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In medical tasks such as human motion analysis, computer-aided auxiliary systems have
become the preferred choice for human experts for their high efficiency. However,
conventional approaches are typically based on user-defined features such as
movement onset times, peak velocities, motion vectors, or frequency domain analyses.
Such approaches entail careful data post-processing or specific domain knowledge to
achieve a meaningful feature extraction. Besides, they are prone to noise and the manual-
defined features could hardly be re-used for other analyses. In this paper, we proposed
probabilistic movement primitives (ProMPs), a widely-used approach in robot skill learning,
to model human motions. The benefit of ProMPs is that the features are directly learned
from the data and ProMPs can capture important features describing the trajectory shape,
which can easily be extended to other tasks. Distinct from previous research, where
classification tasks are mostly investigated, we applied ProMPs together with a variant of
Kullback-Leibler (KL) divergence to quantify the effect of different transcranial current
stimulationmethods on humanmotions. We presented an initial result with 10 participants.
The results validate ProMPs as a robust and effective feature extractor for human motions.

Keywords: probabilistic movement primitives, human motion analysis, finger tapping motion, machine learning,
transcranial current stimulation

1 INTRODUCTION

Human motor coordination has been extensively investigated in medical research (Rosenbaum,
2009) such as post-stroke rehabilitation (Gresham et al., 2004; Hatem et al., 2016), Parkinson
(Plotnik et al., 2007; Inzelberg et al., 2008), alcoholism (Sullivan et al., 1995; Marczinski et al., 2012),
and so on. One typical task is to examine the human motions with the presence of certain external
stimuli to verify its effectiveness on human motor control. Prior to the existence of auxiliary analysis
tools, examination of such effect relies on human expert via visual observation, which often results in
low efficiency and less objectivity. For instance, in the case of fast movements, it would be hard for
human experts to distinguish motions behavior, and high concentration easily gives rises to fatigue,
consequentially incurring a less accurate diagnosis. On the other hand, an auxiliary analysis tool can
significantly reduce the workload, increase the efficiency as well as the accuracy. In this work, we
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extend the method of Probabilistic Movement Primitives
(ProMPs) (Paraschos et al., 2013), a well-established approach
in robotics skill learning, to human motor coordination analysis.

One exploratory field in medical research is noninvasive brain
stimulation, which has been long assumed as an alternative to
treat neurological and psychiatric disorders. However, the brain
stimulation technique is still a young research field and real
applications are largely unexplored. One interesting topic is
whether noninvasive brain stimulation can influence cerebellar
excitability and connectivity, consequentially leading to the
changes in human motor coordination. Among all brain
stimulation methods, transcranial current stimulation (tCS) is
gaining popularity due to its easy deployablility in application
(Datta et al., 2008; Brittain et al., 2013; Filmer et al., 2014). In the
family of tCS, transcranial direct current stimulation (tDCS) is
one popular method (Nitsche et al., 2008; Caumo et al., 2012;
Thair et al., 2017). However, tDCS shows a high variability of
study protocols and applications, which registers heterogeneity of
results. tDCS only exerts general effect on underlying neuron
populations, without discriminating them. Therefore, other
current stimulation methods serve as interesting alternatives,
especially transcranial alternating current stimulation (tACS),
whose effect has been previously studied on arm movements
(Naro et al., 2016; Naro et al., 2017). Additionally, tACS can
influence intrinsic oscillations, where tDCS has no influence.
Besides tDCS and tACS, we also investigate the effect of
transcranial random noise stimulation (tRNS) of the
cerebellum. We examine how human motions are affected
under these three variants of tCS conditions.

In this paper, we applied ProMPs to evaluate the effect of
tDCS, tACS and tRNS on human arm motions. Specifically, we
examined whether the different stimuli approaches influenced the
motion patterns as well as the duration of stimulation effect. We
recorded the arm motions by inertial measurement units (IMUs)
mounted on hands and wrists similar to the approach in Krishna
et al. (2019). We quantified the stimulation effects by measuring
the motion difference between stimulated conditions and non-
stimulated conditions in eight different finger-tapping
experiments, where the influence on motion coordination
could be present (Benussi et al., 2017; Orrù et al., 2020). In a
finger-tapping experiment, the degree of freedom in finger
tapping task is restricted, which greatly reduces the undesired
effects not caused by stimulation, e.g., human exploratory behavior.
Themotion difference is evaluated bymapping the trajectories into
feature space via ProMPs and then using a variant of Kullback-
Leibler divergence (KL-divergence) as a distance metric. In this
work, we first presented an initial result with 10 participants.

In summary, the main contributions of this paper are as
follows: i) We proposed probabilistic movement primitives as
an efficient and robust feature extractor characterizing human
motions, where the features were completely learned from the
dataset. ii) We quantified the effects of the different non-invasive
brain stimulation approaches tACS, tDCS and tRNS using
symmetric Kullback-Leibler divergence and probabilistic
movement primitives. iii) We presented the initial results on 10
participants, showing our approach as an advantageous auxiliary
analysis tool, and discussed the advantages and limitations. iv)

We showed a complete workflow on data collection, data post-
processing, coupled with details on how Probabilistic Movement
Primitives fit on the data using IMUs.

2 Related Work
In this section, we review the previous approaches on analysing
human motions and variants of movement primitives applied in
robot skill learning and human motion modelling.

2.1 Human Motion Analyses
In order to measure the difference between the sets of trajectories,
it is essential to capture some features of the trajectories,
i.e., mapping the trajectory into a feature space. Several
previous studies on analyzing motion difference depend either
on manually-designed features of the trajectories (Bologna et al.,
2016; Kwak et al., 2020; Marković et al., 2020) or on frequency-
domain analysis (Omkar et al., 2011; Krishna et al., 2019).

In Bologna et al. (2016), they examined the effects of cerebellar
theta-burst stimulation on patients with focal dystonia by
quantifying the changes in arm and neck movements. They
captured the neck/arm movements by IMUs. For the head
movements, they extracted the features such as angular
amplitude and the maximal angular velocity, while for arm
movements, the trajectory straightness, the smoothness of arm
velocity curves and target overshooting were analysed. Such
kinematics data were subsequently analysed by Kruskar-Wallis
analysis of variance (ANOVA). In Kwak et al. (2020), they aimed
to measure the difference of motion smoothness between a
nonpathologic shoulder and a shoulder with a rotator cuff
tear. They characterized such difference by measuring the
angular velocity using IMUs, where they manually defined the
number of peaks, peak velocity peak velocity–to–mean velocity
ratio, and the number of sign reversals. However, it is noteworthy
that the authors need to pre-define a set of kinematic features to
characterize the motion difference, which requires good domain
knowledge and can hardly be extended to other different tasks.
However, ProMPs could largely mitigate this issue. We will
discuss these aspects in details in Section 6.

Another work (Punchihewa et al., 2020) examined the validity
and reliability of IMUs in evaluating hand and trunk kinematics
in a baseball-hitting scenario, the authors compared the
performance between IMUs and optical motion capture
systems by measuring the root mean square error across the
angular displacement curves. In their paper, they also show how
they derived the kinematic parameters from IMUs. The finding
was that IMUs with the sampling rate of 1,000Hz were sufficient
in quantifying trunk and hand movement coordination in a
hitting movement. Some similar findings of the efficacy of
IMUs in measuring rapid movements was also verified in
Marković et al. (2020), where they discriminated the hand
tapping motions among three different groups of females
featuring different age and jobs. The difference was measured
through descriptive statistical analysis on features such as motion
onset time, peak acceleration/deceleration and acceleration/
deceleration gradients. Based on these previous studies, we
also used IMUs to capture motions from hands and wrists for
its easy deployability.
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There are also a variety of other works to measure the human
motion difference, for instance, vision-based approaches for
action segmentation or so on (Wang et al., 2003; Chen et al.,
2013). And lots of previous work mainly focused on classification
tasks, where various classifiers such as neural networks (Hiraiwa
et al., 1989; Steven Eyobu and Han, 2018), linear discriminant
analysis (Krishna et al., 2019), and support vector machines
(Groh et al., 2015; Li et al., 2016) were applied. They are
normally coupled with some feature pre-processing techniques,
e.g., principal component analysis. In this study, instead of
classifying, we determined the degree of similarity between
sets of trajectories numerically.

2.2 Movement Primitives
Movement primitives (MPs) (Schaal et al., 2005) have been
extensively studied in robotics to model arbitrarily complex
motor skills from both robots and humans by modularly
executing multiple basic movement patterns sequentially or in
parallel.

One popular approach in the family of MPs is dynamic
movement primitives (DMPs) (Schaal et al., 2003; Schaal, 2006;
Ijspeert et al., 2013). DMPs are mathematically characterized by a
second-order damping system with an additional forcing term.
The second-order damping system with a goal attractor asserts an
asymptotic convergence to a desired pose at the end of the
trajectory while the forcing term increases the model capacity
to approximate trajectories of arbitrary shapes. DMPs have been
widely used in robot learning, e.g., a robot pouring task
(Tamosiunaite et al., 2011). In Prada et al. (2013), Umlauft
et al. (2014), they applied DMPs in human-robot collaboration
or interactions tasks, for instance, object hand-over. (Pervez and
Lee, 2018) generalized DMPs from single-task learning to
multiple tasks task-parameterized DMPs, where they jointly
learned the probability distribution of task-specific parameters
and the shape parameters of DMPs.When inferring the trajectory
for an unseen task, the phase as well as the task-specific
parameters will be passed. Some other extensions for DMPs
focused on online adaptation, where one of the typical tasks
could be collision avoidance (Park et al., 2008; Hoffmann et al.,
2009; Tan et al., 2011).

