evolved individuals occupy 190 positions in the
segment-branch s-b mechanical morphospace; no forms evolved
with more than 16 segments or 12 branches (Figure 9). Body
configurations, as measured by the ratio b

s, varied from forms that
approach a purely elongated shape (bs � 0.111, minimum) to those
that approach a purely dendroidal form (bs � 0.889, maximum).
Note that most individuals with more than 12 segments are in the
region of morphospace above the b

s � 1
2, line, indicating

morphological forms more dendroidal than elongated.
Seeking to understand why only some positions in the s-b

morphospace have been occupied, we first examined the
spatiotemporal distribution of forms (Figure 10). For the first
generation (Figure 10A), which was randomly generated, the
median number of individuals was unevenly distributed, falling
above the b

s � 1
2 line, indicating forms more dendroidal than

elongated. Because this initial generation was not the result of
selection, the distribution of forms represents development but
not selection. When the populations were under selection, from
generations 1 to 98 (Figure 10B), the footprint of the combined
distributions expanded into larger values of s and b; in spite of
forms occurring below b

s � 1
2, the median value of b at each level of

s indicates that dendroidal forms are more likely than elongated
forms to evolve. Intriguingly, the distribution footprint of the
final generation, 99 (Figure 10C), is contracted, with reduced

magnitudes of s and b relative to the first and intermediate
generations.

When comparing various kinds of RMWs to our biorobot
populations’ evolutionary walks in s-b morphospace (see
Figure 11 for some example walks), the movements of the
evolved populations, as measured by their final positions,
differ significantly from the five random models (Figure 12).
For segments, the evolved populations differ from the random
walk and the s-first biased random walks, with the models’ final
positions in this dimension greater than that of the evolved
populations. For branches, the evolved populations differ from
the two biased random walks that lack an upper boundary. For
the b

s ratio, the evolved populations differ from the random walk
and the s-first biased walk that lacks an upper boundary. In
aggregate, the evolved populations are statistically
distinguishable—in at least one of these three features—except
for the model that is b-first with an upper boundary.

Since the evolved populations have an upper boundary, as
imposed by development, the three random walks with upper
boundary were used to compare the rate of change of the
morphospace walks (Figure 13). Each type of random walk is
characterized by its rate of change db

ds (Figures 13A–C). These
slopes, and 95% confidence intervals, were calculated using linear
regression, with data from nine runs of each model, with 99 steps
(n � 891); because the evolved populations show dramatically
different rates of change in b and s over generations 0–49
compared to generations 50–99 (see Figure 5), the rates of
change db

ds were likewise partitioned by generation and rate of
mutation (Figure 13D). In our evolving populations, the
calculated db

ds values are statistically indistinguishable from that
of the s-first random walk model—for most mutation rates, the
evolved populations overlap for the first 50 generations but not

FIGURE 9 |Morphospace analysis: occurrence of s-b body forms. Of all possible body forms, only a portion of the possible forms (aqua) evolved in 9 populations,
100 generations, and 11 different conditions of mutation (594,000 individuals).
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the next 50. For those later generations, three levels of mutation
overlap with the db

ds value for the random walk. Note that the
calculated db

ds ratios for the evolving populations never overlap
with the value from the b-first random walk.

When morphospace is combined with evolutionary fitness, an
adaptive landscape, also known as a fitness landscape, is created. For
the evolved populations, tracking locations of individuals with the
highest fitness, relative to others in that population and generation,
shows that the fitness landscape changes over generational time
(Figure 14). This is itself an important result, counter to intuitions
that fitness landscapes are stable and absolute. In generation 0, when
genomes are randomly generated, the highest fitnesses are seen in
individuals with relatively high values of s and b. By generation 42,
after the burst of evolutionary change characterized by a rapid
increase in fitness (see Figure 4) and rapid change in
morphology (see Figure 5), individuals with the highest fitness
have shifted their relative positions in morphospace, now located
predominantly in regions of low s and b. The similar positions of
individuals with the highest fitness in the last generation indicates
that the fitness landscape now is relatively stable.

