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Ground-based applications of robotics and autonomous systems (RASs) are fast
advancing, and there is a growing appetite for developing cost-effective RAS solutions
for in situ servicing, debris removal, manufacturing, and assembly missions. An orbital
space robot, that is, a spacecraft mounted with one or more robotic manipulators, is an
inevitable system for a range of future in-orbit services. However, various practical
challenges make controlling a space robot extremely difficult compared with its
terrestrial counterpart. The state of the art of modeling the kinematics and dynamics of
a space robot, operating in the free-flying and free-floating modes, has been well studied
by researchers. However, these two modes of operation have various shortcomings,
which can be overcome by operating the space robot in the controlled-floating mode. This
tutorial article aims to address the knowledge gap in modeling complex space robots
operating in the controlled-floating mode and under perturbed conditions. The novel
research contribution of this article is the refined dynamic model of a chaser space robot,
derived with respect to the moving target while accounting for the internal perturbations
due to constantly changing the center of mass, the inertial matrix, Coriolis, and centrifugal
terms of the coupled system; it also accounts for the external environmental disturbances.
The nonlinear model presented accurately represents the multibody coupled dynamics of
a space robot, which is pivotal for precise pose control. Simulation results presented
demonstrate the accuracy of the model for closed-loop control. In addition to the
theoretical contributions in mathematical modeling, this article also offers a
commercially viable solution for a wide range of in-orbit missions.
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1 INTRODUCTION

Innovative space system technologies have revolutionized the lives on Earth, which explains why the
global space race continues. The space economy worldwide is booming, and there is now a paradigm
shift to the in-orbit services and manufacturing (IOSM) market. There is a significant commercial
boost in the in-orbit services market, which is predicted to be $1 billion by 2030 (Satellite Catapult
Applications, Fair-Space and Astroscale, 2021). The candidate in-orbit missions include the
following: servicing and repairing high-value space assets including operational spacecraft, life
extension, refueling, orbit correction, in-space assembly of space telescopes for Earth observation and
astronomical observations, space-based power generation, and active debris removal, to name a few
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(Oda et al., 1996; Whittaker et al., 2000; Yoshida, 2001; Friend,
2008; Shengwei, 2013; Flores-Abad et al., 2014; Jaekel et al., 2015;
Lee et al., 2016; Reed et al., 2016; Medina et al., 2017; Taylor et al.,
2018; Li et al., 2019; Wilde et al., 2019; Jackson et al., 2020; Nair
et al., 2020; Romano, 2021; Xu, 2021). Building satellite servicing
and debris removal capabilities will open up bigger and longer-
term markets linked to assembly and manufacturing in space
(Satellite Catapult Applications, Fair-Space and Astroscale, 2021).
As the in-orbit economy evolves, robotics and autonomous
systems will play a pivotal role in many future IOSM
missions. However, controlling a space robot in an extreme
environment is significantly more complex than its terrestrial
counterpart; this is the foremost hurdle to the success of IOSM
missions.

In the context of servicing a cooperative and noncooperative
target spacecraft using a servicer space robot, safety is
paramount during the close-range approach, target capture,
and postcapture operations. Approaching a target spacecraft
using a servicer space robot can be achieved by two different
modes of operation: free-flying and free-floating (Dubowsky
and Papadopoulos, 1993; Moosavian and Papadopoulos, 2007).
The free-flying approach uses reaction jets to facilitate a
stabilized and controlled base for the robot manipulator in
motion. The stable platform is favorable for the
manipulator’s motion, however, on the expense of excessive
fuel consumption and limited workspace. On the other hand,
the free-floating approach utilizes an uncontrolled base to limit
fuel consumption on the expense of dynamic singularities and
an undefined workspace for the robot. There is a well-
established literature on these two modes of operation, and
they have benefits depending on the nature of the mission
(Longman et al., 1987; Papadopoulos and Dubowsky, 1991,
1993; Xu and Kanade, 1992; Xu, 1993; Yoshida and Abiko,
2002; Menon et al., 2007; Artigas et al., 2015; Guang et al., 2018;
Wilde et al., 2018). For instance, when communication between
the space robot and the ground station is paramount, the free-
flying mode is preferred as its controlled base can keep the
antennas pointing toward the Earth. On the other hand, when
reducing fuel consumption is prioritized, the free-floating mode
is more suitable because of its uncontrolled base. In addition,
recent pertinent works include numerical simulations,
hardware-in-the-loop experiments, and guidance algorithms
to capture and detumble a space object (Virgili-Llop et al.,
2017). Despite these current advancements, the free-flying and
free-floating operation modes exhibit unavoidable
disadvantages for practical in-orbit missions.

An inherent problem with free-flying and free-floating
operation modes is the undesired dynamic coupling effect due
to the manipulator’s motion. This dynamic coupling effect leads
to changes in the pose of the spacecraft base that are not always
corrected, depending on the selected approach mode. In the free-
flying mode, reaction jets will control the spacecraft base to
maintain a fixed pose or attain one alternate pose while the
arm is in motion. On the other hand, in the free-floating mode,
the spacecraft base is uncontrolled, and it is free to change its pose
in reaction to the motion of the arm. The free-flying mode has a
limited workspace, whereas the free-floating mode has an

undefined workspace because of its uncontrolled base. As a
result, it is highly challenging to precisely navigate and control
the space robot while avoiding obstacles and singularities during
the approach phase.

In the close vicinity of the target, well-defined trajectories for
the position and attitude of the spacecraft base are needed along
with the trajectories for the arm’s joints to perform collision-free
navigation. Instead of maintaining a fixed pose for the base
spacecraft or letting the base spacecraft float in an
uncontrolled manner, a controlled motion of the spacecraft
base (i.e., achieving desired translation and rotation with time)
is highly desirable. A coordinated movement of this nature is
distinct and challenging compared with both free-flying and free-
floating modes. It corresponds to the “controlled-floating”mode,
previously introduced by Seddaoui and Saaj (2019), which offers
redundancy to operate the space robot in an unlimited but well-
defined workspace. The space robot is referred to as the
controlled-floating space robot (CFSR) when operated in this
mode. Contrarily to the free-flying and free-floating space robots,
the CFSR uses its base’s controlled translation and rotation to
help the arm reach the target’s grasping point.

Literature review shows that space robots suffer from
singularities, depending on the mode of operation. It is also
known that dynamic singularities affect free-floating space
robots, whereas kinematic singularities affect free-flying space
robots. As the CFSR can control its base’s motion, only kinematic
singularities occur during the arm’s movement. It is possible to
avoid kinematic singularities using the extra degrees of freedom
offered by the spacecraft base. In short, the controlled-floating
mode offers the benefits of both free-flying and free-floating
modes of operation, and an accurate model of a CFSR will be
highly beneficial to the end-users.