While DMPs show great success in learning motor tasks, they
only represent single elementary action. In contrast, probabilistic
movement primitives (ProMPs) (Paraschos et al., 2018) model the
trajectory in a probabilistic manner, which offers more flexibility
than a deterministic model. Firstly, a probabilistic model can
represent the motion uncertainty at every time point during the
demonstrations. This uncertainty can be used to adapt control
parameters (Paraschos et al., 2013). Furthermore, ProMPs can
model the coupling between joints which is essential for
controlling and modelling high-dimensional coupled kinematic
chains such as humans and robots. A probabilistic
characterization with a coupled relation also allows common
probability operation such as conditioning, where a complete
trajectory on all joints can be inferred from given via-points. In
the case of inferring a trajectory from given via-points from
different tasks, ProMPs outperforms DMPs in terms of accuracy
at via-points and its adaptable variance (Paraschos et al., 2018).

Similar to DMPs, ProMPs can also be extended to multiple tasks
by appending task parameters to trajectory shape parameters and
performing joint linear regression (Rueckert et al., 2015).

In robotic tasks, ProMPs can be fitted on a couple of
demonstrations using imitation learning (Maeda et al., 2014;
Gomez-Gonzalez et al., 2016). With a learned ProMP model,
robots can either subsequently reproduce the demonstrated
motion pattern or even improve the trajectory gradually via
trajectory optimization (Tamosiunaite et al., 2011). Paraschos
et al. (2018) verified the performance of ProMPs on benchmark
tasks such as 7-link reaching task, robot hockey, playing table
tennis and so on, especially in the task of table tennis, the
performance of ProMPs is superior to DMPs, leading generally
to smaller errors with an increased success rate. Other work also
covered combining transfer learning with MP (Rueckert et al.,
2015), where robots were trained on a few tasks and later
generalize to unseen ones. (Ewerton et al., 2015; Maeda et al.,
2017) further extended the idea of ProMPs to a Gaussian mixture
of ProMPs for collaborative robots to coordinate the movements
of a human partner.

2.3 Using ProbabilisticMovement Primitives
for Human Motion Analysis
With the success in modelling robot motions, it is promising to
extend ProMPs to human motions. Several previous work has
been extensively applying MPs to model human motor skills (Lin
et al., 2016). The prior work (Rueckert et al., 2016) used ProMPs
to analyze the human adaptation with the presence of external
perturbations by investigating the correlation between the
motions of both arms and the trunk. In this work, they
showed that ProMPs could sufficiently predict the complete
trajectory of the right arm only, given the trajectory of the left
arm at initial phases. This finding showed that ProMPs achieve a
reasonable performance of modelling the multiple trajectories in
a coupled setting, which is highly-related to our work where we
quantify the trajectory difference from a mixture of trajectories,
i.e., from both hand and wrist. In another work (Kohlschuetter
et al., 2016), they used ProMPs on EMG data to predict knee
anomalies. By learning the prior distribution of the weights on the
post-processed EMG data, they passed the weights of the features
including both mean and variance to the classifier. They showed
that a probabilistic model achieves a higher prediction accuracy
than a deterministic model with no uncertainty measure. Our
work is related to them in a way that we measured the trajectory
difference in a probabilistic manner (with uncertainty measure),
potentially being more accurate than a deterministic model.

Some other work also proposed using MPs for human
motions. (Lim et al., 2005) proposed using MPs to generate
natural, human-like motions with a framework combining
dynamic models and optimization. For instance, (Rueckert and
d’ Avella, 2013) suggested a movement primitive representation
as a generalized case of DMPs to implement shared knowledge in
the form of learned synergies, where the learned synergies
summarized the muscle excitation patterns and enabled
transferring to other tasks given muscle signal in
musculoskeletal systems.
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Based on the previous studies, we proposed using ProMPs for
modelling the coupled movements from hand and wrist to
determine the effect of transcranial current stimulation. To the
best of our knowledge, this work is the first attempt to apply
ProMPs to investigate effect on non-invasive brain stimulation
approaches.

3 METHODS

In this section, we provide a mathematical formulation on
Probabilistic Movement Primitives (ProMPs) and
subsequently show how to fit the motion trajectories using
ProMPs. We start by introducing the definition of time-series
data, on which ProMPs will be fitted. Afterwards, we extend a
single time-step case to multi time-step case, i.e., a set of
complete trajectories. Finally, we generalize a complete
trajectory to coupled trajectories.

3.1 ProMPs as a Probabilistic Time Series
Model
A trajectory τ is a sequence of observations y. Mathematically,
we define a complete trajectory as τj � [y0,j, . . ., yT,j], where yt,j
denotes the observed measurements at time point t and the
trajectory j has the length of T. We assume scalar
observations where yt,j ∈ R1 and later we will extend to
multi-dimensional cases. Now, we consider a set of
trajectories with the same length T, and arrive at the data
form S � {y0,1, y1,1, . . ., yT,n}, where n refers to the number of
demonstrations or trajectories. The goal is to derive a
probabilistic time series model from these n trajectories
denoted by p(τ).

3.2 Probabilistic Time Series Model on
Single Time Step
We first start with a probabilistic characterization on S the for a
single time step using Gaussian distribution. For simplicity, we
use the notation yt to represent a set of n observations at time step
t, i.e., yt � [[yt,1, yt,2, . . . , yt,n]] ∈ R1×n. We assume a Gaussian
distribution on the observations with the mean as a linear
combination of non-linear features ϕ and a fixed variance,
shown as below:

P(yt |w) � N (yt |ϕtw, σ
2
y), (1)

where ϕt ∈ R1×M denotes the feature vector at the time step t and
w ∈ RM×n denotes the weight vector to be learned. In this case, we
assume the number of used basis functions to beM. The standard
deviation of the observations σy can be interpreted as a
noise term.

The common choice of the feature ϕit ∈ R1 ,∀i ∈ [1, . . . ,M]
varies for stroke-based movements or rhythmic movements
(Paraschos et al., 2013). In our case, the finger-tapping
trajectory are firstly segmented to a set of point-to-point

trajectories, where the stroke-based movements are
appropriate choices, shown as follows:

ϕi
t � exp −(zt − ci)2

2hi
( ),

ϕt � 1

∑M

i�1ϕ
i
t

[[ϕ1
t , . . . , ϕ

M
t ]],

(2)

where ci refers to the center and hi refers to the bandwidth of
the i-th basis function, zt � t

T ∈ [0, 1] is the movement phase,
which is a generalization of time that allows for generating
motions of arbitrary duration. An illustration on how basis
functions are spread over time is shown in Figure 1. Until
now, we describe how to map measurements of single
time step yt into a feature space ϕ. Then, we show how to
compute the optimal ProMPs model parameters w+ ∈ RM×n
on that single time step data yt. In principle, w+ can be
learned via expectation maximization (Rueckert et al., 2015)
or simply through damped least-square regression, i.e., ridge
regression.

w+ � (ϕT
t ϕt + λI)−1ϕT

t yt , (3)

where I is the identity matrix and the additional term of λ avoids
the singularities which can be caused by small or poorly-sampled
datasets. The poorly-sampled data refers to the importance of
motion variance in the data (copies of the same demonstrations
would result in singular matrices).

3.3 Probabilistic Time Series Model on
Multi-Time-Step Data and
Multi-Dimensional Observations
The previous subsection describes how to learn the weights from
multiple demonstrations on a single time step. In this part, we
extend it to multi-time step setting, i.e., learning the weights from
multiple complete trajectories. We assume the observations in
each time step are i. i.d..

p(τ|w) � p(y0, y1, . . . , yT |w)
� ∏T

t�0
p(yt |w)

� ∏T
t�0

N (yt |ϕtw, σ
2
y)

� N (τ|Φw, σ2
yI),

(4)

where the matrix Φ � [ϕ0 , ϕ1, . . . , ϕT] ∈ RT×M . The optimal
weights are computed in the same way as in Eq. 3 by
replacing ϕt with Φ.

In the above parts, we introduce how to fit ProMPs on a set of
trajectories in the case of scalar observations, where yt,j ∈ R1.
Here, we extend the setting to multi-dimensional observations,
i.e., yt,j ∈ RD and τ ∈ R(T ·D)×n, where D is the number of
dimensions. In our case, we have a six-dimensional
observation for each time-step, respectively x, y and z-axis of
both hands and wrists, then the corresponding feature vector A is
defined as follows:
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A �
Φ[hand,x] 0 . . . 0

0 Φ[hand,y] . . . 0
« « 1 «
0 0 . . . Φ[wrist,z]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R(T ·D)×(M·D). (5)

With a multi-dimensional formulation, it is possible to learn the
correlation between each dimension, which enables inferring the
measurement of one dimension given the observations from
other dimensions. The optimal weights W+ ∈ R(M·D)×n can be
computed as follows:

W+ � (ATA + λI)−1ATτ. (6)

3.4 Modelling a Distribution over a Set of
Trajectories
Given a set of trajectories τ, we can compute the parameter
posterior p(W) with the knowledge of W+ of each single
trajectory. We assume p(W) � N (W|μw,Σw), where μw and Σw

are computed by collapsing the dimension of n. A distribution
over a set of trajectories p(τ) can be computed via the marginal
over the joint distribution of p(τ, W), i.e.,

p(τ) � ∫ p(τ,W)dW
� ∫ p(τ|W)p(W)dW
� ∫N (τ|ΦW ,Σy)N (W|μw,Σw)dW
� N (τ|Φμw,ΦΣwΦ

T + Σy).

(7)

With that, we show a probabilistic reconstruction of the
demonstrated trajectory set.

3.5 Measures for Computing Motion
Similarity
One goal of this paper is to quantify the effect of three non-
invasive brain stimulation approaches tDCS, tACS and tRNS on
the human motions. For that, metrics are required to describe the
distance between two sets of trajectories, i.e., p(τ[A]) and p(τ[B]).
According to Stark et al. (2017),Kullback–Leibler divergence is the
best option for point to point motions, shown as below:

DKL(P‖Q) � ∑
x∈X

P(x) log P(x)
Q(x)( ), (8)

where P(x) and Q(x) are two probability distributions defined on
the same probability spaceX . In the case where P(x) andQ(x) are
equivalent, DKL(P‖Q) � 0, and KL-divergence increases
monotonically with the discrepancy between two probability
distributions, namely DKL ∈ [0,+∞).