6 DISCUSSION

The evolution of robotic morphology is open-ended and
complicated, but details can be exposed and investigated by
aptly focused analytical methods: straightforward accounting
illuminates the separate fates of different traits; selection
gradient analysis uncovers how traits are targeted by selection
and how that targeting varies over generational time; and
morphospace walks can explore how randomness, development,
and selection interact in morphological evolution. To demonstrate
these methods, we evolved populations of bioinspired, embodied
(segmented and branched) biorobots, which respond to selection
on locomotion behavior by evolving their mechanical and
sensorimotor morphologies. A straightforward accounting of
fitness (Figure 4) and morphological forms (Figure 5) is an
essential component of understanding the evolved
morphologies, but it does not illuminate all of the relevant
evolutionary driver processes. For example, it might be natural
to think that selection is sufficient to explain morphological
variance, but analyses in this paper have shown otherwise—the
story of evolved morphology is more complex than that. That
complexity is shown by the results of selection gradient analysis,
which correlates fitness to morphology in a given generation and
population at a given level of mutation.

Prior to running evolutionary trials, one might pick a
morphological trait or functionally related set of traits as the
most likely to affect fitness. In this exploratory work, we did not
provide an a priori hypothesis, but our expectation was that
selection would find and target the most important

FIGURE 10 | Morphospace analysis: distribution of s-b body forms. In
generation 0 (A), the randomly generated morphologies show a clear
dendroidal bias, with all median values falling in the region where body forms
are more dendroidal than elongated. That same dendroidal bias is

(Continued )

FIGURE 10 | present in generations 1–98 (B), even as selection expands the
footprint of the distributions. The final generation, 99 (C), has a dendroidally
biased distribution with a contracted footprint relative to that of generation 0.
The width of each boxplot is scaled to the square root of the number of
observations in the group. All 594,000 individuals are represented.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 71721416

Aaron et al. Morphological Evolution: Bioinspired Analysis

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


morphological traits; implied in that expectation is that the
morphological targets would be the same across populations
and over generational time. But that was not the case: While
SG analysis revealed that morphology was always correlated with

fitness, the specific morphologies varied by population and
generation (Figure 6). A closer look at the patterns reveals
that the mechanical morphological traits—s, b, b

s, and average
branch length—have the highest magnitude β coefficients. We

FIGURE 11 | Random morphospace walk analysis: examples. Random walks (A) can move in any direction, and move into dendroidal and elongated sections of
morphospace in these three examples. The irreversibility bias (B), representing a possible developmental bias, causes the random walk to move diagonally with positive
slope. For comparison, the evolutionary trajectories of three populations (C) tend to occur in the dendroidal morphologies section of the morphospace (for aggregate
view, see Figure 10). The same random seed is used for the row-wise comparisons in the random walks. The random models start with the mean value of
morphology evolved over all generations, s � 5 and b � 3.
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take this to mean that these four mechanical traits are more
important than the eight sensorimotor traits.

That claim is supported by a tally of how often mechanical and
sensorimotor traits are selected in SG analysis (Figure 7). No
matter the rate of mutation, a median of one mechanical and one
sensorimotor trait are selected in each model (Figures 7A,B); by
chance alone, we would expect a difference in the rate of
occurrence to be proportional to 1

3 (i.e., 4
12) and 2

3 (i.e., 8
12),

respectively. We note the differences in the direction of the
inter-quartile range from the median, but the result that the
central tendencies are the same is unexpected, suggesting that
mechanical traits are over-represented in the models. We argue
that selection is targeting themechanical morphological system as
an integrated whole, with different elements of that system rising
to the level of statistical significance at different times.

The importance of mechanical morphology receives further
support when we examine trait-by-trait occurrences (Figures
7C,D). At the lowest mutation rate, 0.0005, all mechanical traits
occur more often than any sensorimotor trait; at higher
mutation rates (0.0030 and higher), the b

s ratio occurs
between 30 and 40% of the time, well above the level of the
sensorimotor trait with the highest values in that range
(neurons, between 18 and 25%). Note that the b

s ratio, by
virtue of it being a ratio, is an integrated trait; that it
becomes the most important of the mechanical traits at
higher levels of mutation indicates, we believe, that the
relation between b and s is integral to understanding the role
of selection in these biorobots’ evolved morphologies.

Genetics and development create evolutionary mechanisms
that operate alongside selection to alter morphology over
generational time. The genetics of reproduction impinges,
accumulating deleterious mutations such that some
genomes fail catastrophically in every generation, reducing
the mean fitness of the population, while also increasing the
maximal fitness of the best individuals (Figure 4).
Development grows the agents by elongation and
branching, with an apparent bias in morphospace towards
dendroidal forms (Figure 10). Thus, selecting for improved
locomotion creates evolutionary responses that depend on
multiple, co-occurring mechanisms.