Although modeling the kinematics and dynamics of a free-
flying and free-floating space robots is well addressed in the
literature, the same for CFSR is less extensively studied in
literature. Recently, Virgili-Llop et al. (2019) and Virgili-Llop
and Romano (2019) have obtained simulation and experimental
results for a CFSR approach via convex programming for
maneuvering and capturing a tumbling object. In order to
help the beginners in the discipline and foster an increased
use of the CFSR approach, this article presents a step-by-step
tutorial on deriving the equation of motion of a CFSR during its
final approach phase. The full-scale nonlinear model presented
can be used for controlling the pose of a CFSR during any of the
aforementioned in-orbit missions. This article’s benefits are
twofold: (1) helps beginners gain a sound theoretical
foundation in mathematical modeling of orbital robots and (2)
creates a better awareness of the benefits of CFSR for practical
space missions.

Compared with the mathematical models of free-flying and
free-floating space robots reported in the literature, the model of
CFSR shown in this article includes a few new terms that
represent different types of internal and external perturbations.
More specifically, in this article, the motion of a CFSR is derived
with respect to a reference frame attached to the moving target;
thus, it complies with the close-proximity relative motion in-
orbit. The center of mass (CoM) of the space robot changes
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because of both the arm and the base spacecraft’s motion. In
addition, the overall inertia matrix at the CoM of the system is
also not constant, but it changes during the motion of the CFSR.
Corresponding changes in CoM, inertia matrix, Coriolis, and
centrifugal terms are modeled in addition to accounting for the
dynamic coupling effect. An accurate dynamic model together
with a robust controller will enable the space robot, operating in
the controlled-floating mode, to perform a safe and precise
maneuver to approach the grasping point on the target. More
details on the control architecture for a CFSR were published by
Seddaoui and Saaj (2019).

In summary, the model of the CFSR presented in this article
advances the state of the art of dynamic modeling a space robot.
In addition to this article’s theoretical contributions, the highly
accurate model presented is well suited for practical in-orbit
missions. The rest of this article is organized as follows: Section 2
gives a recap of the CFSR and its mode of operation. The detailed
tutorial that explains the mathematical modeling is covered in
Section 3. The accuracy of the model presented is verified using
simulations, and selected results are shown in Section 4. Finally,
Section 5 summarizes the key inferences of the modeling
methodology and added value of model presented for
controlling the CFSR in orbit.

2 BACKGROUND ON CFSR

The concept of a CFSR originated with the idea of fusing the
free-flying and free-floating operation modes of a space robot to
utilize their individual pros. Both these modes of operation,
individually, are undesirable for in-space services, which require
precise operations; a limited or undefined workspace is
unsatisfactory. Therefore, the identifiable challenges include

collision-free navigation of the space robot with efficient fuel
consumption.

A CFSR addresses these practical challenges by utilizing a closed-
loop control for themotion of the space robot. Therefore, in addition
to the arm’s joints, well-defined trajectories are needed to maintain
the position and attitude of the spacecraft base. These desired
trajectories are generated based on the linear and angular motion
of the target spacecraft. In addition, the CFSR also takes into account
the reaction forces and moments developed due to the actuation of
the robotic arm. The dynamic coupling effect has to be controlled to
withstand the undamped vibrations in the extremities of the space
environment. The servicer spacecraft shouldmatch angular rates and
keep zero relative attitude between the target to avoidmisalignments.

Seddaoui and Saaj (2019) introduced the CFSR system first, but
there is limited literature on its dynamic modeling. This tutorial
aims at explaining the complex dynamics of CFSR, through a
systematic mathematical formulation, at a high level of granularity.
The details of path planning and robust control of CFSR are outside
this article’s scope; details are available in Seddaoui (2020). A
comparison between the existingmodes of operation and the CFSR
is required before any derivation. Figure 1 shows a comparison
between the two main existing modes of operation, that is, free-
flying and free-floating, as well as their subcategories introduced by
Wilde et al. (2018) against the CFSR.

2.1 In-Orbit Relative Motion for the CFSR
The literature review reveals that modeling a space robot, which
has a controlled spacecraft base, is always performed with respect
to an inertial reference frame (Moosavian and Papadopoulos,
2007; Flores-Abad et al., 2014). This is to enable the utilization of
Newton’s law of motion to derive the equation of motion of the
space robot. Nevertheless, using a space robot for an in-orbit
close-proximity approach is described as a three-body problem

FIGURE 1 | Comparison between existing modes of operation for space robot and the CFSR.
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where it is preferable to reference the motion of the chasing body
with respect to the moving and rotating frame of the target body,
also known as local vertical local horizontal (LVLH) frame. Then
it is necessary to transform the motion in LVLH back to the
inertial frame to find the true actuating forces.

In this article, under the assumption that the space robot is
operated at a very close proximity to the target (<10 m) and
considering a short period (up to 150 s), three frames of reference
are selected to derive the equation of motion of the CFSR as
shown in Figure 2: the inertial frame ∑I, the target LVLH frame∑T, and the base of the CFSR body frame ∑B. The idea is to
consider the motion of the CFSR in ∑T as the controllable
quantity in the closed-loop control and compute the fictitious
forces, originating from the rotating frame ∑T, as external forces
affecting the system. This is to ensure that the true actuating
forces and torques are identified in ∑I.

The motion of the CFSR is described about its overall CoM,
referred to here as ξ. Hence, the relative position is defined as the
vector between the origin of∑T and the CoM ξ, referred to as rξrel .
The basic equation of a relative position vector rξrel in ∑I is
(Curtis, 2013):

rξrel � rξ − r02, (1)

where vector rξ ∈ R3 represents the inertial position vector of the
CoM of the space robot ξ, r02 ∈ R3 is the inertial position vector
of the target, and rξrel ∈ R3 is the relative position vector between
ξ and the origin of ∑T, as shown in Figure 2. The corresponding
relative velocity and acceleration vectors in ∑I are defined as
follows (Curtis, 2013):

vξ − v02 � _rξrel +Ω × rξrel (2a)

aξ − a02 � €rξrel + _Ω × rξrel +Ω × Ω × rξrel( ) + 2Ω × _rξrel (2b)

where Ω ∈ R3 is the angular velocity of the rotating frame ∑T

with respect to ∑I; vξ ∈ R3 and v02 ∈ R3 are the velocity vectors
of the CoM ξ and the target, respectively; aξ ∈ R3 and a02 ∈ R3

are the acceleration vectors of the CoM ξ and the target,
respectively. In the above equation and thereafter in this
article, as it is often customary in the robotics literature, we
use the word “vector” to indicate the column matrix of three
scalar components of a physical vector in a specific Cartesian
triad of axes. Furthermore, we use the symbol of vector cross
product in order to indicate the three-by-three skew-symmetric
matrix expressing in matricial form the cross product and built
with the components of the algebraic vector preceding that
symbol.

