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AntAlate is a software framework for Unmanned Aerial Vehicle (UAV) autonomy, designed
to streamline and facilitate the work of application developers, particularly in deployment of
Multi-Agent Robotic Systems (MARS). We created AntAlate in order to bring our research
in the field of multi-agent systems from theoretical results to both advanced simulations
and to real-life demonstrations. Creating a framework capable of catering to MARS
applications requires support for distributed, decentralized, control using local sensing,
performed autonomously by groups of identical anonymous agents. Though mainly
interested in the emergent behavior of the system as a whole, we focused on the
single agent and created a framework suitable for a system of systems approach,
while minimizing the hardware requirements of the single agent. Global observers or
even a centralized control can be added on top of AntAlate, but the framework does not
require a global actor to finalize an application. The same applies to a human in the loop,
and fully autonomous UAV applications can be written in as straightforward a way as can
semi-autonomous applications. In this paper we describe the AntAlate framework and
demonstrate its utility and versatility.
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1 INTRODUCTION

Unmanned mobile robotic platforms overcame barriers to reach an ever-growing user-base in recent
years. From the military to the civilian domain, from graduate school laboratories to grade school
classes, and from the highly specialized professional’s grasp to the enthusiastic hobbyist’s reach,
applications of unmanned ground, surface, underwater and aerial vehicles have become widespread.
The growing availability of low-power-high-performance mini-computers and micro-controllers, as
well as the level of maturity and popularity reached by open-source software systems such as the
Robot Operating System (ROS1), ArduPilot2, and Dronekit3, have made this prevalence possible. In
their survey, Lim et al. (2012) explain and demonstrate how open-source UAV projects can empower
the UAV application developer; the emergence of reliable software frameworks for UAV application
development allows both professional and hobbyist developers to focus their efforts on the distinctive
features of their own application while leaving the necessary yet onerous task of infrastructure
development to the framework maintainers.

Though the topic of UAV design covers a large area, from frame configuration Eraslan et al.
(2020) through flight controllers Kose and Oktay (2020) to software applications, we focus this
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discussion on the aspect of UAV software application framework
design. Demeyer et al. (1997) describe frameworks as “semi-
finished programs”; the applications being finalized by
application developers that use the framework. The more
functionality the framework offers, the more constraints it
imposes on the future application developers. The framework
designer must therefore resolve the conflicting tension between
cross-context reuse and ease of adoption and adaptation. To
balance the tension, Demeyer et al. offer guidelines to enhance
three open system requirements: Interoperability, or the ability to
run on various configurations; Distribution, or the ability to
reliably run over a set of physically distributed nodes; and
Extensibility, or the ability to finalize the application with
added customization without having to change any of the
framework’s internal modules. One of the primary dilemmas
encountered by anyone trying to create a useful framework for
multi-agent robotic systems (MARS) incorporating UAVs, is how
much emphasis must be given to the particular UAV aspects of
the framework; another dilemma is how to incorporate the swarm
enabling multi-agent interaction mechanisms. Too much
emphasis on UAV applications might leave the framework
unfit for other platforms such as ground vehicles, while not
giving the UAV platform enough consideration might leave
the framework too high-level, requiring extensive tailoring
from the ultimate application developer. Balancing the
emphasis on swarm-enabling mechanisms is perhaps even
more problematic, since any mechanism built into the
framework limits the use of alternatives by future applications.

