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The field of Human-Robot Collaboration (HRC) has seen a considerable amount of
progress in recent years. Thanks in part to advances in control and perception
algorithms, robots have started to work in increasingly unstructured environments,
where they operate side by side with humans to achieve shared tasks. However, little
progress has been made toward the development of systems that are truly effective in
supporting the human, proactive in their collaboration, and that can autonomously take
care of part of the task. In this work, we present a collaborative system capable of assisting
a human worker despite limited manipulation capabilities, incomplete model of the task,
and partial observability of the environment. Our framework leverages information from a
high-level, hierarchical model that is shared between the human and robot and that
enables transparent synchronization between the peers andmutual understanding of each
other’s plan. More precisely, we firstly derive a partially observable Markov model from the
high-level task representation; we then use an online Monte-Carlo solver to compute a
short-horizon robot-executable plan. The resulting policy is capable of interactive
replanning on-the-fly, dynamic error recovery, and identification of hidden user
preferences. We demonstrate that the system is capable of robustly providing support
to the human in a realistic furniture construction task.

Keywords: human-robot collaboration (HRC), partially observable markov decision process (POMDP), partially
observable Monte Carlo planning, hierarchical task network (HTN) planning, human-robot interaction (HRI)

1 INTRODUCTION

Recent trends in collaborative robotics are shifting focus on mixed human-robot environments
where robots are flexibly adaptable to the rapid changes of the modern manufacturing process and
can safely and effectively interoperate with humans. However, albeit considerable progress in robot
perception, manipulation and control has improved the robustness and dependability of such
platforms, robots are still used as mere recipients of human instructions (Brawer et al., 2018). That is,
the human-robot collaboration (HRC) is still fundamentally unbalanced, with the bulk of the
perceptual, cognitive and manipulation authority pertaining to the human. To fill this gap, recent
works have begun to investigate truly collaborative framework that allow the human and the robot to
focus on the part of the task for which they are best suited, and mutually assist each other when
needed (Shah and Breazeal, 2010; Hayes and Scassellati, 2015; El Makrini et al., 2017; Roncone et al.,
2017; Chang and Thomaz, 2021). Motivated by these results, in this work we focus our efforts on the
design and implementation of robot platforms and human–robot interactions that exhibit a variety
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of supportive behaviors in a mixed-initiative paradigm (Allen
et al., 1999). Our goal is for the robot to be capable of assisting the
human when they need support the most, provided some degree
of knowledge of the task and necessary and sufficient information
about the state of the system. Supportive behaviors such as
handing over task components, providing tools, cleaning-up
unused elements, holding a part during assembly happen to be
extremely beneficial for the efficient completion of a task, and are
within the realm of possibilities for modern robotic platforms.
Such behaviors may also cover information retrieval tasks such as
lighting an area of a working space, providing execution time, or
detailing parts of the task plan to the user. For the purposes of this
paper, we make two design decisions: 1) we focus on how to
maximize the usefulness of existing robot platforms, i.e., how to
maximally exploit the limited control, perceptive and reasoning
skills the robot has in order to best support the human partner; 2)
we posit that it is not necessary for the robot to have exhaustive
knowledge of the task, nor to be able to completely and
comprehensively perceive the environment. Rather, for a
system to provide effective support, partial observability of the
state of the world and the internal state of the human partner
(composed of their beliefs and intents) is sufficient.

A key requirement for collaboration is that peers are able to
share a common understanding of the task (Searle, 1990; Shah
and Breazeal, 2010). However, an important differentiator
between HRC and human-human teaming is that there
currently exists a gap between the cognitive capabilities of
humans and robots. This makes it both troublesome for the
robot to reach the level of task understanding that humans have,
and impractical for the human to encode the task model in a way
the robot can utilize. To alleviate this issue, in this work we
provide shared task modeling through hierarchical task models
(HTMs). HTMs are convenient because they are widely used for
high-level task planning (Erol et al., 1994), they are close to
human intuition (Roncone et al., 2017), and they contain enough
information for the robot to be efficient and effective in its
support. Depending on the task, an HTM may encode pre-
and post-conditions (Georgievski and Aiello, 2015),
communicative actions (Brawer et al., 2018), and a variety of
operators to combine nodes and subtasks (Hayes and Scassellati,
2016). Notably, these shared task models can provide a substrate
for human robot communication and thus foster transparent
interactions between peers during task execution (Hoffman and
Breazeal, 2004; Brawer et al., 2018). Importantly, the robot is only
made aware of the part of the task that matters to it, which
simplifies both task planning and plan execution. We trade
complete knowledge for adaptability, and optimal planning for
good-enough support by design.