Eventually, the state vector that will be used in the closed-
loop control of the CFSR includes the relative motion between
the space robot and the target described by rξrel, _rξrel and €rξrel .
The fictitious velocity and acceleration involved in Eqs 2a, 2b
are to be added as extra motion generated from the motion of∑T in order to find the true actuating forces and torques in ∑I.
The motion of the space robot’s base has both linear and
angular components, as well as the generated interactions
between the translational and rotational motion. This is
computed through deriving the space robot’s motion about
the overall CoM ξ.

3 SPACECRAFT MOTION

The motion of the space robot’s base has both linear and angular
components, as well as the generated interactions between the
translational and rotational motion. This is computed through
deriving the space robot’s motion about the overall CoM ξ.

3.1 The Linear Motion
During close-proximity maneuvers, the relative motion is of
interest. Hence, the linear motion of the spacecraft base
consists of its own relative motion, as well as that of the arm.
It is translated by the relative linear momentum of the system as
follows:

FIGURE 2 | Artistic illustration of the reference frames and vectors used in the mathematical model for the CFSR (Seddaoui, 2020).

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 7253334

Seddaoui et al. Modeling a Controlled-Floating Space Robot

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


P �∑n

i�0mi _ri
P � Mt vξ − v02( ) }, (3)

where P ∈ R3 is the linear momentum of the system; mi and ri
are, respectively, the mass and the position vector of the ith link of
the space robot including the spacecraft base; and Mt is the total
mass of the system. Differentiating Eq. 3and substituting Eq. 2b
into Eq. 3 gives the equation describing the relative linear motion
of the spacecraft base about the CoM (ξ) with respect to ∑I:

FI
sc � Mt aξ − a02( )
� Mt€rξrel +Mt

_Ω × rξrel +MtΩ × Ω × rξrel( ) + 2MtΩ × _rξrel
},
(4)

where FI
sc ∈ R3 is the force acting on the spacecraft base about ξ in∑I. The CoM of the full system ξ is different from the CoM of the

base spacecraft. Also, the actuation forces and torques are applied
on the spacecraft base rather than ξ. Therefore, in order to derive
the equation of the relative linear motion of the spacecraft base,
one needs to introduce the motion of ∑B in ∑T. Hence, using the
equation for the relative velocity and acceleration, as seen in Eqs
2a, 2b, gives the equation for the relative velocity and acceleration
_rξrel ∈ R3 and €rξrel ∈ R3 when considering the motion of ∑B. In
other words, the following represents the expression of the first
term of Eqs 2a, 2b when introducing the motion of ∑B:

rξrel � rT + rξB (5a)

_rξrel � _rT + _rξB + ωsc × rξB (5b)

€rξrel � €rT + €rξB + _ωsc × rξB + ωsc × ωsc × rξB( ) + 2ωsc × _rξB (5c)

where rT ∈ R3 is the relative position vector of the spacecraft base
defined as rT � r01 − r02, vector rξB ∈ R3 represents the relative
position vector between ξ and ∑B, and vector ωsc ∈ R3 is the
angular velocity of the spacecraft base with respect to ∑T.
Multiplying Eq. 5c by the total mass of the system gives the
following expression for the linear motion of the spacecraft base
in∑T, which is function of the spacecraft base’s position vector rT
instead of the overall CoM’s position vector rξrel , as follows:

Fsc � Mt€rT +Mt€rξB −MtrξB × _ωsc −Mt ωsc × rξB( ) × ωsc+2Mtωsc × _rξB, (6)

where Fsc ∈ R3 represents the force acting on the spacecraft base
about ξ in ∑T.

Substituting Eqs 5a, 5b into the last three remaining terms of
Eq. 4 gives the following expression for the fictitious forces
resulting from the rotation of frame ∑T:

Ff ict
sc � Mt

_Ω × rT + rξB( ) +MtΩ × Ω × _rT + _rξB( )( )
+2MtΩ × _rT + _rξB + _ωsc × rξB( ), (7)

where Ff ict
sc ∈ R3 represents the virtual forces generated from the

rotation of the frame ∑T.
Substituting Eqs 6, 7 into Eq. 4 gives the relative linear motion

of the spacecraft base in∑Iwhen considering the motion of frame∑T. This is expressed as follows:

Fsc
I � Fsc + Fsc

fict. (8)

The first term of Eq. 8 represents the controlled linear motion
of the space robot with respect to ∑T. The second term is related
to the rotation of ∑T, which must be included in the equation of
motion to account for the virtual forces that exist only in the
rotating frame of reference. Expressing the linear motion of the
space robot, represented by Eq. 6, in matrix form gives:

Fsc � MtE −Mt[rξB]×[ ] €rT
_ωsc

[ ] + 0 −Mt ωsc × rξB[ ]×[ ] _rT
ωsc

[ ] +
+ Mt€rξB + 2Mtωsc × _rξB,

(9)

where E ∈ R3×3 is the identity matrix. Eq. 9 describing the relative
motion of the spacecraft base is one of the components
constituting the equation of the relative motion of the CFSR.

3.2 The Angular Motion
The angular momentum of the multibody space robot about ξ, in
terms of the inertia tensor and the angular velocity, is defined,
with respect to a frame attached to the CoM of the spacecraft base
and that does not rotate with the ∑B, as follows (see
Supplementary Material):

Lξ � Iξωξ +∑n
i�0

Iiωi +∑n
i�0

Ii −mi[riB]×[riB]×( )ωξB (10)

where Iξ ∈ R3×3 and Ii ∈ R3×3 are, respectively, the inertia tensors
of the full system expressed at the CoM ξ and the ith link of the
arm; ωξ is the angular velocity about ξ with respect to a frame
attached at the origin of∑B; and ωξB is the angular velocity about
ξ with respect to ∑B.

Let IiB � ∑n
i�1(Ii −mi[riB]×[riB]×), then Eq. 10 becomes:

Lξ � Iξωξ +∑n
i�1

Iiωi + IiBωξB (11)

Given ωξ � ωsc + ωξB, Eq. 10 becomes:

Lξ � Iξωsc + IξωξB +∑n
i�1

Iiωi + IiBωξB. (12)

The second and last terms ofEq. 12 are related to the rotation about
ξ, generated by the motion of the arm. Differentiating Eq. 12 gives:

_Lξ � d

dt
Iξωsc( ) +∑n

i�1
d

dt
Iiωi( ) + d

dt
IξωξB( ) + d

dt
IiBωξB( ).