KL-divergence can effectively measure the distance between
two probability distributions, i.e., how much information is lost
when approximating one distribution with another. It is broadly
used in the field of Machine Learning, e.g., variational
autoencoder (Kingma and Welling, 2013) and cross-entropy
loss in multi-class classification tasks (Grandini et al., 2020).

In deep reinforcement learning, KL-divergence is posed as soft
constraints to avoid policy collapse (Schulman et al., 2017; Song
et al., 2019). Furthermore, KL-divergence is also used in incipient
fault detection (Delpha et al., 2017; Chen et al., 2018).

Note the KL-divergence is asymmetric as DKL(P‖Q) ≠
DKL(Q‖P), which is an undesired property for a distance
metric. Therefore, to enforce symmetricity, we simply used a
trick as in Johnson and Sinanovic (2003), defined as symmetric
Kullback-Leibler divergence DKLS. The formulae shown below:

DKLS(P‖Q) � DKLS(Q‖P)
� 1
2
(DKL(P‖Q) + DKL(Q‖P)),

(9)

The KL-divergence between two Gaussian distributions is also
computationally efficient. Assume P(x) � N (μ1, σ1) and
Q(x) � N (μ2, σ2), we further have:

DKLS(P‖Q) � 1
2
(DKL(P‖Q) + DKL(Q‖P))

� 1
4

log
σ22
σ21

( ) + σ21
σ22

+ μ1 − μ2( )2
σ22

− 1[ ]
+ 1
4

log
σ2
1

σ2
2

( ) + σ22
σ21

+ μ2 − μ1( )2
σ21

− 1[ ]
� 1
4

σ2
1

σ2
2

+ σ2
2

σ2
1

+ μ1 − μ2( )2 1

σ21
+ 1

σ22
( ) − 2[ ].

(10)

In our case, we recorded x, y and z-axis for both hand and
wrist, altogether six trajectories for one experiment. The
symmetric KL-divergence was computed as the averaged DKLS

over six axes. Figure 2 presents a sketch of the correspondence of
numerical KL-divergence value to its probability distribution
discrepancy. In the case of (coupled) trajectories, we defined
the divergent value of two sets of trajectories τ1 and τ2 as the
mean value by averaging the number of the discrete time points in
phase, shown as follows:

DKLS(τ1‖τ2) � 1
T

∑T
t�0

DKLS y1t ‖y2t( ), (11)

where y1t , y
2
t ∈ R6×n refer to two sets of 6-dimensional

measurements at the discrete time point t in our case, with
each each set containing n measurements.

4 EXPERIMENT DESIGN

In this section, we present the detailed description on
experimental design to measure the effect of tACS, tDCS and
tRNS on human motions. In addition, we introduce the complete
workflow on data post processing.

4.1 Sensors
We captured all participants’ motion trajectories by IMUs,
i.e., Myon aktos-t sensors. Each aktos-t transmitter includes
three-axial sensors for accelerometer, gyroscope and
magnetometer. The transmitters are combined with the aktos
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EMG system for up to 32 channels. We set the sampling
frequency of accelerometer, gyroscope and magnetometer to
be 2000Hz. We also placed two accelerometers as pressure
sensors under the touching pad to split the 1 min recording
into movement segments from one pad to the other and vice
versa. We mounted totally four sensors respectively on both
hands and wrists to capture the arm motion. The recorded

sensor profiles will be post-processed for motion difference
analysis. The detailed configuration on how sensors are placed
is shown in Figure 3A.

4.2 Experimental Tasks
In our design, we chose a finger-tapping motion for examining
the motion difference under different tCS approaches. In the

FIGURE 1 | Illustration of the distribution of basis function. Left:M � 5, Right:M � 20. The bandwidth parameter is computed by h � 0.2 · (ci+1 − ci )
2 to ensure an

overlap between neighboring basis functions.

FIGURE 2 | This illustrations shows three examples of the divergent value ofDKLS and the degree of difference in trajectory space. The post-processed acceleration
profiles are fitted by ProMPs, with the shaded area being 1σ confidence level. In each panel, six motion trajectories of hand and wrist in x, y and z-axis are shown. The top
rows are compared with the lower rows to compute DKLS. From left to right, the distance measure DKLS between the two sets is decreasing.

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 7218906

Xue et al. Analyzing tCS Effects Using ProMPs

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


finger-tapping motion, the subject is asked to perform tapping
between two pads with fixed location repetitively. (Benussi et al.,
2017; Orrù et al., 2020) also design similar tasks for investigating
the effect of tCS variants on coordination. The benefit of a finger-
tapping experiment lies in its simplicity for repetitive
demonstrations, which is easy for participants to repeat
multiple times. Moreover, the degree of freedom of the finger-
tapping motions is low and therefore the motion difference can be
mostly counted as the effects of tCS approaches. Thirdly, the
repetitive motion is also beneficial to ProMPs from a probabilistic
perspective, it is more accurate to characterize a probability
distribution given more data samples (demonstrations). In
total, we defined eight different tapping patterns, (we also call
each pattern as unit experiment for the rest of the paper) for each
stimuli approach so that the effect of stimuli can be observed in a
comprehensive manner. Each experimental setting is shown in
Supplementary Table S2. Among them, we distinguished
different conditions of tapping with favorable hand, different
tapping directions and tapping speed. Below we will discuss the
settings for these three categories in detail.

Motion Direction: We set two motion directions, respectively
tapping in left-right direction and in anterior-posterior direction,
to get the possibility to differentiate between side-dependent and
side-independent motions. Figure 3B shows the detailed setting,
where the tapping pads are 30 cm away from each other.

Motion Speed: We distinguished two movement patterns,
i.e., rhythmic and rapid movements patterns. For rhythmic
movements, the subject first followed the beep signal
corresponding to 1.5Hz to tap for 15 s. The beep signal then
vanished and the subject was instructed to go on with the same
rhythm for an additional 30 tapping cycles. The total recording

time including the beep signal endures 1 min. In the rapid motion
case, the subject was instructed to perform tapping as fast as
possible for 30 tapping cycles, which lasted from 15 to 30 s.

Motion with favorable hands: We also asked all the subjects to
perform the experiments with both hands. Thus, we could also
examine to what extent the stimulation approach could impact on
favorable/non-favorable hands.

4.3 Experimental Protocol
Each participant got measured on 4 days in total. Each of the
4 days was set with 1 week apart from the others to avoid carry-
over effects. On each day, the participant received only one type
of stimulation, i.e., tACS, tRNS or tDCS, which took up 3 days.
We also included a Sham stimulation, which only mimicked the
sensory sensation of real tDCS but did not cause any plasticity
effects, as it included only 30 s of real stimulation. The
stimulation approach was kept unknown from the participant
to allow a fair analysis. The recordings of Sham allow us to
distinguish whether the difference in motion pattern arises from
the neuronal plasticity, i.e., the long lasting changes in the signal
transmission induced by the electric stimulation, or repetition
only. The order of the tCS protocols including Sham was
randomized.

In order to check the influence of the duration of each stimuli,
we first familiarized the participant with the eight experiments
before the stimuli was activated, All participants could initially
practice all eight experiments for a first trial without any stimulus
being active. This phase is denoted by the term Erst. Going
through the experiments once helps reduce the variance of
motion patterns for the coming experiments by warming up
the participants, as the experiment subject can show different

FIGURE 3 | (A) Illustration of sensor montage and experiment environments, altogether four IMUs are mounted on subject’s wrists and hands on both sides,
marked in green. (B) Location of touching pads for different movement direction. Upper: left-right tapping direction, Lower: posterior-anterior tapping direction. The
touch pads provide binary signals which are used to segment the motion signals into individual patters for training the ProMPs, see Section 4.5.
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motion patterns, not caused by stimuli but due to the
unaccustomedness to the experiment.

Around 45 min after Erst, we assume the participants were
already familiar with the on-going experiments and also reach a
stable state for further experiments, the participants woulf
perform all the experiments again (without stimuli), we name
the second run Prae, which serves as the non-stimulated baseline.
After Prae, the participant accepted the stimuli and we
periodically recorded the motion data around every 35 min
until the maximal duration of 115 min are reached. Altogether,
we have three recordings after stimuli, namely post 1, post 2 and
post 3. Supplementary Table S3 elaborates the procedure.

4.4 Participant Information
In this current work, we included an initial study of 10 healthy
subjects, all are right-handed. Among them, eight subjects are
females. The mean age is 23 years with a range of 20–31 years. All
subjects are without reported somatic or psychiatric diseases. The
order of each participant’s experiments is shuffled and shown in
Supplementary Table S3. The overall number of experiments is
10 · 4 · 5 · 8 � 1,600.

4.5 Data Post-Processing
Before applying ProMPs to analyze the motion difference, we first
post-processed the data. This includes i) data segmentation ii)
alignment and normalization of data over time, i.e., mapping time
to the movement phase as mentioned in Section 3.2. In data
segmentation, we segmented the complete raw trajectory into two
sets of point-to-point trajectories, namely inwardmovements and
outward movements respectively. Inward movements refer to the
direction where the angle between upper arm and forearm
decreases with the motion, vice versa for outward movements.
As an illustration, an inward movement for left arm is from left
pad to right pad and upper pad to lower pad in Figure 3B
assuming the subject’s location is to the lower part of the table. By
doing this, we decomposed the motion into stroke-based
motions. In these stroke-based motions, we could fit our
ProMP model and further compare the difference of non-
stimulated patterns against stimulated ones. The segmentation

was performed given the statistics of the accelerometer under the
touching pad and is shown in Figure 4.