Chamanbaz et al. (2017), for instance, recently created the
Marabunta4 framework built for enabling swarming capabilities
to general purpose robotic systems, and demonstrated their
framework’s capabilities in classic swarming scenarios for
ground and surface vehicles. Preferring interoperability over
distribution and extensibility to some extent, much of the
implementation is left to the final application developer, and
the framework’s synchronous calls to abstract functions from a
single-threaded main loop per robot might become unfit for a
UAV given a resource-demanding behavior. On the other hand,
Preiss et al. (2017) described Crazyswarm5, a framework for
indoor swarm applications using the Crazyflie6 platform, and
the highly popular ROS middleware, used in conjunction with a
global object tracker such as VICON7 for external feedback.
While Crazyswarm applications perform most of their in-flight
computation on-board the Crazyflie platform, a base station is
required in order to calculate and broadcast pose estimates and is
therefore an integral part of the Crazyswarm system architecture.
Crazyswarm is therefore an example of a specialized framework
willing to sacrifice generality for performance, as demonstrated in
an impressive video featuring a swarm of 49 Crazyflies8. Arguably
finding a middle ground between generality and specialization,

Sanchez-Lopez et al. (2017) presented Aerostack9 - a framework
designed as a set of components organized in a multi-layered
model. Ultimate application developers can create their own
application by selecting a set of components from the
Aerostack component library and modifying or adding
additional components as needed, as long as the developers
adhere to the Aerostack conventions, thus satisfying the
extensibility framework requirement. The interoperability and
distribution requirements are achieved inherently by using ROS
as underlying middleware for the single agent’s inter-process
communication. Aerostack’s swarming capabilities are enabled
by the framework’s social layer interface contracts, yet the
mechanics of inter-agent communication is left for the
application developer to finalize. A few examples of swarming
solutions embedded into frameworks can be seen in the Voltron
(Mottola et al., 2014), Buzz (Pinciroli and Beltrame, 2016), and
CyPhyHouse10’s Koord (Ghosh et al., 2020) programming
languages. Though varying in implementation details, the
development framework provided by each of these languages
allows the ultimate application developer to write an application
from a swarm (or a sub-group of a swarm’s agents or super-group of
sub-groups. . .) perspective with relative ease; this is done by
including an underlying mechanism that propagates coordinating
information between agents. Yet in applications where inter-agent
communication is not required or even possible, these strengths
become irrelevant, andwith an increased number of agents the task of
maintaining a distributed shared memory becomes a problem rather
than a remedy.

For the past 20 years, our research team at the Technion MARS
laboratory11 has been focusing on developing algorithms that address
a variety of global tasks with swarms of simple mobile agents. Our
paradigm defines agents as anonymous (i.e., not specifically
addressable by an identifier), oblivious (have little or no memory),
identical hardware platforms, that rely on locally acquired
information provided by simple sensors such as local pheromone
level detectors (Wagner et al., 1996; Wagner et al., 1999; Elor and
Bruckstein, 2012a), proximity sensors (Gordon et al., 2008; Elor and
Bruckstein, 2012b), or limited vision (Bellaiche and Bruckstein, 2017;
Dovrat and Bruckstein, 2017) for their motion control decisions. Our
work during these years led us to develop several types of local
interaction-based motion rules for autonomous mobile agents in
swarms deployed in various types of environments that achieve global
tasks such as patrolling an area, gathering into a cohesive but flexible
“cloud” of agents, coverage of regions for intruder detection, equitable
distribution of workload, and path planning. See for example, the
works of Wagner and Bruckstein (1997), Yanovski et al. (2003),
Felner et al. (2006), Gordon et al. (2008), Osherovich et al. (2008),
Elor and Bruckstein (2014), Elazar and Bruckstein (2016), Bellaiche
and Bruckstein (2017), Dovrat and Bruckstein (2017), Altshuler et al.
(2018), Manor and Bruckstein (2018), Amir and Bruckstein (2019),
Barel et al. (2021), and Francos and Bruckstein (2021). We also
addressed the issue of achieving guidance and steering of cohesive

4https://github.com/david-mateo/marabunta
5https://github.com/USC-ACTLab/crazyswarm
6https://www.bitcraze.io/crazyflie-2-1
7https://www.vicon.com
8https://www.youtube.com/watch?v�D0CrjoYDt9w