(13)

As the CFSR is one redundant system, finding the total inertia
tensor Iξ involves two steps: use the parallel axis theorem to
express the total inertia matrix of both the spacecraft base and the
arm at the origin of ∑B and then express the result at ξ. The total
inertia matrix at the origin of ∑B is as follows:

IξB � Isc +∑n
i�1

Ii −mi[riB]×[riB]×( ). (14)

Considering the space robot with its overall CoM ξ, which is
different from the CoM of the spacecraft base alone, the total
inertia tensor of the system at ξ, using the parallel axis theorem, is:
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Iξ � IξB +Mt[rξB]×[rξB]×. (15)

Substituting Eq. 14 into Eq. 15 gives:

Iξ � Isc +Mt[rξB]×[rξB]× +∑n

i�1 Ii −mi[riB]×[riB]×( )
� Isc +Mt[rξB]×[rξB]× + IiB

}. (16)

It is clear from Eq. 16 that the inertia tensor of the space
robot is not constant as it depends on the position of the
moving CoM ξ and the moving arm’s links. Hence, the
derivatives of the first, second, and third terms of Eq. 13
are given as follows:

d

dt
Iξωsc( ) � Iξ _ωsc + _Iξωsc, (17a)

∑n
i�1

d

dt
Iiωi( ) �∑n

i�1
Ii _ωi (17b)

d

dt
IξωξB( ) � Iξ _ωξB + _IξωξB (17c)

d

dt
IiBωξB( ) � IiB _ωξB + _IiBωξB (17d)

The derivatives of the inertia tensors Iξ and IiB (see
Supplementary Material) still appear in the equation
because they are function of position vectors that vary
during the motion of the space robot, as seen in Eq. 16.

Substituting 17c and 17d into Eq. 13 gives the equation
for the rotational motion of the space robot about ξ as
follows:

τsc′ � _Lξ � Iξ _ωsc + _Iξωsc +∑n

i�0Ii _ωi + Iξ _ωξB + _IξωξB +
+ IiB _ωξB + _IiBωξB

(18)

Eq. 18 describes the rotational dynamics of the space robot
about the overall CoM ξ with respect to ξ. Expressing this vector
of torques relative to the CoM of the spacecraft base (origin of∑B), with respect to ∑B, requires the following transformation
(Curtis, 2013):

τIsc � τsc′ + rξB × FI
sc . (19)

Substituting Eqs 8–18 into Eq. 19 and simplifying give:

τIsc � Mt[rξB]×€rT + Isc + IiB( ) _ωsc −MtrξB × ωsc × rξB( ) × ωsc( ) +
+ _Iξωsc +∑n

i�0Ii _ωi + _IξωξB + Iξ _ωξB + _IiBωξB + IiB _ωξB

+ +MtrξB × €rξB + 2MtrξB × ωsc × _rξB( ) + rξB × Ff ict
sc .

(20)

From Eq. 20, the angular motion of the space robot in ∑T can
be represented in matrix form as follows:

τsc � Mt[rξB]× Isc + IiB[ ] €rT
_ωsc

[ ]
+ 0 _Iξωsc −Mt[rξB]× ωsc × rξB[ ]×[ ] _rT

ωsc
[ ]

+∑n

i�0Ii _ωi + _IξωξB + Iξ _ωξB + _IiBωξB + IiB _ωξB

+ MtrξB × €rξB + 2MtrξB × ωsc × _rξB( ).
(21)

3.3 The Overall Motion of the Spacecraft
Base
From Eqs 9–21, the overall equation describing the linear and
angular motion of the spacecraft base in ∑T is:

f sc � Fsc

τsc
[ ] � MtE −Mt[rξB]×

Mt[rξB]× Isc + IiB
[ ] €rT

_ωsc
[ ] +

+ 0 −Mt ωsc × rξB[ ]×
0 _Iξωsc −Mt[rξB]× ωsc × rξB[ ]×[ ] _rT

ωsc
[ ] +

+ Mt€rξB
MtrξB × €rξB +∑n

i�0Ii _ωi + Iξ _ωξB + IiB _ωξB
[ ] +

+ 2Mtωsc × _rξB
_IξωξB + _IiBωξB + 2MtrξB × ωsc × _rξB( )[ ],

(22)

which can be written in a compact form as follows:

f sc � Fsc

τsc
[ ] � Dv Dvω

Dωv Dω
[ ] €rT

_ωsc
[ ] + 0 Cv

0 Cω
[ ] _rT

ωsc
[ ] +DξB + CξB

� Dsc
€X + Csc

_X + DξB + CξB

⎫⎪⎪⎬⎪⎪⎭,

(23)

where Dv ∈ R3×3, Dvω ∈ R3×3, Dωv ∈ R3×3 and Dω ∈ R3×3 are
mass submatrices related the linear and angular motion of the
spacecraft base, as well as the interaction between the linear and
angular motion. Vectors Cv ∈ R3×3 and Cvω ∈ R3×3 involve the
Coriolis and centrifugal terms originating from the motion of the
spacecraft base, and vectorsDξB and CξB are related to the motion
of the CoM ξ. The compacted matrix Dsc ∈ R6×6 is related to the
linear and angular motion of the spacecraft base, and the
compacted vector Csc ∈ R6×6 involves the Coriolis and
centrifugal forces.

4 MANIPULATOR DYNAMICS

The mathematical model for the dynamics of a terrestrial robotic
arm usually involves both the kinetic and the potential energy
(Spong and Vidyasagar, 2008). However, space robots operate in
a microgravity environment. For this reason, the terms related to
the potential energy in the equation of motion are ignored.
Hence, only the kinetic energy was used in the Lagrange–Euler
method to derive the equation of motion of the robotic arm of
the CFSR.

The Lagrange–Euler equation for an n DoF robotic arm is
(Spong and Vidyasagar, 2008):

τi � d

dt

zL

z _θi
[ ] − zL

zθi
with i � 1, . . . , n, (24)

where τi is the torque applied the ith joint; L is the Lagrangian
function of system L � KE, where KE is the kinetic energy of the
arm; θi represents the ith joint angle; and _θi is the velocity of the
ith joint.

4.1 Kinetic Energy of an n DoF Manipulator
All moving objects have a kinetic energy, and this energy varies
according to the mass of the object and the rate of change of the
motion (velocity). For a multilink robotic arm, the velocity of
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each link is represented by the Jacobian matrix and the joint
velocity _θ. The expression for the linear and angular velocities for
the ith joint is expressed as follows (Spong and Vidyasagar, 2008):

vi � Jvmi
_θ, ωi � Jωmi

_θ, , (25)

where Jvmi
∈ R3×n and Jωmi

∈ R3×n are, respectively, the linear and
angular terms of the 6 × n Jacobian matrix of the ith CoM of the
arm, and RLi ∈ R3×3 is the rotation matrix of the ith link with
respect to ∑T.

The general equation for the overall kinetic energy for an n
DoF manipulator is:

KE � 1
2
∑n
i�1

mivi′vi + ωi′Iiωi[ ], (26)

where Ii is the inertia tensor of the ith link about a frame
attached at the CoM of the ith link. In order to express the
inertia tensor in∑T, one has to perform a transformation using
the rotation matrix RLi: I

T
i � RLiIiRLi′ . Hence, by substituting Eq.