After segmentation, we could see each segment with various time
durations. Since Φ is the pre-computed matrix used in Eq. 4, the
phase of each segmented trajectory must be of the same resolution.
And one simple way to achieve that is to perform time alignment
and normalization on each segmented piece and then convert the
time t to the phase zt as in Eq. 2. It is shown in Figure 5. For fitting
model parameters of ProMPs, we took 20 segments from the last
twenty-first stroke to the last second stroke. The last stroke was
excluded for fitting to avoid subjects’ unintended movement when
hearing the stop signal. By this, we have totally 10 · 5 · 8 · 20 � 8,000
strokes of movements for each stimulation approach.

4.6 Measuring the Effect of Stimulation
Methods
In this subsection, we introduce how we characterized the finger-
tapping motions using ProMPs and the motion difference
measure DKLS as defined in Section 3 to measure to what
extent and duration of each stimulation approach on motion
patterns. We first fit the ProMPs on the segmented and time-
aligned data for each of 1,600 experiments, i.e., 1,600 sets of
trajectories, as described in Section 4.2. The fitted result showed a
probability distribution of the model parameters W via μw and
Σw. We then mapped the featureW back to the trajectory space as
shown in Section 3.4 so that a probabilistic characterization of the
post-processed trajectories τ was available. We denote such
reconstructed trajectories from ProMPs as τ9. To measure the
duration of each stimulation’s effect, we computed the mean
symmetric KL-divergence of prae against post 1, post 2 ,post 3 over
all experimental subjects and eight experimental settings in the
space of τ9, namely:

DKLS(τ′[o�prae],p,q‖τ′[o�post 1],p,q),
DKLS(τ′[o�prae],p,q‖τ′[o�post 2],p,q),
DKLS(τ′[o�prae],p,q‖τ′[o�post 3],p,q),

(12)

for each p and q on all available data for inward movements and
outward movements respectively, where o refers to the four

FIGURE 4 | An illustration of raw acceleration profile and segmented data. (A)Raw hand acceleration profile of a random subject in one experiment. (B) Segmented
data for a complete movement from the touching pad 1 to the pad 2 and again to pad 1, concatenating both inward movements and outward movements. (C)
Segmented motion from the pad 1 to the pad 2, namely, inward movements. (D) Segmented motion from the pad 2 to the pad 1, outward movements.
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experimental phases of prae, post 1, post 2 and post 3, and p
denotes the index of different unit experiments. The index q
stands for the number of participants. We excluded Erst for
statistical analysis as the purpose of Erst is to familiarize the
subject with experiment and the subjects are likely to perform
exploratory behaviors for each unit experiment.

5 RESULTS

In this section, we explain in detail howwe computed the trajectory
difference using probabilistic movement primitives (ProMPs) to
reveal the effect of different transcranial current stimulation
methods on human arm motion. We present comprehensive
results using all of the available data to show that ProMPs
together with the symmetric KL-divergence can be used for
characterizing trajectory differences in brain stimulation studies.
We proceed in a progressive manner by answering the following
questions: i) Which sensor profile is best suited to analyze
stimulation methods? (acceleration, velocity or displacement
profile) ii) What is the reconstruction error using ProMPs? iii)
Can ProMPs be used to detect outliers? iv) How are the effects of
tRNS, tDCS and tACS over the finger-tapping motion? v) Can
time-specific differences be detected on a millisecond time scale?

5.1 Which Sensor Profile is Best Suited to
Analyze Stimulation Methods?
We retrieved the raw magnetometer, gyroscope and
accelerometer readings from the inertial measurement units
(IMUs) attached to both wrists and hands. There are three
options where we could fit ProMPs, either on displacement
profile s(t) or velocity profile v(t) or acceleration profile a(t).
We also derived the velocity and displacement profiles using
Attitude Heading Reference System Filter (Ahrs Filter)
(Roetenberg et al., 2005) as shown in Figure 6. However, it
could be observed that the reconstructed v(t) and s(t) were largely
distorted due to the (double) integration over time. The distortion
of the reconstructed signal arose from the inaccurate recordings
from in orientation or acceleration, where the error was

accumulated and amplified after performing double integration
over time (Kok et al., 2017).

Fortunately, the acceleration profile does not require any time
integration, hence bears the highest accuracy among these three
options. Besides, it well explains the motion difference among
different trajectories. The motion difference could still be shown
in the acceleration profiles during the motion phase. For these
reasons, we directly fit ProMPs on raw acceleration data. One
pitfall of directly using raw acceleration profiles is that the raw
acceleration can vary if the initial poses are different. To avoid
that we precisely instructed the subjects on how to place their
hands at the start of each experiment.

5.2 What is the Reconstruction Error Using
ProMPs?
To show the quality of the fitted model of ProMPs on the dataset,
we computed the DKLS between the reconstructed trajectories
from ProMPs and the post-processed ones on different hyper-
parameter settings. In Table 1, we list the reconstruction error
defined as:

Lrec � 1
|o| · |p| · |q| ∑o,p,q DKLS(τo,p,q‖τ′o,p,q), (13)

where t refers to the number of discrete time points after time
normalization, i.e., phase z, and τ and τ9 are respectively the set of
post-processed trajectories and the set of reconstructed
trajectories fitted by ProMPs as shown in Section 3.4.
Additional hyper-parameters of ProMPs are the centers ci and
the bandwidth hi in Eq. 2 respectively. In our case, we set hi as a
function of the number of basis functions M, so that the tunable
hyper-parameter is merely i. The setting of bandwidth of each
basis function goes as h � 0.2 · (ci+1 − ci)

2 and the centers c are
uniformly distributed between the phase of [0, 1]. It can be seen
that the reconstruction loss decreases with the increasing number
of basis functions. Although even better reconstruction loss can
be achieved by increasing M, it risks overfitting from a machine
learning perspective. We discuss this point in Section 6. From a
machine learning perspective, the raw data is usually projected
into a feature space of smaller dimension than raw data.

FIGURE 5 | Perform time normalization over all the segmented acceleration data with various time length. (A) only segmented data, but not normalized, (B)
segmented and normalized data of the last 20 strokes.

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 7218909

Xue et al. Analyzing tCS Effects Using ProMPs

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


In the remaining experiments, we set the hyper-parameters
of ProMPs as: n � 20, h � 0.2 · (20–1)−2, and the regularizer term
λ � 1e-6.

An illustration using these parameters is shown in Figure 7. It
can be observed that ProMPs accurately model the recorded data.
One can also see that the trajectories can be effectively modelled
using uni-modal Gaussian distribution at each discrete time point.

5.3 Can ProMPs be Used to Detect Outliers?
We generated the DKLS in Eq. 9 for each participant and
experiment according to the steps in Section 4.6. By analyzing

the resulting statistics, we detected some potential anomalies. An
initial observation is that DKLS is small among most of the
experiments and subjects. However, there are peaked values in
few cases, suspected as outliers. For instance, the irregular
patterns (high divergent value) in the experiment 2, 4, 6, 8 in
the day of Sham and tRNS for participant four are present, as
shown in Figure 8. A closer look into the post-processed data
revealed that the x, y-axis recordings for both hand and wrist were
flipped, a sign indicating the hand and wrist IMUs were
misplaced. We also verified this hypothesis by looking into the
recorded video and confirm the sensor misplacement. Similar
problems of sensor misplacements were also observed in
participant 11 in experiment 2, 4, 6, 8 in post 1, tDCS.

Besides the man-made mistakes, there are also other high
divergent cases, e.g., shown in Figure 9. To automatically detect
the data anomalies, we used the 3σ rule, which is equivalent to a
confidence interval of [0.15%, 99.85%]. Samples are regarded as
outliers if DKLS in Eq. 11 is larger than μD + 3σD, i.e., higher than
99.85% confidence level in either inward or outward movements.
The analysis of high DKLS values is presented in Section 6.5.
Samples with DKLS values below 0.15% confidence level are valid
and were not excluded from the evaluations. Here μD refers to the
mean value of DKLS averaged over all non-corrupted experiments

FIGURE 6 | (A) Raw acceleration data, (B) reconstructed velocity profile, (C) reconstructed acceleration profile. There is a large drift for velocity and displacement
as no periodic patterns can be observed. A reasonable reconstruction should at least show periodic patterns as acceleration profile.

TABLE 1 | Reconstruction loss with respect to number of basis functions in
ProMPs. The reconstruction loss is computed usingDKLS(τ‖τ9). Here we show
the mean and standard deviation on the reconstruction loss from three randomly
chosen participants, corresponding to 3 · 8 · 4 · 4 � 384 sets of trajectories. Each
set of trajectories consists of 20 single demonstrations.

Number of basis functions M Reconstruction loss Lrec

5 0.207 ± 0.049
10 0.073 ± 0.019
15 0.034 ± 0.011
20 0.016 ± 0.005

FIGURE 7 |Comparison of the mean and standard deviation of the post-processed acceleration profiles and the reconstructed acceleration profiles using ProMPs.
The left panel shows the data after post-processing, the middle panel displays the mean and standard deviation of that data, and in the right panel, the reconstruction
using ProMPs is illustrated. The shaded area corresponds to 2σ confidence interval.
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and participants, and σD is the corresponding standard deviation.
We removed such outliers for the further statistical analysis. By
this we show that the ProMPs with symmetric KL-divergence can
effectively detect anomalies, which is much more efficient than
manual investigation of 1,600 sets of trajectories.

5.4 How are the Effects of tRNS, tDCS and
tACS Over the Finger-Tapping Motion?
In this section, we present the results on the motion difference
under different Transcranial Current Stimulation methods. The
difference is quantified by DKLS and ProMPs following the
procedure in Section 4.6 and Section 5.3. Supplementary
Figure S1 shows the statistics of DKLS of each participant and
experiment, excluding the outliers and corrupted data.