9https://github.com/Vision4UAV/Aerostack
10https://cyphyhouse.github.io/index.html
11https://mars.cs.technion.ac.il/
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mobile agent swarms using some global “broadcast control” ideas, as
presented in works by Segall and Bruckstein (2016), Dovrat and
Bruckstein (2017), and Barel et al. (2018); where the broadcast signal
is often assumed to be acquired by only a random set of the swarm’s
agents. These ideas create a wealth of possibilities to deploy swarms of
autonomous agents that can self-organize into cohesive, adaptive, and
flexible-shaped constellations. These swarms can then be guided by a
single user that communicates with the entire swarm via global
broadcast signals based on observing the swarm’s location, but
without having precise information on any particular agent of the
swarm. It is easy to imagine the wealth of applications such a system
can address, from site surveillance to disaster relief to space
exploration. Yet the fundamental capabilities and limitations of
swarms of such agents are rather difficult to analyze theoretically,
so novel mathematical approaches are often needed to prove task
accomplishment and termination, to evaluate the time span necessary
to do the work, and to assess the effects of random or byzantine
failures of agents. As examples of our team’s efforts we refer the
reader to papers by Bruckstein et al. (1991), Bruckstein (1993),
Altshuler and Bruckstein (2011), Oggier and Bruckstein (2012),
Elor and Bruckstein (2012b), Segall and Bruckstein (2016), Barel
et al. (2016), and Barel et al. (2021).

We createdAntAlate12 to deploy swarms of agents that performour
algorithms in the real world. Considering its usefulness beyond
implementing our algorithms, we hereby offer the framework to the
multi-agent robotics R&D community, to facilitate the implementation
of systems demonstrating various types of interesting swarming
behaviors. AntAlate expresses our preference of UAV platforms,
particularly copters, over others, since copters can emulate the
behavior of wheeled and fixed-winged platforms to a greater extent
than vice versa. AntAlate enforces an orderly execution of behaviors by
means of a mission control (MC) module which interfaces with the
high-level control (HLC) of theUAVand an operatormodule. Though
we recommend a human at a control station as the operator, a
centralized (or distributed) control server, or an on-board node for
fully autonomous applications will also do. We included an operator
station HTTP client (OSC) in the framework for all but the fully
autonomous operator agents to use, and an operator station server for
inter-agent and human interface as a complementary project13. By
design, the swarming mechanism in AntAlate is amorphous, and can
either emerge in a bottom-up fashion from the single agent’s behavior-
set; be determined top-down by an operator; or any mixture of these
approaches.

The remainder of this paper provides an in-depth description of
AntAlate in Section 2, followed by a comparison of workflows when
implementing the same algorithm to create ROS-based and AntAlate-
based applications in Section 3, before concluding in Section 4.

2 METHODS

A good framework provides the final application developers a
convenient trade-off between the freedom to write their own

application and the constraints imposed by having useful
functionality they will find unnecessary to modify. Though any
part of the code in an open-source project can be edited, the
parts which the framework authors deem immutable can be
considered as the framework’s core; developers are not required to
alter these sections in order to write their own application. Hence, the
framework core is generally where the benefits of using the
framework present themselves. The framework’s extendable parts
should be well defined by framework-contracts and mechanisms,
such as abstract classes, that allow future developers to write modules
that fit into the framework without significant overhead. The degrees
of freedom the framework presents to the application developers can
be thought of as a design space, where the framework contracts
represent the axes, and different applications with different
configurations can be represented by points in this space.