The analytical approach in this paper reflects and illuminates a
fundamental question, encompassing all relevant mechanisms,
and applying here as it does to any embodied evolutionary
system: What prevents all possible morphologies from
occurring over generational time? Whether the goal is to
understand the science and mechanisms that result in evolved
morphology (e.g., when scientists work with biorobots) or the
methods that lead to maximally fit individuals (as is common in

FIGURE 12 |Morphospace walk analysis: evolution in s-bmorphospace
is not a randomwalk. The final positions of the population (evolved, generation
100) and random walks (step 100) are compared in 99 different instances (99
evolutionary runs from 11 mutation levels and nine populations

(Continued )

FIGURE 12 | compared to 99 different random walks for each time of model).
As shown by significant (*) Wilcoxon pairwise tests, the evolved populations
differ from the random models in different ways depending on the metric. For
segments s (A), the evolved populations differ from the random walk and the
s-first biased randomwalks. For branches b (B), the evolved populations differ
from the two biased randomwalks that lack an upper boundary for b. For the b

s
ratio (C), the evolved populations differ from the random walk and the s-first
biased walk that lacks an upper boundary for b.
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evolutionary robotics), it is of interest to understand limits of
morphological evolution. Due to a developmental algorithm in
which elongation has precedence over branching—branching
only occurs when elongation is no longer possible with
available resources (Figure 2)—we expect more elongated than
dendroidal forms. There are no properties that would prohibit,

for example, a body with one branch and 10 segments (a missing
combination in our populations, Figure 9), although the number
of genes would limit the number of parts (segments, joints, etc.) at
some undetermined level, presumably beyond the s and b limits
of 16 and 12 observed in our populations. Thus, for the forms that
do and don’t occur here, we hypothesize particular effects from

FIGURE 13 | Random morphospace walk analysis: developmental bias in evolution? From the simplified set of steps available for a random walk and
developmentally biased randomwalks, we expect three different relationships between the rate of change of b and s (A–C). Data for these models is calculated from nine
runs of each, with 99 generations (n � 891). In evolving populations (D), evidence for a possible developmental bias in evolution is seen in the overlap of 95% confidence
intervals (error bars) with the biased, s-first random walk model (orange bar, vertical range � 95% confidence interval). For most levels of mutation rate, the evolved
populations overlap for the first 50 generations but not that last 50. For those later generations, three levels of mutation overlap with the random walk (blue bar, vertical
range � 95% confidence interval).
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evolutionary drivers such as randomness, development, and
selection, resulting in these morphologies.

Our s-b morphospace is unevenly occupied (Figure 9), with
elongated body forms (bs < 1

2) very rarely occurring at higher

values of s (s> 12) where dendroidal body forms (bs > 1
2) occur.

Looking at the timing and density of occurrences (Figure 10)
adds complicating detail: The predominantly dendroidal
distribution of the initial, randomly generated morphologies
(generation 0) suggests the presence of a bias in the
developmental algorithm. Under selection, from generations 1
to 98, the distribution expands to include more elongated forms;
if a developmental bias towards dendroidal forms is in fact
present, then selection overcomes this bias to the extent that
elongated forms can be evolved. Continuing that interpretation,
the final generation (99), with its contracted distributional
footprint, is consistent with a developmental bias for
dendroidal forms and selection acting on some or all of s, b,
and the b

s ratio.
We can state the above interpretation as the hypothesis that

the position of the evolved populations in morphospace is caused
primarily by selection and a developmental bias. Because the
actual developmental process involves adding segments and
never removing them during development (Figure 2), we call
this an irreversibility bias (and the s-first model, in contrast to an
alternative b-first model; see Section 4.4). We modeled this idea
of irreversibility by noting that if development constrains
evolutionary possibilities, then adding or removing a segment
over generational time constrains the options for moving in
morphospace (see Figure 11, top row, center); the
corresponding random walk shows that movements are indeed
biased, with the ratio db

ds approximately equal to ½ (Figure 13).
This biased s-first walk is built on top of a purely random walk
(Figure 11), which produces a very small, but statistically non-
zero, dbds value. Both the purely random and biased random walks
differ from the placements (Figure 12) and rates of change
(Figure 13) of the evolved populations. (Finding that selection
for improved locomotion results in morphologies not expected by
random chance is consistent with Auerbach and Bongard (2014),
with different experimental conditions.) Further inspection,
however, reveals the results are more complicated than that:
The substantial overlap in the rates of change with the
irreversibility bias precludes rejection of the hypothesis that
development is an evolutionary driver.