We illustrate the statistics from one random participant in
Figure 10. By looking at the figure, the value ofDKLS in most cases
are around 1. According to Figure 2, the trajectory difference is
insignificant in the case of DKLS#2.5. In this participant, the
divergent value implies no pronounced discrepancy is observed in
each type of stimuli or different post-stimulation phases. In
addition, we checked whether the effect of stimuli varies
across the post-stimulation phases of 45, 90 and 135 min after
the stimulation is activated. In this participant, we did not observe
any trends among different post-stimulation phases.
Furthermore, the divergent values in Sham are similar to those
in tACS, tDCS and tRNS for all eight experiments and post-
stimulation phases. This indicates different stimulation
approaches do not exert notable effects on movements on this

experimental subject. The divergent value of 1mainly comes from
the stochasticity of the participant’s movement, i.e., the
participant cannot reproduce the exact same movement in
different trials.

We computed the mean and the standard deviation of the
DKLS value in that figure over all participants and all eight
experiment configurations based on both inward and outward
movements respectively. The result is shown in Figure 11. With
the given 10 subjects, it can be seen that the averaged DKLS values
are smaller than or around 1, which shows no remarkable
difference in terms of stimulation type or post-stimulation
time. The standard deviations of the DKLS remain similar
among different stimulation approaches and inward/outward
movements. No specific trends in standard deviation can be
observed between post-stimulation phases. We could not
observe a statistically significant difference when comparing
the baseline approach Sham to three other stimulation
approaches. Potential reasons are discussed in Section 6.6.

A comprehensive result on each subject and experiment is
further illustrated in Supplementary Figure S1.

5.5 Can Time-Specific Differences be
Detected on a Millisecond Time Scale?
The analysis in Section 5.4 presented a compact distance measure
between two sets of trajectories by averaging over the discrete
timepoints, shown in Eq. 11. In this part, we further examined the
per-time-step distances, i.e., which part of the trajectories
contribute to the motion difference by using a sliding window

FIGURE 8 |Using ProMPs with symmetric KL-divergence helps detect potential data anomalies. (A) Potential anomalies in high KL-divergence case, i.e., highDKLS

case (B) Flipping of the blue, red, brown and yellow curves, i.e., x, y-axis recordings in hand and wrist in post 2.
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approach. The per-time-step distances provide detailed insights
on a millisecond time scale. The window size is pre-defined and
we computed theDKLSwithin the window, slid across the phase zt.
The resultant curve illustrates the general trends of difference in
relation of time. The sliding window approach can extract the

most significant difference or features between two sets of
trajectories as demonstrated in Figure 12. We provided a
comprehensive outlook on the trends of trajectory distances
using sliding window approach in Supplementary Figures S2,
S3 for each subject and each experiment. In some cases, e.g.,

FIGURE 9 | An illustration of ProMPs with DKLS detecting data outliers. (A) High DKLS case in participant 19, tDCS, the sixth experiment, brown bar shows
remarkably higher value than others, indicating a potential outlier. (B) Post-processed data for the experiment 6 in tDCS. The yellow curve accounts dominantly for the
high divergence, interpreted as a different motion behavior in Prae from other three.

FIGURE 10 | This Figure shows the DKLS value of experiment subject 2 for each stimulation approach, each experiment configuration and each post-stimulation
phase. The DKLS are computed from the outward movements. The x-axis denotes the comparison between post-stimulation phase Post and non-stimulated phase
Prae. The statistics already excludes the outliers via the 3σ rule mentioned in Section 5.3. As the DKLS is quite low, no significant effect of tACS, tRNS and tDCS over the
hand motion can be observed in this subject.
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subject 7 in experiment 3, 4 and 6, the most peaked difference is
within 0–20% and 80–100% of the movement phase in
Figure 12B. The first 20% phase in our experiments
corresponds to contacting the source pad and subsequently
lifting the hand, whereas 80–100% phase corresponds to
dropping the hand or approaching the target pad. On the
other hand, some subjects display semi-uniform motion
differences across the entire movement phase, e.g., subject 13
in experiment 2. However, there is no specific general patterns
among subjects. These interesting observations will be further

investigated in future experiments with a larger number of
subjects.

6 DISCUSSION

In this section, we first discuss the advantages and limitations of
our approach ProMPs for modelling human motions and also
shed light on the effects of the non-invasive brain stimulation
methods tACS, tRNS and tDCS on the finger-tapping motions.

FIGURE 11 | The figure illustrates an overall effect different stimulation type and post-stimulation phases. The means and standard deviations of each DKLS values
are computed by averaging all 10 subjects and eight experiment configurations, respectively using the trajectories of (A) inward movements (B) outward movements.
The outliers have been excluded.

FIGURE 12 | An illustration of sliding window approach to reveal time-specific difference in trajectory space. (A) Sliding window with the size of 1/10 of the total
normalized time, i.e., phase between τprae and τpost 1 from one random experiment (B) The resultant symmetric KL-divergence averaged over all six axes between two
experiments in sliding window manner.
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6.1 Efficiency of ProMPs in Motion
Modelling
As an auxiliary analysis tool, ProMPs with symmetric KL-
divergence provides an efficient way of motion analyses
compared to manual investigations. The computational time
needed for learning ProMPs and computing the symmetric
KL-divergence takes less than 10 min for all 1,600 experiments,
i.e., 1,600 · 20 � 32000 single stroke of movements. The duration
of 10 min also includes the time spent for the expensive frequent
read-write processes, i.e., loading post-processed data and saving
the statistics. In contrast, the entire analysis time could endure
days for the same amount of data in human case.

6.2 ProMPs with Symmetric KL Divergence
as a Consistent and Robust DistanceMetric
We also show that ProMPs together with symmetric KL-
divergence constitute a consistent metric in quantifying the
difference between sets of trajectories. One direct way is to
compare the difference between the post-processed trajectories
and fitted ones using ProMPs as shown in Table 1. With a proper
choice of the number of basis functions M, the mean value of
reconstruction loss and its standard deviation over the available
data is sufficiently small. This result validates ProMPs as a robust
and consistent feature extractor on the collected motion data.

Additionally, we compared the DKLS value respectively for
both inward and outward movements on each experiment as
shown in Supplementary Figure S1. We further computed the
mean and standard deviation by collapsing all the dimensions,
i.e., experiment configurations, the number of experimental
subjects, stimulation approaches and post-stimulation phases.
The result is shown in Table 2. As a consistent and robust
distance metric, they should hold similar outcomes.

As can be seen from Supplementary Figure S1 and Table 2,
the symmetric KL-divergence is highly similar for all inward and
outward movements. The similarity is expected as the divergent
values DKLS measured from inward and outward movements
should be close to each other. This also verifies the consistency of
ProMPs and DKLS as a measure of difference between trajectories.

Another benefit is the robustness of ProMPs against noise as a
feature extractor, which is critical for further analysis of medical
methods. In some manually-designed features, the noise
extensively affects the feature extraction and consequentially
leads to wrong classification or distance metric computation.
For instance, in (Bologna et al., 2016), they defined the maximal
velocities and others from the complete trajectory as the features,

which were highly-sensitive to noise. In our work, the noise
mainly arose from three potential aspects: i) IMU sensor noise ii)
movement outliers iii) unexpected oscillations or shifts of IMUs
during intense movements.

In ProMPs, however, the noise is filtered through applying the
basis functions. The robustness against noise stems from the
shape of basis functions and the number of the basis functions
used. High-frequency noise can be interpreted as a non-smooth
jerk, which cannot be perfectly fitted using a limited number
smooth radial basis functions. Therefore, the noise is
automatically left out in the process of model learning with a
suitable choice on model hyper-parameter. Note that by having a
extremely small bandwidth of the basis functions (see h in
Equation 2) and a large number of M, it is theoretically
possible to even fit to noise, i.e., the model can overfit. In
ProMPs, high frequency artefacts are typically not pronounced.
In contrast, additional step of filtering is always necessary in
frequency-domain models. Figure 13 illustrates a visual
comparison of non-filtered data and a filtered one, where one
can observe a noise-filtering effect on the reconstructed trajectories.
Moreover, the reconstructed trajectories using filtered data is
highly similar to the ones using non-filtered data, which is
desired. Given sufficient demonstrations, ProMPs is also robust
against outliers, as the mean and standard deviation will not be
shifted greatly for a set of demonstrations.

6.3 Generalizability of ProMPs to Other
Motion-Modelling Tasks
One clear advantage using ProMPs compared to other manual
feature design approaches is its generalizability to out-of-domain
tasks only with minimal efforts in hyper-parameter tuning. The
center ci and the bandwidth hi of each basis function are
automatically adapted according to the number of basis
functions M. The only true open parameter is M, which is
adapted based on the non-linearity or complexity in the data.
Typical values for M are in the range of 10–30. The key of
ProMPs’ generalizability to other task lies in the extraction of key
features representing the trajectory shape, which allows to
quantify similarities or to visualize clusters. In Rueckert et al.
(2015), the model was extended to also learn latent robot control
parameters in a two-dimensional space. Such approaches can be also
used for visualizing and analyzing complex human motion data.

6.4 Limitations Using ProMPs
In this part, we also discuss the limitations of ProMPs. First, a
proper selection of hyper-parameter is necessary to achieve
desired feature extraction. This is also referred to as the
general challenge in machine learning, the mean-variance
tradeoff. As can be seen in Table 1, an insufficient number of
basis function M can cause a high bias, whereas high model
complexity risks modelling undesired motion features, i.e., noise
in extreme cases. Another point is that at least two trajectories
must be present for fitting ProMPs to enable mean-variance
scheme from a theoretical perspective. In theory, it is always
better to have as plentiful demonstrations as possible. From a
statistical view, more samples drawn from an unknown

TABLE 2 | A comparison of the averaged symmetric KL-divergence on both
inward and outward movements over all experiments and participants, the
mean and standard deviation are computed by averaging each DKLS values in
Supplementary Figure S1.