2.1 AntAlate Core
The core functionality of AntAlate is to coordinate between an
operator, a set of payloads, sensors and algorithms running
onboard the UAV, and the UAV’s autopilot. Figure 1 shows a
diagram of AntAlate’s core components. Each component is a
NeMALA dispatcher14 node, communicating with other nodes by
publishing messages to topics other interested nodes subscribe to.
NeMALA15 is a set of supporting projects for AntAlate, with core
components for dispatching, publishing, and handling messages, and
tools16 to log and manage NeMALA dispatcher nodes and proxies.
The dispatcher nodes are implemented in C++, utilizing Boost17, and
ZeroMQ18, allowing nodes to communicate locally via inter-process
communication, or TCP/IP if distributed over different computers.
The ultimate application developers have control over the
distribution of nodes, and can configure the method of
communication between nodes by setting up NeMALA proxies
catering their own project’s architecture and requirements, adding
to the framework’s overall interoperability. AntAlate’s core
components are the Mission Control (Section 2.1.1), High-Level
Control (Section 2.1.2), Behavioral Module Arbiter (BMA; Section
2.1.3), and Operator Station Client (Section 2.1.4). Any future
application requires only components of these four types, and
some applications could do with less. Each of these components’
executables expect a NeMALA proxy name and a configuration file
path as arguments when run from the command line (except the
BMA, which is special in its requirement of its own node name
instead of a proxy name). The configuration file contains the node
number used for each node, as well as the proxy endpoints and topics
used. Interoperability and distribution are therefore easily achieved by
using one or many proxies described in one or many configuration
files, without the need to alter code, recompile the application, or even
edit configuration text-files, but only by calling the core executables
with different arguments instead. The configuration file is also where
behaviors, autopilots, and operator servers are specified, giving the

12https://gitlab.com/nemala/alate
13https://gitlab.com/nemala/operator-station

14https://gitlab.com/nemala/core
15https://gitlab.com/nemala
16https://gitlab.com/nemala/tools
17https://www.boost.org/
18https://zeromq.org/
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FIGURE 1 | AntAlate core components and their interfaces.

FIGURE 2 | Mission control state machine.
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ultimate application developers control over the AntAlate
design space.

2.1.1 Mission Control
Themission control component provides logic to coordinate all other
AntAlate components by maintaining a state machine, illustrated in
Figure 2, and publishing its state. The state machine’s inputs are
operator commands and the HLC component’s state (see section
2.1.2); its output is the current mission state, which is provided as
feedback to the operator, is used to initiate HLC processes, and
perhapsmost importantly from the framework point of view, governs
the activation of sensors, payloads and algorithms by the Behavior
Module Arbiter component (see section 2.1.3).

Upon initialization, the mission control synchronizes with the
HLC component’s state machine and transitions itself to standby. An

operator command to takeoff transitions the state machine to the
autonomous states of taking off, performing a mission, returning to
the launch site, and landing. A manual override initiated by a human
pilot changes the HLC’s state to manual, causing a transition in the
mission control state as well. The mission control can then return to
standby only after the HLC returns to its ready state, meaning the
UAV’s motors are disabled. If at any point the HLC reports that it is
in its error state due to the autopilot shutting down, the mission state
machine transitions to an unrecoverable error state.

2.1.2 High-Level Control
The HLC component is an abstraction of the UAV platform. The
HLC subscribes to the MC state topic and a velocity command
topic, and publishes its state, telemetry and error data. The HLC
state is decided by a state machine, illustrated in Figure 3, which

FIGURE 3 | High-level control state machine.
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coordinates the UAV autopilot abstraction with the MC state (see
section 2.1.1).

When both autopilot and MC are up, the HLC enters its ready
state. The HLC responds to a MC transition to its taking off state by
making an attempt to arm the UAV’s motors while transitioning to
the takeoff state. Failure to arm themotors brings the HLC state back
to ready; success brings about a transition to gaining altitude, where
the autopilot attempts to gain enough altitude to be considered
airborne before running out of time and being forced to land by a
transition to the landing state.While airborne, anMC transition to its
landing or return to launch states causes the HLC to follow suit. A
manual override is possible in any of the autonomous states. After
landing and disarming the motors, the HLC returns to ready mode
from either manual or autonomous states. If at any point the HLC
loses communication with its autopilot, the state machine transitions
to the unrecoverable state LLC down to inform theMC andOperator
that the vehicle is about to crash. Low battery transitions the state
machine to a low battery state.