25 into Eq. 26, the expression for the arm’s total kinetic
energy is:

KE � 1
2
_θ′∑n

i�1
miJvi′ Jvi + Jωi

′ RLiIiRLi
′ Jωi[ ] _θ. (27)

Eq. 27 can be written in matrix form:

KE � 1
2
_θ
′
Dm

_θ, (28)

where Dm ∈ Rn×n is the symmetric positive definite mass matrix
of the robotic manipulator, and it is expressed as:

Dm �∑n
i�1

miJvi′ Jvi + Jωi
′ RLiIiRLi

′ Jωi( ). (29)

4.2 The Coriolis and Centrifugal Forces
The joints’ rotational motion results in extra forces known as the
Coriolis and centrifugal forces. These forces are computed as
follows (Spong and Vidyasagar, 2008):

ckj �∑n
i�1

cijk _θi �∑n
i�1

1
2

zdkj

zθj
+ zdki

zθj
+ zdij

zθk
{ } _θi, (30)

where ckj are terms constituting the matrix of Coriolis and
centrifugal forces denoted as Cm ∈ Rn×n.

From Eqs 29, 30, the equation describing the linear and
angular motion of the arm, the target frame ∑T is:

τm � Dm
€θ + Cm

_θ. (31)

5 JACOBIAN MATRIX FOR THE
KINEMATICS OF THE CFSR

The Jacobian matrix relates the velocity of the end-effector, in
the Cartesian space, with the velocity of the space robot, in the
configuration space. It describes the kinematics of multibody

chain, such as the space robot, at the velocity level. It is
expressed as:

_re
ωe

[ ] � Jsc Jm[ ] _X
_θ

[ ]. (32)

The submatrices constituting the Jacobian matrix are defined
as follows:

Jsc � Jvsc Jωsc[ ]′, Jm � Jvm Jωm[ ]′ ,
where Jvsc ∈ R3×6 and Jωsc

∈ R3×6 are, respectively, the linear and
rotational components of the Jacobian matrix for the spacecraft
base; and Jvm ∈ R3×n and Jωm

∈ R3×n are, respectively, the linear
and rotational components of the Jacobian matrix for the arm.

The kinematics of a spacecraft can be expressed using either
Euler angles or quaternions. Depending on which of these two
methods is selected to describe the motion of the space robot, the
derivation of the Jacobian matrix varies accordingly. Moreover,
when designing a path for the end-effector, the Jacobian matrix
related to the end-effector’s position is required, whereas the
Jacobian involved in the dynamics is related to the position of the
ith CoM of the chain. In the following section, the Jacobian
matrix of the CFSR is derived for a potential use with both Euler
and quaternions. Also, the end-effector’s velocity, as well as the
ith CoM velocity, is described in ∑T.

5.1 Jacobian Matrix of the End-Effector in∑T Using Euler Rate
Deriving the Jacobian matrix of the space robot for use with Euler
rate involves several partial derivatives of the rotation matrices as
well the spacecraft base’s transformation matrix Rω defined as
follows (Wie, 2008):

Rω �
1 0 −sin(β)
0 cos(α) sin(α)cos(β)
0 −sin(α) cos(α)cos(β)
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (33)

5.1.1 The Linear Jacobian of the End-Effector
The linear velocity of the end-effector, in the Cartesian space with
respect to ∑T, is derived using Eq. 2a as follows:

_re � _rT + _reB + ωsc × reB, (34)

where reB ∈ R3 is the vector from the origin of ∑B to the end-
effector, as seen in Figure 3 and described as:

reB � Rscs0 +∑n
i�1

RLi−1li−1, (35a)

_reB � _Rscs0 +∑n
i�1

_RLi−1li−1, (35b)

where s0 ∈ R3 is the vector from the origin of ∑B to the first joint
of the arm. and li ∈ R3 is the vector from the ith joint to the (i +
1)th joint.

The steps of the differentiation of a rotation matrix were
presented by Umetani and Yoshida (1989) as follows:
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_Rsc � zRsc

zα
_α + zRsc

zβ
_β + zRsc

zc
_c � zRsc

zϕ
_ϕ. (36a)

_RLi−1 �∑i−1
k�0

zRLi−1
zqk

_qk �
zRLi−1
zϕ

_ϕ +∑i−1
k�1

zRLi−1
zθk

_θk. (36b)

where alpha is the roll angle, beta is pitch angle, and gamma is the
yaw angle of the spacecraft base. In addition, phi is the vector of
spacecraft base orientation in the target frame.

Using Eq. 36, the linear velocity of the end-effector described
by Eq. 34 becomes:

_re � _rT + zRsc

zϕ
s0 +∑n

i�1

zRLi−1
zϕ

li−1⎡⎣ ⎤⎦ _ϕ + ∑n
i�1
∑i−1
k�1

zRLi−1
zθk

li−1⎡⎣ ⎤⎦ _θ
−[reB]×ωsc . (37)

The last term of Eq. 37 involves the body rate ωscwhich can be
a function of Euler rate and Rω using Eq. 33. The linear velocity
described by Eq. 37 then becomes:

_re � _rT + zRsc

zϕ
s0 +∑n

i�1

zRLi−1
zϕ

li−1⎡⎣ ⎤⎦ _ϕ + ∑n
i�1
∑i−1
k�1

zRLi−1
zθk

li−1⎡⎣ ⎤⎦ _θ
}− [reB]×Rω

_ϕ. (38)

From Eq. 38, the linear Jacobian submatrices for both the
spacecraft base and the arm are:

Jvsc� E Jvsc″ (1) Jvsc″ (2) Jvsc″ (3)[ ]
Jvsc″ (1) �

zRsc

zα
s0 +∑n

i�1
zRLi−1
zα

li−1 − [reB]×Rωe1,

Jvsc″ (2) �
zRsc

zβ
s0 +∑n

i�1
zRLi−1
zβ

li−1 − [reB]×Rωe2,

Jvsc″ (3) �
zRsc

zγ
s0 +∑n

i�1
zRLi−1
zγ

li−1 − [reB]×Rωe3,

Jvm � Jvm″ (1) Jvm″ (2) . . . Jvm″ (n)[ ]
Jvm″ (j) � ∑j

i�1∑i−1
k�1

zRLi−1
zθk

li−1, j � 1, 2, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (39)

where E ∈ R3×3, Jvsc″ (1), Jvsc″ (2), Jvsc″ (3) ∈ R3, Jvm″ (j) ∈ R3 and e1, e2,
e3 are unit vectors.

5.1.2 The Rotational Jacobian of the End-Effector
The angular velocity of the end-effector can be expressed as:

ωe � ωsc + ωeB

ωeB �∑n

i�1RLi 0 0 _θi[ ]′ }, (40)

where ωe ∈ R3 is the angular velocity of the end-effector in ∑T,
ωeB ∈ R3 is the angular velocity of the end-effector in ∑B, and
ωsc ∈ R3 is the angular velocity of the spacecraft base in ∑T.