Averaged DKLS

Inward movements 0.874 ± 0.689
Outward movements 0.865 ± 0.695
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probability distribution leads to better approximation of the
ground-truth distribution. This in turn poses the requirement
that the tasks should be performed repetitively. However, in
practice typically 10–30 repetitions are sufficient.

It is also noteworthy that ProMPs require the time-alignment
or normalization to make each segmented data have the same
length. By performing time alignment and normalization, the
model diminishes the difference between trajectories by ignoring
the actual duration of each segments.

6.5 Potential Causes of Outliers
As mentioned in Section 5.3, before applying the 3σ rule to
exclude outliers, we indeed saw a few individual cases of high
DKLS values. For instance, we observed a peaked DKLS value in the
sixth experiment in tDCS from participant 19 as shown in
Figure 13. It shows that the post-processed trajectories in Prae
display a different pattern from Post 1-3, whereas the trajectories
in different post-stimulation phases are similar. Nonetheless, the
difference is only noted in the sixth experiment in this participant,
whereas the divergent values for all other experiments are similar to
each other and well below the one in the sixth experiment. We
deemed such cases as outliers, and it was automatically ruled out
with 3σ criterion.

The potential cause of such high divergent values is that a
participant attempted to finish the experiment in a different
manner or the participant’s initial pose for each experiment is
deviating, despite the fact that each participant was told to start
with the same initial pose and same motion behavior for each
experiment as much as possible. Some subjects might still be in
the process of getting familiar with the experiments so that they
performed exploratorily between experiments. In some cases,
they forgot the initial pose after the interval of around 45 min
between each post-stimulation approach so that the acceleration
profiles in local coordinate frames exhibit different patterns.

6.6 The Effects of tACS, tDCS and tRNS on
Finger-Tapping Motions
In this work, the effects of tACS, tDCS, and tRNS are quantified
using ProMPs and DKLS. If the divergent values of the stimulation
approaches are different from the baseline approach Sham, the

effect of the stimuli on the motion can be indeed inferred.
However, the results in Section 5.4 shows that no specific
effects can be seen from tACS, tDCS, or tRNS using our
approach. Previous works (Grimaldi et al., 2014) mentioned
that an effect of the stimulation on the neural excitabilities can
be observed. However, the neural excitability is not necessarily
reflected in the arm motions. It remains an open research
question and our initial results does not display notable effects.

As illustrated in Figure 10, we noticed a marginal increase in
the mean divergent values of all stimuli types including Sham
with the increasing post-stimulation phases. This marginal
increase might be caused by an increasing tiredness or an
degradation of attention or free activation of muscles from the
subjects, e.g., sleeping sideways or long-time sitting posture and
other factors during the experiments. For a total duration of the
experiments of 4 h, it could be necessary to add more resting
phases which will be investigated in future experiments.

We also included Supplementary Figure S4 to demonstrate
the stimulation effects at individual level. It can be seen that all
subjects displaysDKLS values lower than 2 for all stimulation types
and post-stimulation phases, i.e., no remarkable difference can be
observed. We further examined along the dimension of each
stimulation type (each column) to check whether there was a
general effects or trends. And we did not discover a general
pattern for each stimulation type. For instance, subjects 11 and 19
showed a marginal increase in tACS with the increasing post-
stimulation phase, whereas subjects eight and nine did not show
such trends. An in-depth analysis on individual difference is only
possible with more detailed information of each subject and a
larger number of subjects, which is a new research question.

However, we do not conclude that tACS, tDCS or tRNS plays
no an effect on human motions in this work for several reasons.
Firstly, the data collection is still on-going, it would be statistically
more significant to have more data. We planned to integrate 30
participants at the end. Another point is that ProMPs cannot
capture the effect of the time duration of each motion segments,
on which these brain stimulation approaches could take effect.
According to some other work (Benussi et al., 2017; Orrù et al.,
2020), tCS approaches could also influence the accuracy of
tapping, i.e., whether the finger taps the middle point of the
touching pad. The subjects could potentially adjust the trajectory

FIGURE 13 | We provide a set of post-processed trajectories with filtering (A) and without filtering (B). Frequencies higher than 20 Hz are filtered out. A high
similarity between fitted results using ProMPs can be observed, especially the automatic filtering effect can be seen from the green curve at its peak value, marked in
circle.
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with the presence of the plasticity effect, where the fitted
acceleration profile can only partially show this adjustment
effect. The ideal case to examine this is the montage of
additional sensors to detect the touching point.

7 CONCLUSION

In this paper, we proposed Probabilistic Movement Primitives
(ProMPs), a well-established approach in robot skill learning, for
human motion analysis to examine how variants of Transcranial
Current Stimulation approaches affect human motions in finger-
tapping experiments based on IMU recordings. We showed
ProMPs together with the symmetric Kullback-Leibler
divergence constituted a robust distance metric for measuring
the difference between sets of motion trajectories. As an auxiliary
analysis tool, ProMPs first provide much faster diagnosis and
more objectivity than human experts and can even reveal
potential experimental mistakes, e.g., sensor misplacement.
Compared with other methods that rely on manually-designed
features or frequency-domain analysis, ProMPs are robust
against noise and extract features of the trajectory shape,
which makes it easily extendable to other tasks. In ProMPs,
merely a single model hyper-parameter, namely the number of
basis functions, needs to be defined or determined. In this paper,
we discussed how this parameter can be determined by analyzing
the reconstruction error. We also demonstrated and discussed
how ProMPs can be used for filtering noise which tremendously
reduced the required human effort for data post-processing.

In the current work, we discussed the effect of transcranial
random noise stimulation (tRNS), transcranial alternating
current stimulation (tACS) and transcranial direct current
stimulation (tDCS) on finger-tapping motions using an initial
data of 10 participants. In our initial study, our approach did not
reveal any significant effects of these stimulation approaches on
the tapping movement. In future work, we will further increase
the number of subjects to validate our hypotheses through
statistically significant results. We will also consider other
experiments such as lifting the objects and pick-placing little
objects characterized by arm movements (Herzog in preparation,
Cerebellar transcranial current stimulation revised – an
intraindividual comparison). Additionally, we will also
investigate other distance measures listed in Stark et al. (2017)
together with other outlier-exclusion schemes in Chen et al.
(2018).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Committee of the University of Luebeck. The
patients/participants provided their written informed consent to
participate in this study. Written informed consent was obtained
from the individual(s) for the publication of any potentially
identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

HX implemented the method in python based on theMatlab code
prototype provided by ER, completed the data analysis. ER and
HX wrote the manuscript. RH, TiB, AW, and ToB designed the
clinical experiments and experimental hardware; TiB performed
data collection; ER conceived of the idea of using ProMPs and
KL-divergence for data analysis. All authors read and approved
the final manuscript.

FUNDING

The project receives funding from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– No 430054590 (TRAIN, to ER) and (DFG, WE 5919/2-1
to AW) and the Else Kröner-Fresenius Foundation
(2018_A55) to AW. The authors also show great appreciation
to Julius Verrel for the code for data post-processing parts, Nils
Rottmann and Ralf Bruder for their suggestions on the data post
processing, and Jingxuan Zhou for further proof-reading of the
manuscript.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.721890/
full#supplementary-material

REFERENCES

Benussi, A., Dell’Era, V., Cotelli, M. S., Turla, M., Casali, C., Padovani, A., et al.
(2017). Long Term Clinical and Neurophysiological Effects of
Cerebellar Transcranial Direct Current Stimulation in Patients with
Neurodegenerative Ataxia. Brain stimulation 10, 242–250. doi:10.1016/
j.brs.2016.11.001

Bologna, M., Paparella, G., Fabbrini, A., Leodori, G., Rocchi, L., Hallett, M., et al.
(2016). Effects of Cerebellar Theta-Burst Stimulation on Arm and Neck
Movement Kinematics in Patients with Focal Dystonia. Clin. Neurophysiol.
127, 3472–3479. doi:10.1016/j.clinph.2016.09.008

Brittain, J.-S., Probert-Smith, P., Aziz, T. Z., and Brown, P. (2013). Tremor
Suppression by Rhythmic Transcranial Current Stimulation. Curr. Biol. 23,
436–440. doi:10.1016/j.cub.2013.01.068

Caumo, W., Souza, I. C., Torres, I. L., Medeiros, L., Souza, A., Deitos, A., et al.
(2012). Neurobiological Effects of Transcranial Direct Current Stimulation: a
Review. Front. Psychiatry 3, 110. doi:10.3389/fpsyt.2012.00110

Chen, H., Jiang, B., and Lu, N. (2018). An Improved Incipient Fault Detection
Method Based on Kullbac Leibler Divergence. ISA Trans. 79, 127–136.
doi:10.1016/j.isatra.2018.05.007

Chen, L., Wei, H., and Ferryman, J. (2013). A Survey of Human Motion Analysis
Using Depth Imagery. Pattern Recognition Lett. 34, 1995–2006. doi:10.1016/
j.patrec.2013.02.006

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 72189016

Xue et al. Analyzing tCS Effects Using ProMPs

https://www.frontiersin.org/articles/10.3389/frobt.2021.721890/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.721890/full#supplementary-material
https://doi.org/10.1016/j.brs.2016.11.001
https://doi.org/10.1016/j.brs.2016.11.001
https://doi.org/10.1016/j.clinph.2016.09.008
https://doi.org/10.1016/j.cub.2013.01.068
https://doi.org/10.3389/fpsyt.2012.00110
https://doi.org/10.1016/j.isatra.2018.05.007
https://doi.org/10.1016/j.patrec.2013.02.006
https://doi.org/10.1016/j.patrec.2013.02.006
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Datta, A., Elwassif, M., Battaglia, F., and Bikson, M. (2008). Transcranial Current
Stimulation Focality Using Disc and Ring Electrode Configurations: Fem
Analysis. J. Neural Eng. 5, 163. doi:10.1088/1741-2560/5/2/007