2.1.3 Behavior Module Arbiter
The Behavior Module Arbiter activates behavior-sets according to a
state topic it subscribes to. Multiple BMAs can be cascaded such that
the root BMA subscribes to the MC state, and publishes its own
arbitrary state for other BMAs to subscribe to. The BMA gives
AntAlate an added degree of freedom in the distribution of behaviors
over separate nodes, as well as being key to AntAlate’s extensibility by
activating plugin behaviors (see section 2.2.1). The configuration file
given as an argument to the BMA executable tells the node which
behavior set to run, and which proxies to subscribe to.

2.1.4 Operator Station Client
AntAlate requires an operator node to publish commands such as
takeoff or land to the operator command topic. For example, a
minimal operator node could be a BMA which publishes a takeoff
command to the operator command topic every time the MC enters
its standby state, as can be seen in Figure 4. Yet, in order to facilitate
inter-agent, human-agent or human-swarm communication, we
added an Operator Station Client that serves as an anonymous
client to a server via HTTP, as can be seen in Figure 1. The OSC
accepts tokens from the server, so anonymous protocols can stay
anonymous, but any protocol requiring agents to be labeled is also
supported. The OSC subscribes to the MC and HLC topics and
forwards the messages to the server. The server replies with an
operator command or a direction command if one was recently
given, and the OSC publishes the commands received to their
appropriate topics. In addition, outgoing operator payload and
incoming feedback topics are left for the final application
developers to use as they see fit. The server IP address and port
are specified in the application’s configuration file, which the OSC
reads at runtime while setting up the node.

2.2 AntAlate Design Space
Swarming protocols generally differ not only in the way their agents
behave, but also in the way their agents sense the environment and
communicate among themselves or with an external operator. UAV
systems usually differ in type of flying platform and the autopilot
providing low-level control over the flying platform. The AntAlate

design space therefore is composed of three major axes: Behavior
(Section 2.2.1), Autopilot (Section 2.2.2), and Communication
(Section 2.2.3), with Sensing split in implementation between
these major axes.

2.2.1 Behaviors
We created AntAlate in order to easily implement and test new
swarming behaviors on UAVs; during the design process, though,
we found that there are other uses for the behavior mechanism
other than swarming protocols, such as single-UAV autonomy,
payload management, and sensing. Ultimately, the behavior
mechanism can be used as a building block to create almost
any type of UAV application.

Figure 5 shows the reusable design in the form of a class
diagram; a BMA node is a NeMALA dispatcher that has a
McStateMessageHandler which handles incoming
McStateMessage type messages that arrive via a topic the
BMA registers to. These messages encapsulate an instance of
an enumeration type that represents a mission-state. The handler
has an Arbiter which maps mission states with concrete behavior
classes, and activates or deactivates its behaviors accordingly
whenever a message containing a recognized state is received.

Using a pluginmechanism to populate arbiters with behaviors, the
BMAgenerically controls the activation of behaviorswhile leaving the
behavior specifics to future programmers. Behavior interaction is
made easy by adding topics to publish and subscribe to, and BMAs
can be cascaded by having behaviors publish mission-state messages
to designated topics other than that of the original MC. To create a
new behavior, one must create a shared library containing a class
derived from the behavior abstract class and a concrete factory class to
which the BMA delegates the construction and configuration of the
behavior, along with its integration into the BMA node.

To add a behavior to an application, all that is required is that the
application’s configuration file includes an entry for that behavior,
including which mission states activate and deactivate the behavior,
the plugin library name, and to which topics the behavior subscribes
and publishes to. No need to recompile the framework to change the
configuration, even when adding new behaviors.

2.2.2 Autopilots
Autopilots, in this discussion’s scope, are the hardware/software
components that serve as an intermediate between the actual
UAV platform and AntAlate logic, including behaviors,
operators, and the mission control. The HLC and its autopilot
class diagram are shown in Figure 6. AntAlate’s modular design
allows the extension through inheritance of the autopilot
interface class to fit to a specific UAV API. The HLC’s
concrete autopilot class implements a Python-C++ bridge to
facilitate the integration of python based APIs such as
Dronekit19 and Tello20. By using a bridge we can extend the
concrete autopilot class without recompiling the AntAlate code-
base; additional autopilot APIs can be covered by the same
concrete autopilot class by adding Python implementations

19https://dronekit.io/
20https://github.com/dji-sdk/Tello-Python
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and updating a factory python script. Ultimate application
developers can then choose which autopilot API to use by
altering the application’s configuration file.