Using Eqs 33–40, ωe becomes:

ωe � Rω

_α
_β
_c

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ +∑n
i�1

RLi

0
0
_θi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (41)

From Eq. 41, the rotational Jacobian submatrices for both the
spacecraft base and the arm are:

Jωsc
� 0 Jωsc

″ (1) Jωsc
″ (2) Jωsc

″ (3)[ ]
Jωsc
″ (1)� Rωe1
Jωsc
″ (2)� Rωe2
Jωsc
″ (3)� Rωe3

Jωm
� Jωm

″ (1) Jωm
″ (2) . . . Jωm

″ (n)[ ]
Jωm
″ (j) � ∑j

i�0RLie3 j � 1, 2, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (42)

where 0 ∈ R3×3 Jωsc
″ (j) ∈ R3 and Jωm

″ (j) ∈ R3 and e1, e2 and e3 are
unit vectors.

5.1.3 The Full Jacobian Translating the Velocities of
the End-Effector
From Eqs 39–42, the overall Jacobianmatrix for the space robot is
as follows:

Jsc Jm[ ] � E Jvsc″ | Jvm
0 Jωsc

″ | Jωm

[ ]. (43)

5.2 Jacobian Matrix of the ith CoM in ∑T

Using Euler Rate
The Jacobian described by Eq. 43 is used to find the position of
the end-effector in the Cartesian space, given a configuration or
the inverse procedure for path planning. However, the matrices
Jvmi

and Jωmi
of Eq. 29 relate to the velocity of the CoM of the ith

link with the velocities in the configuration space. For this reason,
the equations for Jvmi

and Jωmi
in Eq. 29 are different from those

for Jvm and Jωm
in Eqs 39–42.

5.2.1 The Linear Jacobian of the ith CoM
Using Eq. 2a, the linear velocity of the ith CoM, with respect to∑T, is determined as follows:

_ri � _rT + _riB + ωsc × riB, (44)

FIGURE 3 | Vector representation for the space robot’s physical
parameters (Seddaoui, 2020).
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where riB is the vector from the origin of ∑B to the ith CoM,
as seen in Figure 3. It is represented by the following
equation:

riB �∑i
j�1

RLjbj + RLj−1sj−1( ), (45)

where bi ∈ R3 is the vector from the ith joint to the CoM of the ith
link, and si−1 ∈ R3 is the vector from the CoM of the (i − 1)th link
to the ith joint as shown in Figure 3.

Differentiating Eq. 45 and using the derivatives of the rotation
matrix in Eq. 36 give:

_riB �∑i
j�1

zRLj

zϕ
bj + zRLj−1

zϕ
sj−1[ ] _ϕ +∑i

j�1
∑i
k�1

zRLj

zθk
bj +∑j−1

k�1

zRLj−1

zθk
sj−1⎡⎣ ⎤⎦ _θ.

(46)

By substituting Eq. 46 into Eq. 44, the equation for the linear
velocity of the ith CoM becomes:

_ri� _rT +∑i

j�1
zRLj

zϕ
bj + zRLj−1

zϕ
sj−1[ ] _ϕ

+ ∑i

j�1 ∑j

k�1
zRLj

zθk
bj +∑j−1

k�1
zRLj−1

zθk
sj−1[ ] _θ − [riB]×Rω

_ϕ.

(47)

From Eq. 47, the linear Jacobian matrices, derived for the
dynamics, for both the base spacecraft and the arm are:

Jvsci � E Jvsci
″ (1) Jvsc″ (2) Jvsc″ (3)[ ]

Jvsci
″(1) �∑i

j�1
zRLj

zα
bj + zRLj−1

zα
sj−1[ ] − [riB]×Rωe1

Jvsci″(2) �∑i

j�1
zRLj

zβ
bj + zRLj−1

zβ
sj−1[ ] − [riB]×Rωe2

Jvsci
″(3) �∑i

j�1
zRLj

zc
bj + zRLj−1

zc
sj−1[ ] − [riB]×Rωe3

Jvmi
(j) �∑i

j�0 ∑j

k�1
zRLj

zθk
bj +∑j−1

k�1
zRLj−1

zθk
sj−1[ ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where Jvsci is the ith linear Jacobian submatrix of the spacecraft
base resulting from the motion of the base itself and the arm, and
Jvmi

(j) is the jth column of the linear Jacobian matrix of the ith
CoM of the arm.

5.2.2 The Rotational Jacobian of the ith CoM
The angular velocity of the ith CoM in∑T is expressed as follows:

ωe � ωsc + ωsc
i

ωsc
i �∑i

j�1RLj 0 0 _θi[ ]′⎫⎬⎭, (48)

whereωsc
i ∈ R3 is the angular velocity of the ith CoM in∑B. Based

on Eq. 42, the rotational Jacobian for the ith CoM is:

Jωsc
� 0 Jωsc

″ (1) Jωsc
″ (2) Jωsc

″ (3)[ ]
Jωsc
″ (1) � Rωe1
Jωsc
″ (2) � Rωe2
Jωsc
″ (3) � Rωe3

Jωmi
(j) �∑i

j�1RLje3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (49)

where Jωmi
(j) is the jth column of the rotational Jacobian matrix

of the ith CoM of the manipulator.

5.3 Jacobian Matrix of the End-Effector in∑T Using Body Rate
It is known that singularities can occur when using the Euler rate _ϕ
to express the attitude of the spacecraft base. Hence, quaternions
are preferred to avoid singularities. For this reason, the Jacobian
matrix has to be expressed with respect to the body rateωsc to allow
an easy transformation to quaternions. In this case, there are no
partial derivatives of the rotation matrices involved.

5.3.1 The Linear Jacobian of the End-Effector Using
Body Rate
The linear velocity of the end-effector, described by Eq. 34, is here
derived in a different manner to maintain the body rate term in
the equation. This is performed using another method for the
derivative of the rotation matrices Rsc and RLi, hereafter
presented as (Spong and Vidyasagar, 2008):

_Rsc � [ωsc]×Rsc

� [e1]×Rscωscx + [e2]×Rscωscy + [e3]×Rscωscz
}, (50)

and
_RLi−1 �∑i−1

j�1RLj−1[ωj]×RLi−1

� [ωsc]×RLi−1li−1 +∑i−1
j�1RLj−1[ωj]×RLi−1

� [e1]×RLi−1li−1ωscx + [e2]×RLi−1li−1ωscy + [e3]×RLi−1li−1ωscz +
+∑i−1

j�1RLj−1[e3]×RLi−1
_θj

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (51)

Substituting Eqs 50, 51 into Eq. 34 gives:

_re � _rT + [ωsc]×Rscs0 +∑n

i�1[ωsc]×RLi−1li−1 − [reB]×ωsc,

� _rT + [e1]×Rscs0 +∑n

i�1[e1]×RLi−1li−1 − [reB]×e1( )ωscx

+ [e2]×Rscs0 +∑n

i�1[e2]×RLi−1li−1 − [reB]×e2( )ωscy

+ [e3]×Rscs0 +∑n

i�1[e3]×RLi−1li−1 − [reB]×e3( )ωscz

+∑n

i�1∑i−1
j�1RLj−1[e3]×RLi−1li−1 _θj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(52)

Expressing Eq. 52 in matrix form gives the following Jacobian
submatrices for both the spacecraft base and the arm:

Jvsc� E Jvsc″ (1) Jvsc″ (2) Jvsc″ (3)[ ]
Jvsc″ (1) � [e1]×Rscs0 +∑n

i�1[e1]×RLi−1li−1 − [reB]×e1,
Jvsc″ (2) � [e2]×Rscs0 +∑n

i�1[e2]×RLi−1li−1 − [reB]×e2,
Jvsc″ (3) � [e3]×Rscs0 +∑n

i�1[e3]×RLi−1li−1 − [reB]×e3,
Jvm � Jvm″ (1) Jvm″ (2) . . . Jvm″ (n)[ ]

Jvm″ (j) �∑j

k�1∑i−1
i�1RLk−1[e3]×RLi−1li−1, j � 1, 2, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (53)
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5.3.2 The Rotational Jacobian of the End-Effector
Using Body Rate
Using Eq. 48, the rotational Jacobian submatrix, used to find the
angular velocity of the end-effector, with respect to body rate
expressed in matrix form is:

Jωsc
� 0 e1 e2 e3[ ]

Jωm
� Jωm

″ (1) Jωm
″ (2) . . . Jωm

″ (n)[ ]
Jωm
″ (j) � ∑j

i�1RLie3 j � 1, 2, . . . , n

⎫⎪⎪⎬⎪⎪⎭, (54)

where 0 ∈ R3×3 and e1, e2, e3 are unit vectors.

5.4 Jacobian Matrix of the ith CoM in ∑T

Using Body Rate
Similar to the Jacobian matrices of the links’ CoMs using Euler
rate, deriving these matrices using body rate is necessary when
quaternions are utilized.

5.4.1 The Linear Jacobian of the ith CoM Using Body
Rate
Differentiating Eq. 45 using the derivatives of the rotation
matrices in Eqs 50, 51 gives:

_riB �∑i

j�1 [ωsc]×RLjbj + [ωsc]×RLj−1sj−1( )
+∑i

j�1 ∑j

k�1RLk−1[ωk]×RLjbj +∑j−1
k�1RLk−1[ωk]×RLj−1sj−1( ).

(55)

Substituting Eq. 55 into Eq. 44 gives the expression for the linear
velocity of the ith link using the spacecraft body rate as follows:

_ri � _rT + ∑i

j�1 [e1]×RLjbj + [e1]×RLj−1sj−1( ) − [riB]×e1( )ωx

+ ∑i

j�1 [e2]×RLjbj + [e2]×RLj−1sj−1( ) − [riB]×e2( )ωy

+ ∑i

j�1 [e3]×RLjbj + [e3]×RLj−1sj−1( ) − [riB]×e3( )ωz

+ ∑i
j�1 ∑j

k�1RLk−1[e3]×RLjbj +∑j−1
k�1RLk−1[e3]×RLj−1sj−1( ) _θ.

(56)

Expressing Eq. 56 in matrix form gives the following linear
Jacobian submatrices to compute the linear velocity of the ith link:

Jvsci � E Jvsci
″ (1) Jvsci

″ (2) Jvsci
″ (3)[ ]

Jvsci
″ (1) �∑i

j�1 [e1]×RLjbj + [e1]×RLj−1sj−1( ) − [riB]×e1
Jvsci
″ (2) �∑i

j�1 [e2]×RLjbj + [e2]×RLj−1sj−1( ) − [riB]×e2
Jvsci
″ (3) �∑i

j�1 [e3]×RLjbj + [e3]×RLj−1sj−1( ) − [riB]×e3
Jvmi

(j) � ∑i
j�1

∑j

k�1RLk−1[e3]×RLjbj +∑j−1
k�1RLk−1[e3]×RLj−1sj−1( )j � 1, 2, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(57)

5.4.2 The Angular Jacobian of the ith CoM Using Body
Rate
It is similar to the rotational Jacobian in Eq. 49, and it is expressed
as follows:

Jωsc
� 0 e1 e2 e3[ ]

Jωmi
(j) � ∑i

j�1RLje3 j � 1, 2, . . . , n

⎫⎬⎭ (58)

5.4.3 Simulation Validation of the Kinematic Equations
It is important to validate the kinematic model of the space robot
before integrating it with the equations of the dynamics. As
presented in this article, the equations for the motion of the
end-effector and the ith CoM are different. The inverse
kinematics computation uses Eq. 35a as it represents the end-
effector’s motion. The motion of the links’ CoM, represented by
Eq. 44, is used to compute the robot’s dynamics. The simulation-
based validation uses these two equations to define the motion of
the manipulator. Testing these two equations for different space
robot configurations will help validate the kinematics equations
by verifying if, for each configuration, the position of the ith CoM
corresponds to the ith link.

For the simulations, the joint angles were computed separately
from the positions of the end-effector and the links’ CoM and
were plotted in the same plot to check if they coincide. The check
was performed not only visually but also by comparing the
positions of each CoM with respect to its link, in six arbitrary
sets of space robot configurations, including the arm’s joints and
spacecraft’s attitude. This process was carried out to validate the
accuracy of the two sets of equations before integrating them with
the kinematics and dynamics.

The results are shown in Figure 4, where the first three
configurations have a fixed spacecraft base and joints,
respectively, equal to: θ � [11° 11° 11° 0° 0° 0°]′, θ � [0° 0° 0° 0°

0° 0°]′, and θ � [0° 0° 30° 0° 0° 0°]′. The last three configurations
have a fixed joint angle equal to θ � [0°–30° 0° 30° 30° 0°]′ and three
different sets of base rotations defined, respectively, as rotation
about z axis, rotations about z and y axes, and rotations about z, y
and x axes. This simulation-based validation proves the
correctness of the equations used in the derivation of the
Jacobian matrices that describe the kinematics of the CFSR.

6 THE DYNAMIC COUPLING BETWEEN
THE ARM AND THE SPACECRAFT BASE

The dynamic coupling describes the interactions between the arm
and its base during the motion of the space robot. The impact of
the motion of the base on the arm is introduced through the
Jacobian matrix. In other words, desired changes in the pose of
the spacecraft base will systematically change the end-effector’s
position through the Jacobian matrix. This feature is used to aid
the arm to reach the target. However, the motion of the arm
produces undesired changes in the pose of the spacecraft base,
which in return affect the end-effector’s position. This results
from the motion of the system’s CoM, which corresponds to the
last two terms of Eq. 22. These two terms are:

DξB + CξB � Mt€rξB
MtrξB × €rξB +∑n

i�1Ii _ωi + Iξ _ωξB + IiB _ωξB
[ ] +

+ 2Mtωsc × _rξB
_IξωξB + _IiBωξB + 2MtrξB × ωsc × _rξB( )[ ].