Delpha, C., Diallo, D., Wang, T., Liu, J., and Li, Z. (2017). “Multisensor Fault
Detection and Isolation Using Kullback Leibler Divergence: Application to Data
Vibration Signals,” in 2017 International Conference on Sensing, Diagnostics,
Prognostics, and Control (SDPC), Shanghai, China, 16–18 Aug 2017 (IEEE),
305–310. doi:10.1109/sdpc.2017.65

Ewerton, M., Neumann, G., Lioutikov, R., Amor, H. B., Peters, J., and Maeda, G.
(2015). “Learning Multiple Collaborative Tasks with a Mixture of Interaction
Primitives,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, Washington, May 26–30, 2015 (IEEE),
1535–1542. doi:10.1109/icra.2015.7139393

Filmer, H. L., Dux, P. E., and Mattingley, J. B. (2014). Applications of Transcranial
Direct Current Stimulation for Understanding Brain Function. Trends
Neurosciences 37, 742–753. doi:10.1016/j.tins.2014.08.003

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., and Peters, J. (2016). “Using
Probabilistic Movement Primitives for Striking Movements,” in 2016
IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), Cancun, Mexico, 15–17 Nov 2016 (IEEE), 502–508.
doi:10.1109/humanoids.2016.7803322

Grandini, M., Bagli, E., and Visani, G. (2020).Metrics for Multi-Class Classification:
An Overview. arXiv preprint arXiv:2008.05756.

Gresham, G. E., Stason, W. B., and Duncan, P. W. (2004). Post-stroke
Rehabilitation, Vol. 95. Darby, Pennsylvania: Diane Publishing.

Grimaldi, G., Argyropoulos, G., Boehringer, A., Celnik, P., Edwards, M., Ferrucci,
R., et al. (2014). Non-invasive Cerebellar Stimulation—AConsensus Paper. The
Cerebellum 13, 121–138. doi:10.1007/s12311-013-0514-7

Groh, B. H., Kautz, T., Schuldhaus, D., and Eskofier, B. M. (2015). “Imu-based
Trick Classification in Skateboarding,” in KDDWorkshop on Large-Scale Sports
Analytics, Vol. 17.

Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., et al.
(2016). Rehabilitation of Motor Function after Stroke: a Multiple Systematic
Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front.
Hum. Neurosci. 10, 442. doi:10.3389/fnhum.2016.00442

Hiraiwa, A., Shimohara, K., and Tokunaga, Y. (1989). “Emg Pattern Analysis and
Classification by Neural Network,” in Conference Proceedings., IEEE
International Conference on Systems, Man and Cybernetics (IEEE), 1113–1115.

Hoffmann, H., Pastor, P., Park, D.-H., and Schaal, S. (2009). “Biologically-inspired
Dynamical Systems for Movement Generation: Automatic Real-Time Goal
Adaptation and Obstacle Avoidance,” in 2009 IEEE International Conference
on Robotics and Automation, Kobe, Japan, 12–17 May 2009 (IEEE),
2587–2592. doi:10.1109/robot.2009.5152423

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).
Dynamical Movement Primitives: Learning Attractor Models for Motor
Behaviors. Neural Comput. 25, 328–373. doi:10.1162/neco_a_00393

Inzelberg, R., Schechtman, E., and Hocherman, S. (2008). Visuo-motor
Coordination Deficits and Motor Impairments in Parkinson’s Disease. PLoS
One 3, e3663. doi:10.1371/journal.pone.0003663

Johnson, D., and Sinanovic, S. (2003). Symmetrizing the Kullback-Leibler Distance
IEEE Transactions on Information Theory.

Kingma, D. P., and Welling, M. (2013). Auto-encoding Variational Bayes. arXiv
preprint arXiv:1312.6114.

Kohlschuetter, J., Peters, J., and Rueckert, E. (2016). “Learning Probabilistic
Features from Emg Data for Predicting Knee Abnormalities,” in XIV
Mediterranean Conference on Medical and Biological Engineering and
Computing 2016, Paphos, Cyprus, March 31–April 2 2016 (Springer),
668–672. doi:10.1007/978-3-319-32703-7_129

Kok, M., Hol, J., and Schön, T. (2017). Using Inertial Sensors for Position and
Orientation Estimation. Found. Trends Signal Process. 11, 1–153. doi:10.1561/
2000000094

Krishna, R., Pathirana, P. N., Horne, M., Power, L., and Szmulewicz, D. J. (2019).
Quantitative Assessment of Cerebellar Ataxia, through Automated Limb
Functional Tests. J. neuroengineering Rehabil. 16, 1–15. doi:10.1186/s12984-
019-0490-3

Kwak, J.-M., Ha, T.-H., Sun, Y., Kholinne, E., Koh, K.-H., and Jeon, I.-H. (2020).
Motion Quality in Rotator Cuff Tear Using an Inertial Measurement Unit: New

Parameters for Dynamic Motion Assessment. J. Shoulder Elbow Surg. 29,
593–599. doi:10.1016/j.jse.2019.07.038

Li, H.-T., Han, S.-L., and Pan, M.-C. (2016). “Lower-limb Motion Classification for
Hemiparetic Patients through Imu and Emg Signal Processing,” in 2016
International Conference on Biomedical Engineering (BME-HUST), Hanoi,
Vietnam, 5–6 Oct 2016 (IEEE), 113–118. doi:10.1109/bme-hust.2016.7782096

Lim, B., Ra, S., and Park, F. C. (2005). “Movement Primitives, Principal
Component Analysis, and the Efficient Generation of Natural Motions,” in
Proceedings of the 2005 IEEE international conference on robotics and
automation (IEEE), 4630–4635.

Lin, J. F.-S., Karg, M., and Kulić, D. (2016). Movement Primitive Segmentation for
Human Motion Modeling: A Framework for Analysis. IEEE Trans. Human-
Machine Syst. 46, 325–339. doi:10.1109/thms.2015.2493536

Maeda, G., Ewerton, M., Lioutikov, R., Amor, H. B., Peters, J., and Neumann, G.
(2014). “Learning Interaction for Collaborative Tasks with Probabilistic
Movement Primitives,” in 2014 IEEE-RAS International Conference on
Humanoid Robots, Madrid, Spain, 18–20 Nov 2014 (IEEE), 527–534.
doi:10.1109/humanoids.2014.7041413

Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., and Peters, J.
(2017). Probabilistic Movement Primitives for Coordination of Multiple
Human–Robot Collaborative Tasks. Autonomous Robots 41, 593–612.
doi:10.1007/s10514-016-9556-2

Marczinski, C. A., Fillmore, M. T., Henges, A. L., Ramsey, M. A., and Young, C. R.
(2012). Effects of Energy Drinks Mixed with Alcohol on Information
Processing, Motor Coordination and Subjective Reports of Intoxication.
Exp. Clin. Psychopharmacol. 20, 129. doi:10.1037/a0026136

Marković, S., Dopsaj, M., Tomažič, S., and Umek, A. (2020). Potential of Imu-
Based Systems in Measuring Single Rapid Movement Variables in Females with
Different Training Backgrounds and Specialization. Appl. Bionics Biomech.
2020, 1–7. doi:10.1155/2020/7919514

Naro, A., Bramanti, A., Leo, A., Manuli, A., Sciarrone, F., Russo, M., et al. (2017).
Effects of Cerebellar Transcranial Alternating Current Stimulation on Motor
Cortex Excitability and Motor Function. Brain Struct. Funct. 222, 2891–2906.
doi:10.1007/s00429-016-1355-1

Naro, A., Leo, A., Russo, M., Cannavò, A., Milardi, D., Bramanti, P., et al. (2016).
Does Transcranial Alternating Current Stimulation Induce Cerebellum
Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological
Approach. Brain stimulation 9, 388–395. doi:10.1016/j.brs.2016.02.005

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A.,
et al. (2008). Transcranial Direct Current Stimulation: State of the Art 2008.
Brain stimulation 1, 206–223. doi:10.1016/j.brs.2008.06.004

Omkar, S., Vyas, K., and Vikranth, H. (2011). “Time-frequency Analysis of
Human Motion during Rhythmic Exercises,” in 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Boston,
MA, USA, Aug 30 2011–Sept 3 2011 (IEEE), 1279–1282. doi:10.1109/
IEMBS.2011.6090301

Orrù, G., Cesari, V., Conversano, C., and Gemignani, A. (2020). The Clinical
Application of Transcranial Direct Current Stimulation in Patients with
Cerebellar Ataxia: a Systematic Review. Int. J. Neurosci. 131, 681–688.
doi:10.1080/00207454.2020.1750399

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2018). Using Probabilistic
Movement Primitives in Robotics. Autonomous Robots 42, 529–551.
doi:10.1007/s10514-017-9648-7

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013). “Probabilistic
Movement Primitives,” in Advances in Neural Information Processing Systems
Red Hook, NY, United States: Curran Associates Inc, 2616–2624.