2.2.3 Communication
The OSC (Section 2.1.4) provides some degree of freedom to the
design space by means of the operator payload and feedback
topics, yet imposes a specific HTTP request and expects the

server’s reply to be formatted in a specific way. We deliberately
excluded a server from the framework to emphasize that the
server we produced21 only represents one example out of infinite
possibilities. We encourage future application developers to use

FIGURE 4 | AntAlate minimal deployment.

FIGURE 5 | AntAlate’s Behavior Module Arbiter class diagram. The behavior abstract class is a framework contract.

21https://gitlab.com/nemala/operator-station
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the OSC without alteration, and to write their own server, tailored
for their application’s behaviors, users, and use cases.

Though we find it useful, the OSC is not the only extra-agent
channel of communication allowed in AntAlate, and is indeed not
even the only form of operator that falls into the constraints of the
framework. Other operators can be implemented using the
behavior mechanism, and other communication methods can
be added as behaviors as well. In this context, inter-agent
communication can be regarded as an AntAlate behavior, with
a BMA node using any type of hardware/software communication
stack, protocol, etc. NeMALA proxies, topics and messages can be
used as well as general building blocks for future applications.

3 RESULTS

We used AntAlate to implement a swarming algorithm we
previously described and implemented using ROS22 and
TurtleBot223 platforms (Dovrat and Bruckstein, 2017). In this
section, we will present our workflow using AntAlate and
compare it with our ROS workflow, which may be familiar to
most readers. We usually start our workflow with NetLogo24

(Wilensky, 1999) simulations to help refine our algorithms and to
quickly make observations to base our theoretical hypotheses on.
Figure 7 shows a NetLogo simulation of our algorithm25 where a

swarm of five agents are manipulated by the user taking over
(drag-and-dropping) one of them.

Once satisfied with the results, we can choose a suitable
mobile platform and design our application. Our swarming
algorithm is fairly simple: every agent either detects other
agents in its field of view and turns gently to one direction, or
does not detect other agents and turns sharply to the same
direction. In other words, the algorithm’s input is a boolean
valued true if other agents are detected or false otherwise,
while the algorithm’s output is a real value representing
angular velocity, which switches between two predefined
values according to the input.

The TurtleBot2 platform is perfectly suited for handling
this algorithm, and the next step is to see which interfaces fit
our algorithm’s needs. Figure 8 shows the ROS graph of our
application26. To detect other agents, we created a counter
node which counts the number of magenta colored poles in an
image frame and publishes the result. Figure 9, taken from
this a short video27, shows our robots fitted with clearly visible
colored rods, following a hand-held rod which acts as a leader,
similar to the simulated behavior shown in Figure 7.
Capitalizing on the TurtleBot2 capabilities, we added a
detector node which reports if the agent has bumped into
something or if its laser scanner has detected an obstacle
nearby. The controller node translates the detected rod count
to “false if zero, true otherwise,” and executes our algorithm
along with an overriding obstacle avoidance procedure if

FIGURE 6 | AntAlate’s High Level Control class diagram. The iAutoPilot interface is a framework contract, the concrete autopilot is a Python-C++ bridge.

22https://www.ros.org/
23https://www.turtlebot.com/turtlebot2/
24http://ccl.northwestern.edu/netlogo/
25http://ccl.northwestern.edu/netlogo/models/community/dovrat2017

26https://gitlab.com/dave.dovrat/turtle_bale
27https://www.youtube.com/watch?v�OA4ri3X4izw
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necessary. The controller then publishes a message with the
correct forward velocity and turning rate to the relevant topic
the robot’s velocity command multiplexer subscribes to.