(59)

The angular velocity ωξB is expressed as follows (Curtis, 2013):
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ωξB � rξB × _rξB
r2ξB

. (60)

The derivative ofωξB, described by Eg (60), is defined as follows:

_ωξB � rξB × €rξB
r2ξB

+ 2
rξB × _rξB

r3ξB
. (61)

Vector rξB and its first derivative are defined as follows:

rξB � 1
Mt

∑n
i�1

miriB, (62a)

_rξB � 1
Mt

∑n
i�1

mi _riB. (62b)

In order to derive the first term of Eq. 59, the second derivative
of vector riB has to be computed. Its first derivative is defined by
Eq. 55, which was used to find the linear term of the Jacobian

matrix of the ith link in ∑T. Contrarily, vector riB is here defined
in∑B. This changes the origin of the rotation matrices from∑T to∑B. Hence, the first derivative of vector riB is computed as follows:

_riB �∑i
j�1

∑j
k�1

RLk−1[ωk]×RLjbj +∑j−1
k�1

RLk−1[ωk]×RLj−1sj−1⎛⎝ ⎞⎠. (63)

An inspection of Eq. 63 shows that it is similar to the linear
part of the ith link’s Jacobian matrix as described in Eq. 57.
Therefore, the first derivative of vector riB is given as:

_riB �∑n
i�1

Jvmi

_θ. (64)

The second derivative of vector riB is then defined as:

€riB �∑n
i�1

Jvmi

€θ + _Jvmi

_θ( ). (65)

The expression for the first term of Eq. 59 is defined as follows:

FIGURE 4 | Links CoMs’ positions using different joint angles for arm and base attitude (Seddaoui, 2020).
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€rξB � 1
Mt

∑n
i�1

miJvmi

€θ + 1
Mt

∑n
i�1

mi
_Jvmi

_θ. (66)

The term∑n
i�1Ii _ωi is to be further derived tomake it function of

the joint velocity _θ. This is achieved through finding the equation
for ωi as follows:

ωi �∑i
j�1

RLjθj. (67)

Eq. 67 is similar to the rotational part of the ith link’s Jacobian
matrix. Hence:

∑n
i�1

Iiωi �∑n
i�1

IiJωmi

_θ (68a)

∑n
i�1

Ii _ωi �∑n
i�1

IiJωmi

€θ +∑n
i�1

Ii _Jωmi

_θ. (68b)

Substituting Eqs 62a, 62b, (Eq. 66), and (Eq. 68b) into (Eq.
59) and rearranging give:

DξB + CξB �
∑n

i�1miJvmi

1 + Iξ + IiB
Mtr

2
ξB

( )[rξB]×∑n

i�1miJvmi
+∑n

i�1IiJωmi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦€θ

+ Csc.mv

Csc.mω
[ ] _θ,

(69)

where matrices Csc.mv and Csc.mω are defined as follows:

Csc.mv �∑n

i�1 mi
_Jvmi

+ 2ωsc × Jvmi
( ),

Csc.mω �∑n

i�1 Ii _Jωmi
+ 2rξB × ωsc × Jvmi

( )(
+ _Iξ + _IiB

Mtr
2
ξB

[rξB]×∑n

i�1miJvmi
+ 2

Iξ + IiB
Mtr

3
ξB

[rξB]×∑n

i�1miJvmi
).

Writing Eq. 69 in a compact matrix form gives:

DξB + CξB � Dsc.mv

Dsc.mω

[ ]€θ + Csc.mv

Csc.mω

[ ] _θ � Dsc.m
€θ + Csc.m

_θ, (70)

where Dsc.mv ∈ R3×n and Dsc.mω ∈ R3×n are matrices related to the
dynamic coupling between the arm and its spacecraft base, and
matrices Csc.mv ∈ R3×n and Csc.mω ∈ R3×n involve the Coriolis and
centrifugal terms originating from the interaction between the
arm and the spacecraft base.

The model presented in this article has been extensively used in
simulations to test the controllers presented in Seddaoui et al. (2019)
and Seddaoui and Saaj (2019). The controllers are model-based
controllers designed as a combined H∞ controller (Seddaoui and
Saaj, 2019) and its extension as an adaptive controller to minimize
the control forces and torques (Seddaoui et al., 2019). Moreover, the
CFSR model and the adaptive H∞ controller were used to test the
trajectory planning algorithm introduced by Seddaoui and Saaj
(2021). Simulation results showcasing the desired and actual
spacecraft position and orientation trajectories, the desired and
actual trajectories of the arm joints, and the final Cartesian

motion of the CFSR when using the model presented in this
article are presented by Seddaoui and Saaj (2021).

7 CONCLUSION

An accuratemathematicalmodel that captures the complex dynamics
of a space robot is helpful for effective pose control of space robot in
extreme conditions. The controlled-floating mode of operation of a
space robot is distinct from the free-flying and free-floating modes in
terms of the nature of motion and corresponding systemmodel. This
tutorial guides the reader through a systematic process to derive the
nonlinear dynamic model of CFSR. The equation of motion derived
with respect to a frame attached to the target spacecraft complies with
the close-proximity relative motion in orbit. The changes in the CoM
and subsequent changes to the overall inertia matrix of the coupled
system were considered. The refined model of the CFSR presented
includes a few additional mathematical terms that account for these
perturbations. In short, this tutorial helps users to compute the CFSR
model as accurately and efficiently as possible.

It is important to note that the model presented here can be used
for space robots of any size and mass. This is possible because the
physical parameters of the space robot are the inputs to the generated
matrices, which are the building blocks of the final model. One
exception is the array of rotation matrices specific to each space
robot as it needs to be defined beforehand. Unlike free-flying and
free-floating space robots, a CFSR will require an advanced path-
planning algorithm to generate optimal trajectories for both the arm
and its base. This path planner must consume as little energy as
possible and produce a minimal dynamic coupling effect. Moreover,
a controller capable of executing the desired motion with a small
control effort is also vital for the mission’s success.

The equation of motion of the controlled-floating space robot
cannot be reduced to that of the freefloating space robot because they
are fundamentally different. The latter is based on the generalized
Jacobianmatrix that is specific to free-floating robots with an assumed
fixed CoM. In this method, the dynamics and kinematics of the space
robot are tightly related and part of the same equation that is the
generalized Jacobian matrix. Alternatively, the free-flying mode could
be a subset of the CFSR when only controlled translation of the base
spacecraft is required without the need to change its attitude. This
state is different from free-floating mode where both translation and
rotation of the base spacecraft are uncontrolled. This scenario is
possible theoretically, but more research is needed to verify this
statement, which is outside the scope of this article.
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