In our biorobots, the development algorithm is made explicit
and designed to enable study of such potential driver
mechanisms, but even in such carefully conceived robot
systems, interactions among intentionally designed and
implemented components may produce unforeseen causes and
effects. Indeed, the command of variables and values afforded by
the computational-robotic paradigm enables more detailed
explorations than could be achieved with living biological
organisms, but because roboticists design the algorithms for
their systems, they assume the extra responsibility for
understanding potentially unintended effects of their
implemented processes—including, but not limited to,
unintended biases in development algorithms. One of our
goals in presenting the analytical methods in this paper is to
enable bioroboticists (and other scientists and roboticists) to
analyze the effects of their designs from a basis of observed
behavior and morphology, an alternative to approaches that
intrinsically focus on encodings (e.g., Rothlauf, 2002; Miras,

FIGURE 14 |Morphospace and the shifting fitness landscape. To create
fitness landscapes in the s − b morphospace, the relative fitness of the 60
individuals in a population is encoded by color (μ fixed at 0.0025). In each of
nine populations, the individual with the highest relative fitness (red point,
red arrow) represents an adaptive peak at three different generations (0, 42,
99). Over generational time, note the shift in the fitness peak, showing that the
adaptive landscape is in flux.
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2021); alternate perspectives can potentially illuminate
unforeseen effects of design.

This applies directly to unforeseen effects of our biorobots’
design that arose in their evolutionary dynamics, stemming from
development. As noted above, our development algorithm gives
precedence to elongation (Figure 2), but the morphology of our
robots prior to selection shows a tendency toward dendroidal
forms (Figure 10A). We hypothesize that this is due to
interacting factors of segmentation and branching in
development, as illustrated in Figure 2. Segments are added in
series until local resources in the newest segment are depleted; the
algorithm then searches the body, looking for an open mount
upon which to form a new branch. The lower a b

s ratio is in the
developing robot, the more segments are available for secondary
branching: In our algorithm, terminal segments are the only ones
that cannot be loci for new branches, because if resources
permitted further extension from such a segment, it would
lead to elongation; so, all other factors being equal, elongated
forms have more opportunities to branch than dendroidal forms
when a new segment is added. Thus, there exists a developmental
bias towards branching that co-occurs with the bias of giving
precedence to elongation, illustrating the intricacy of
developmental biases that can exist in the complex
developmental systems that lead to complex morphologies.

Modeling and exposing developmental bias invites us to
consider its impact on evolution. In our studies, given that
only the final adult forms (i.e., those that result from the
completed developmental process and do not further change;
cf. Kriegman et al., 2018) are tested and selected, we did not
directly consider the effects of developmental bias on
evolutionary response. But each adult in a population achieves
its final form and place in the morphospace by developing to that
position. If developmental bias were left out of the analysis of the
evolution of morphology, selection might be assigned as the
primary causal agent of the evolution of more dendroidal
forms (bs > 1

2). But for our robot populations and traits
analyzed, analysis of selection reveals that variation in adult
morphology predicts only a fraction of variation in fitness
(Figure 8). We draw the tentative conclusion that
development acts as an evolutionary force alongside selection
and mutation, and that a developmental irreversibility bias may
have more impact in generations 0–49 than in generations 50–99
of our robots’ evolution.

Considering such support for the impact of developmental
biases on evolved morphologies, the selection gradient analysis
suggesting that selection on morphology accounts for only a
portion of the variance in fitness (Figure 8), and that the trait b

s
involving branch-segment interactions seems to have particular
importance in selection (Figure 7), our results suggest that an
explanation of complicated evolved morphologies will be

complicated, including interacting developmental biases,
morphological traits, and evolutionary driver mechanisms. The
selection gradient and morphospace walk methods employed for
the above analyses enable illumination and comprehension of
these interactions and complications, and they are inherently
bioinspired, derived from an organismal view of biology that
overlaps constructively with the perspectives needed for
analyzing evolved robots. Moreover, because of their
foundation in biology—which lacks the internal
representational knowledge afforded by computational and
robotic studies—the methods require only externally accessible
observations of traits and behaviors. More generally, these
bioinspired methods can be applied broadly to a range of
driver mechanisms, fitness landscapes, and kinds of robots,
and they can be illuminating additions to the analytical toolkit
of roboticists seeking to understand their robots’ evolved
morphologies.
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