Our process using AntAlate was similar, and we included the
swarm algorithm, as well as a video capture behavior, as a
template application in the AntAlate code repository.
Figure 10 shows the template application’s deployment
diagram, where each of the two behaviors gets its own BMA
node. The swarm algorithm’s BMA subscribes to the direction
command, telemetry, and operator payload topics from which it
derives the direction the operator wants the swarm to move
towards, the azimuth the agent is moving towards, and the
existence of peer agents in a sector in front of the agent,
respectively. The algorithm BMA’s output is a velocity
command which the HLC subscribes to, and which
incorporates the operator’s direction command with the
swarm algorithm’s output. The video capture behavior uses
the command line tool ffmpeg28, which requires separate
installation on the target machine, to capture video from a
device specified in the application’s configuration file; it
neither subscribes nor publishes to any topic. Both BMAs
subscribe to the MC state topic in order to activate their
behaviors when appropriate.

AntAlate’s modular and configurable design makes it fit for
deployment using containers; we created docker29 images for
each AntAlate component type (MC, HLC, OSC, BMA), for
linux/arm and linux/amd64 architectures, as well as two BMA
images with pre-built behaviors, one for the swarm algorithm
and one for the video capture behavior. We made these images
publicly available on Docker Hub30. With these docker images
we deployed the same code to three different configurations: A
simulation that uses an external SITL ArduCopter31 simulator
as an autopilot and communicates with it via TCP; a 470 mm
UAV frame with a pixhawk32 autopilot and a Raspberry Pi33

onboard that runs AntAlate and communicates with the
pixhawk through a mavlink34 serial connection; and a
Tello35 with a companion Raspberry Pi that communicates
with the autopilot via wifi using the Tello API. Figures 11–13
are taken from a video36 featuring these configurations. From
a design-space point of view, the first two configurations use
the same Dronekit37 autopilot, though on a different
computer architecture, and the last two use the same
computer architecture but with two different autopilots.
The simulation, having no video devices, doesn’t run a
video capture BMA. We chose to run the template
application’s behaviors on separate nodes, but one BMA
node would have sufficed.

The template application’s algorithm requires the
detection of other agents as an input, yet the simulated
agents have no camera or sensing device capable of
detecting other agents, so we compensated for the
missing ability by using a tailored server along with the
OSC. The OSC’s HTTP post request includes the HLC state
which in turn includes the agent’s location and orientation.
When a new agent posts its state for the first time, our
server38 assigns an index to it for further updates. The
server keeps a data base, and each time an agent updates the
server with its state, the server records the state and solves
the inverse geodesic problem using Geographiclib39 to
answer whether another agent is in the sector in front of
the updating agent in the HTTP reply’s payload field. The
detection range and field of view are server parameters. The
OSC parses the HTTP reply to publish to the AntAlate
operator command and direction command topics if
necessary, and forwards the payload to the AntAlate
operator payload topic. The BMA running the swarm
algorithm subscribes to the payload topic and receives
the server-calculated response as its required detection

FIGURE 7 | Our algorithm implemented with NetLogo. Five agents are initially dispersed at random on the plane (A). The agents gather to a rotating regular pentagon
(B). Dragging one of the agents to the bottom left corner of the arena, the rest of the agents follow and ultimately form a rotating square about the “dragged leader” (C). “Releasing” the
leader, it returns to the swarm, and again a rotating pentagon forms, at the new location (D).

28https://ffmpeg.org/
29https://www.docker.com/
30https://hub.docker.com/u/nemala
31https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
32https://pixhawk.org/
33https://www.raspberrypi.org/

34https://mavlink.io/
35https://www.ryzerobotics.com/tello
36https://youtu.be/i9kctIlLkTgshort
37https://dronekit.io/
38https://gitlab.com/nemala/operator-station
39https://geographiclib.sourceforge.io/html/python/index.html
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FIGURE 8 |Our Turtlebot application’s ROS graph. The application topics and nodes written by us are highlighted, while the rest of the graph wasmade available to
us by the ROS community.
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input. Had there been a peer detecting sensor, a BMA
encapsulating that sensor would have published to some
peer-detection topic, the swarming algorithm would have
subscribed to that topic instead of the operator payload
topic, and the server’s database would have been
unessential to the application. Which topic the
component subscribes to is detailed in the configuration
file given as input to AntAlate components.