Park, D.-H., Hoffmann, H., Pastor, P., and Schaal, S. (2008). “Movement
Reproduction and Obstacle Avoidance with Dynamic Movement Primitives
and Potential fields,” in Humanoids 2008-8th IEEE-RAS International
Conference on Humanoid Robots, Daejeon, Korea (South), 1–3 Dec 2008
(IEEE), 91–98. doi:10.1109/ichr.2008.4755937

Pervez, A., and Lee, D. (2018). Learning Task-Parameterized Dynamic Movement
Primitives Using Mixture of Gmms. Intell. Serv. Robotics 11, 61–78.
doi:10.1007/s11370-017-0235-8

Plotnik, M., Giladi, N., and Hausdorff, J. M. (2007). A NewMeasure for Quantifying
the Bilateral Coordination of Human Gait: Effects of Aging and Parkinson’s
Disease. Exp. Brain Res. 181, 561–570. doi:10.1007/s00221-007-0955-7

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 72189017

Xue et al. Analyzing tCS Effects Using ProMPs

https://doi.org/10.1088/1741-2560/5/2/007
https://doi.org/10.1109/sdpc.2017.65
https://doi.org/10.1109/icra.2015.7139393
https://doi.org/10.1016/j.tins.2014.08.003
https://doi.org/10.1109/humanoids.2016.7803322
https://doi.org/10.1007/s12311-013-0514-7
https://doi.org/10.3389/fnhum.2016.00442
https://doi.org/10.1109/robot.2009.5152423
https://doi.org/10.1162/neco_a_00393
https://doi.org/10.1371/journal.pone.0003663
https://doi.org/10.1007/978-3-319-32703-7_129
https://doi.org/10.1561/2000000094
https://doi.org/10.1561/2000000094
https://doi.org/10.1186/s12984-019-0490-3
https://doi.org/10.1186/s12984-019-0490-3
https://doi.org/10.1016/j.jse.2019.07.038
https://doi.org/10.1109/bme-hust.2016.7782096
https://doi.org/10.1109/thms.2015.2493536
https://doi.org/10.1109/humanoids.2014.7041413
https://doi.org/10.1007/s10514-016-9556-2
https://doi.org/10.1037/a0026136
https://doi.org/10.1155/2020/7919514
https://doi.org/10.1007/s00429-016-1355-1
https://doi.org/10.1016/j.brs.2016.02.005
https://doi.org/10.1016/j.brs.2008.06.004
https://doi.org/10.1109/IEMBS.2011.6090301
https://doi.org/10.1109/IEMBS.2011.6090301
https://doi.org/10.1080/00207454.2020.1750399
https://doi.org/10.1007/s10514-017-9648-7
https://doi.org/10.1109/ichr.2008.4755937
https://doi.org/10.1007/s11370-017-0235-8
https://doi.org/10.1007/s00221-007-0955-7
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Prada, M., Remazeilles, A., Koene, A., and Endo, S. (2013). “Dynamic Movement
Primitives for Human-Robot Interaction: Comparison with Human Behavioral
Observation,” in 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 3–7 Nov 2013 (IEEE), 1168–1175. doi:10.1109/
iros.2013.6696498

Punchihewa, N. G., Miyazaki, S., Chosa, E., and Yamako, G. (2020). Efficacy of
Inertial Measurement Units in the Evaluation of Trunk and Hand Kinematics
in Baseball Hitting. Sensors 20, 7331. doi:10.3390/s20247331

Roetenberg, D., Luinge, H. J., Baten, C. T. M., and Veltink, P. H. (2005).
Compensation of Magnetic Disturbances Improves Inertial and Magnetic
Sensing of Human Body Segment Orientation. IEEE Trans. Neural Syst.
Rehabil. Eng. 13, 395–405. doi:10.1109/TNSRE.2005.847353

Rosenbaum, D. A. (2009). Human Motor Control. Academic Press.
Rueckert, E., Čamernik, J., Peters, J., and Babič, J. (2016). Probabilistic Movement

Models Show that Postural Control Precedes and Predicts Volitional Motor
Control. Scientific Rep. 6, 1–12. doi:10.1038/srep28455

Rueckert, E., and d’Avella, A. (2013). Learned Parametrized Dynamic Movement
Primitives with Shared Synergies for Controlling Robotic and Musculoskeletal
Systems. Front. Comput. Neurosci. 7, 138. doi:10.3389/fncom.2013.00138

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., and Neumann, G. (2015).
“Extracting Low-Dimensional Control Variables for Movement Primitives,”
in 2015 IEEE International Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 May 2015 (IEEE), 1511–1518. doi:10.1109/
icra.2015.7139390

Schaal, S. (2006). Adaptive Motion of Animals and Machines. Springer,
261–280.Dynamic Movement Primitives-A Framework for Motor Control in
Humans and Humanoid Robotics

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. (2003). “Control, Planning,
Learning, and Imitation with DynamicMovement Primitives,” inWorkshop on
Bilateral Paradigms on Humans and Humanoids: IEEE International
Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31
October 2013 (IEEE), 1–21.

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. (2005). “Learning Movement
Primitives,” in Robotics research. the eleventh international symposium (Berlin,
Heidelberg: Springer-Verlag), 561–572. doi:10.1007/11008941_60

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A., Soyer, H., Rae, J. W.,
et al. (2019). V-mpo: On-Policy Maximum a Posteriori Policy Optimization for
Discrete and Continuous Control. arXiv preprint arXiv:1909.12238.

Stark, S., Peters, J., and Rueckert, E. (2017). “A Comparison of Distance Measures
for Learning Nonparametric Motor Skill Libraries,” in 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), Birmingham,
UK, 15–17 Nov 2017 (IEEE), 624–630. doi:10.1109/humanoids.2017.8246937

Steven Eyobu, O., and Han, D. S. (2018). Feature Representation and Data
Augmentation for Human Activity Classification Based on Wearable Imu
Sensor Data Using a Deep Lstm Neural Network. Sensors 18, 2892.
doi:10.3390/s18092892

Sullivan, E. V., Rosenbloom, M. J., Deshmukh, A., Desmond, J. E., and
Pfefferbaum, A. (1995). Alcohol and the Cerebellum: Effects on Balance,
Motor Coordination, and Cognition. Alcohol Health Res. World 19, 138.

Tamosiunaite, M., Nemec, B., Ude, A., and Wörgötter, F. (2011). Learning to Pour
with a Robot Arm Combining Goal and Shape Learning for Dynamic
Movement Primitives. Robotics Autonomous Syst. 59, 910–922. doi:10.1016/
j.robot.2011.07.004

Tan, H., Erdemir, E., Kawamura, K., and Du, Q. (2011). “A Potential Field Method-
Based Extension of the Dynamic Movement Primitive Algorithm for Imitation
Learning with Obstacle Avoidance,” in 2011 IEEE International Conference on
Mechatronics and Automation, Beijing, China, 7–10 Aug 2011 (IEEE), 525–530.
doi:10.1109/icma.2011.5985617

Thair, H., Holloway, A. L., Newport, R., and Smith, A. D. (2017). Transcranial
Direct Current Stimulation (Tdcs): a Beginner’s Guide for Design and
Implementation. Front. Neurosci. 11, 641. doi:10.3389/fnins.2017.00641

Umlauft, J., Sieber, D., and Hirche, S. (2014). “Dynamic Movement Primitives
for Cooperative Manipulation and Synchronized Motions,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong
Kong, China, 31 May–7 June 2014 (IEEE), 766–771. doi:10.1109/
icra.2014.6906941

Wang, L., Hu, W., and Tan, T. (2003). Recent Developments in Human Motion
Analysis. Pattern recognition 36, 585–601. doi:10.1016/s0031-3203(02)00100-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Xue, Herzog, Berger, Bäumer, Weissbach and Rueckert. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 72189018

Xue et al. Analyzing tCS Effects Using ProMPs

https://doi.org/10.1109/iros.2013.6696498
https://doi.org/10.1109/iros.2013.6696498
https://doi.org/10.3390/s20247331
https://doi.org/10.1109/TNSRE.2005.847353
https://doi.org/10.1038/srep28455
https://doi.org/10.3389/fncom.2013.00138
https://doi.org/10.1109/icra.2015.7139390
https://doi.org/10.1109/icra.2015.7139390
https://doi.org/10.1007/11008941_60
https://doi.org/10.1109/humanoids.2017.8246937
https://doi.org/10.3390/s18092892
https://doi.org/10.1016/j.robot.2011.07.004
https://doi.org/10.1016/j.robot.2011.07.004
https://doi.org/10.1109/icma.2011.5985617
https://doi.org/10.3389/fnins.2017.00641
https://doi.org/10.1109/icra.2014.6906941
https://doi.org/10.1109/icra.2014.6906941
https://doi.org/10.1016/s0031-3203(02)00100-0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation
	1 Introduction
	2 Related Work
	2.1 Human Motion Analyses
	2.2 Movement Primitives
	2.3 Using Probabilistic Movement Primitives for Human Motion Analysis

	3 Methods
	3.1 ProMPs as a Probabilistic Time Series Model
	3.2 Probabilistic Time Series Model on Single Time Step
	3.3 Probabilistic Time Series Model on Multi-Time-Step Data and Multi-Dimensional Observations
	3.4 Modelling a Distribution over a Set of Trajectories
	3.5 Measures for Computing Motion Similarity

	4 Experiment Design
	4.1 Sensors
	4.2 Experimental Tasks
	4.3 Experimental Protocol
	4.4 Participant Information
	4.5 Data Post-Processing
	4.6 Measuring the Effect of Stimulation Methods

	5 Results
	5.1 Which Sensor Profile is Best Suited to Analyze Stimulation Methods?
	5.2 What is the Reconstruction Error Using ProMPs?
	5.3 Can ProMPs be Used to Detect Outliers?
	5.4 How are the Effects of tRNS, tDCS and tACS Over the Finger-Tapping Motion?
	5.5 Can Time-Specific Differences be Detected on a Millisecond Time Scale?

	6 Discussion
	6.1 Efficiency of ProMPs in Motion Modelling
	6.2 ProMPs with Symmetric KL Divergence as a Consistent and Robust Distance Metric
	6.3 Generalizability of ProMPs to Other Motion-Modelling Tasks
	6.4 Limitations Using ProMPs
	6.5 Potential Causes of Outliers
	6.6 The Effects of tACS, tDCS and tRNS on Finger-Tapping Motions

	7 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