In conclusion, in this paper we present a novel framework able
to effectively empower a robot with supportive behaviors in a
mixed-initiative paradigm. We show, to our knowledge, the first
practical implementation of an HRC application where the robot
autonomously chooses to support the human when it deems it
appropriate, and selects the right supportive action among the
many it is provided with. Our contribution centers around a
framework that: 1) maximizes the performance of the mixed
human-robot system by leveraging the superior perceptual and

manipulative skills of the human while entrusting the robot with
the role it is best suited for, i.e., autonomous helper; 2)
systematically leverages the human to improve task estimation,
disambiguate unobservable states, and align mental models
between peers; 3) dynamically adapts to (hidden) user
preferences in terms of when and where to provide supportive
behaviors, and modifies its policy during execution to comply
with it. We validate the proposed approach in joint construction
tasks that simulate the manufacturing process typical of Small
and Medium Enterprises (SMEs), where features such as
reconfigurability and ease of deployment are paramount.

In the following sections, we introduce the reader to the state
of the art and related works in the field (Section 2). Then, we
detail the proposed approach, focusing on how it differentiates
from relevant research in the topic (Section 3). The experimental
setup and the experiment design are presented in Section 4,
followed by the Results (Section 5) and Conclusions (Section 6).

2 BACKGROUND AND RELATED WORK

This work capitalizes on past research in the field of high-level
task reasoning and representation. As detailed in Section 3, the
core contribution of this paper is a system able to convert human-
understandable hierarchical task models into robot-executable
planners capable of online interaction with the human. Contrarily
to more traditional techniques that leverage full observability in
the context of HRC applications [e.g., Kaelbling and Lozano-
Pérez (2010); Toussaint et al. (2016)], our system deliberately
optimizes its actions based on the interaction dynamics between
the human and the robot. We explicitly account for uncertainty in
the state of the world (e.g., task progression, availability of objects
in the workspace) as well as in the state of the human partner
(i.e., their beliefs, intents, and preferences). To this end, we
employ a Partially Observable Markov Decision Process
(POMDP) that plans optimal actions in the belief space.

To some extent, this approach builds on top of results in the
field of task and motion planning [TAMP, see e.g., Kaelbling et al.
(1998); Kaelbling and Lozano-Pérez (2013); Koval et al. (2016)].
Indeed, similarly to Kaelbling and Lozano-Pérez (2013) we find
approximate solutions to large POMDP problems through
planning in belief space combined with just-in-time re-
planning. However, our work differs from the literature in a
number of ways: 1) the hierarchical nature of the task is not
explicitly dealt with in the POMDP model, but rather at a higher
level of abstraction (that of the task representation, cf. Section
3.1), which reduces complexity at planning stage; 2) we
encapsulate the complexity relative to physically interacting
with the environment away from the POMDP model, which
results in broader applicability and ease of deployment if
compared with standard TAMP methods; 3) most notably, we
handle uncertainty in the human-robot interaction rather than in
the physical interaction between the robot and the environment.
That is, our domain of application presents fundamental
differences with that targeted by TAMP techniques; there is
still no shared consensus in the literature on how to model
uncertainty about human’s beliefs and intents in general, and
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the collaboration in particular. Our work contributes to filling
this gap.

Planning techniques can enable human robot collaboration
when a precise model of the task is known, and might adapt to
hidden user preferences as demonstrated by Wilcox et al. (2012).
Similarly, partially observable models can provide robustness to
unpredicted events and account for unobservable states. Of
particular note is the work by Gopalan and Tellex (2015)
which, similarly to the approach presented in this paper, uses
a POMDP to model a collaborative task. Indeed, POMDPs and
similar models (e.g., MOMDPs) have been shown to improve
robot assistance (Hoey et al., 2010) and team efficiency
(Nikolaidis et al., 2015) in related works. Such models of the
task are however computationally expensive and not transparent
to the user. Hence, a significant body of work in the fields of
human-robot collaboration and physical human-robot
interaction focuses on how to best take over the human
partner by learning parts of the task that are burdensome in
terms of physical safety or cognitive load. Under this perspective,
the majority of the research in the field has focused on
frameworks for learning new skills from human
demonstration [LfD, Billard et al. (2008)], efficiently learn or
model task representations (Ilghami et al., 2005; Gombolay et al.,
2013; Hayes and Scassellati, 2016; Toussaint et al., 2016), or
interpreting the human partner’s actions and social signals
(Grizou et al., 2013).

No matter how efficient such models are at exhibiting the
intended behavior, they are often limited to simple tasks and are
not transparent to the human peer. Indeed, evidences from the
study of human-human interactions have demonstrated the
importance of sharing mental task models to improve the
efficiency of the collaboration (Shah and Breazeal, 2010;
Johnson et al., 2014). Similarly, studies on human-robot
interactions show that an autonomous robot with a model of
the task shared with a human peer can decrease the idle time for
the human during the collaboration (Shah et al., 2011). Without
enabling the robot to learn the task, other approaches have
demonstrated the essential capability for collaborative robots
to dynamically adapt their plans with respect to the task in
order to accommodate for human’s actions or unforeseen
events (Hoffman and Breazeal, 2004). Likewise, rich tasks
models can also enable the optimization of the decision with
respect to extrinsic metrics such as risk on the human (Hoffman
and Breazeal, 2007) or completion time (Roncone et al., 2017).