Though the resulting applications are very different, the first
being a ground robot that can avoid and handle bumping are one
item and not two obstacles, and the second an aerial robot that
accepts broadcast signals, the workflow was almost identical:
come up with an algorithm, build a process that uses available
interfaces to encapsulate the algorithm, refine the resulting
process to take advantage of available assets and compensate
for missing assets, simulate, test, and deploy.

Looking at the amount of bytes in manually written files as an
indicator of human effort, both workflows are comparable. The
ROS application weighs 13,191 bytes not including the counter

and collision detection nodes, and 23,638 bytes including them.
the AntAlate application’s behavior plugin code and
configuration files weigh 18,118 bytes. This example showcases
the power of a good framework: a few hundred lines of custom
application code utilize thousands of lines of framework code.
With AntAlate, we use the same nodes over and over; we code a
new behavior once and configure it, as well as combine it with
other behaviors, to form new applications without going over the
entire design process for each added behavior. The application
design is mostly implemented in the framework up until the point
of concrete behaviors, which are left for the custom application
developers to program and deploy according to their application’s
requirements and constraints.

4 DISCUSSION

This paper introduces and describes AntAlate, a software
framework we created for the future development of UAV

FIGURE 9 | Our algorithm implemented with TurtleBots and ROS. The agents gather to a formation resembling a rotating square (A). The agents follow a human
leader (B). When the leader goes away, the agents eventually return to their previous formation at a new location (C).

FIGURE 10 | AntAlate template application deployment.
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MARS applications. AntAlate is a manifestation of our multi-
agent systems paradigm; we chose a system of systems approach
and focused on the single agent, while avoiding constraints on the

swarming mechanism, expressing our preference for local over
global sensing and communication, anonymity and obliviousness
over distributed and shared memory, decentralized autonomy

FIGURE 11 | AntAlate template application demonstrated using ArduCopter’s Software in The Loop (SITL) simulator. Screen capture from the AntAlate Server
Graphical User Interface (GUI).

FIGURE 12 | AntAlate template application demonstrated with 470 mm quadcopters. Frames captured by the video capture behavior are presented in the upper
corners.
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over centralized control. We incorporated an operator entity as a
means of inter-agent and agent-human communication in an
effort to keep the framework useful for MARS applications
outside the scope of our paradigm notwithstanding.

We identified the UAV-MARS design-space and enforced
framework contracts that promote maintainable future
extensions. We employed proxies with configurable endpoints
to enable the physical distribution of AntAlate nodes, and created
a modular, interoperable, architecture which allows future
developers to code once and deploy the same code on many
different platforms and simulators, as we demonstrated with an
example application.

Future framework enhancements include general types of
operators that bridge between underlying frameworks and
communication modals, in addition to the existing HTTP
client. An example of such an operator could be a ROS node
operator that exposes and forwards the AntAlate topics to ROS
topics and vice versa, allowing the AntAlate agent to integrate
into ROS applications. In addition, the development of some
useful behaviors, such as peer recognition, obstacle avoidance,
and simultaneous localization and mapping, could prove useful
for developers interested in using these behaviors as building
blocks in their own application without having to re-implement
the wheel. Integrating a wider range of autopilots into the
framework is another development priority, with the Crazyflie
API40 at the top of the autopilot backlog.

We hope the multi-agent robotics community will find
AntAlate useful, and that AntAlate becomes the framework of
choice for easy implementation of many interesting swarming

behaviors, as well as an instrument for future collaborations and
discussions.
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