Our paper is positioned within this growing body of work
related to task representations in HRC. We sit on a large body of
literature on task and motion planning and POMDP planning
with the goal of designing novel human–robot interactions.
Unfortunately, little attention has been given to the issue of
explicitly tackling the problem of effectively supporting the
human partner, and only few works go in this direction.
Hayes and Scassellati (2015) presents an algorithm to generate
supportive behaviors during collaborative activity, although its
results in simulation fall short in terms of providing practical
demonstrations of the technique. Grigore et al. (2018) proposes a
model to predict supportive behaviors from observed
demonstration trajectories and hidden human preferences, but

the results are not operationalized and evaluated within a full
HRC system. On the other side of the spectrum, a number of
works cited above achieve to a certain amount supportive
behaviors without explicitly targeting them (Hoffman and
Breazeal, 2007; Shah et al., 2011; Gopalan and Tellex, 2015;
Toussaint et al., 2016). A limitation of these approaches is
that, as mentioned previously, they rely on exact task
knowledge that is not always available for complex tasks in
practical applications. In this work, we incorporate unknown
human preferences (i.e., they are not directly provided to the
system and they need to be inferred via interaction) while
automatically generating a complex POMDP from a minimal
data abstraction (i.e., the HTM) and forbidding the robot to
explicitly communicate with the human (which we did in our
prior work, Roncone et al. (2017)). To the best of our knowledge,
to date no work in human-robot collaboration has tackled the
problem of high-level decision making in collaborative scenarios
with this level of uncertainty of the human (in terms of human
state, human beliefs, and human preferences).

3 MATERIALS AND METHODS

This work capitalizes on previous research by the authors. In
Roncone et al. (2017), we demonstrated an automated technique
able to dynamically generate robot policies from human-readable
task models. We then exploited this framework in the context of
role assignment: our system was effective in autonomously
negotiating allocation of a specific subtask to either the human
or the robot during a collaborative assembly. In this work, we
expand this approach toward the more general problem of
optimally providing support to the human. Similarly to our
previous work (Roncone et al., 2017), we employ hierarchical
representations of the task at a level of abstraction suitable to
naïve human participants and understandable by the robot. The
model of the task is provided a priori, although other studies have
shown that it is possible to learn task models from human
demonstrations (Garland and Lesh, 2003; Hayes and
Scassellati, 2014). We then convert this task representation to
a robot policy by leveraging the flexibility of POMDP models.
This allows the robot to plan under uncertainty and explicitly
reason at a high level of abstraction.

It is worth noting that exploiting adaptive planning from
POMDPs has been already demonstrated in the context of
human-robot collaboration [e.g., Gopalan and Tellex (2015);
Nikolaidis et al. (2015)]. Planning under uncertainty is indeed
a major requirement for robots to interact with people. Future
robotic platforms are most likely to operate in highly
unstructured environments, for which even state of the art
perception systems are not going to provide full observability
or exact estimations. In this work, we push this idea to its limits,
inasmuch as we constrain our framework to the condition of
being nearly blind. That is, the robot is not able to directly observe
neither the state of the world (task progression, object locations,
etc.), nor the state of the partner (intents, preferences, etc). This
allows to investigate mechanisms of coordination though
communication and physical interaction in the environment.
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We achieve that by expanding the technique introduced in
Roncone et al. (2017), in that we leverage a high-level task
model to automatically generate the lower-level POMDP. We
then demonstrate how the resulting policy is successful in
providing support during realistic human robot collaborations.

3.1 Hierarchical Task Models
Hierarchical structures form an appealing framework for high-
level task representations; of particular interest is their capability
to enable reuse of components over different tasks. Additionally,
their level of abstraction is usually close to human intuition: this
facilitates human-robot communication about task execution
(Roncone et al., 2017).

Figure 1 depicts some example representations for real-world
construction tasks. Similarly to Hayes and Scassellati (2016), we
consider HTMs built from primitive actions with operators that
combine them into what we refer to as subtasks of increasing
abstraction. In this work, we assume that information about a set
of primitive actions is already available to the robot, and we
represent complex tasks on top of this action vocabulary. We
assume also that the robot has basic knowledge pertaining these
primitive actions. This can range from knowing the type of tools
and parts needed to perform an action, to being aware of the fact
that supporting the human through holding a part may be
beneficial during complex executions. In our previous work

(Roncone et al., 2017), we extended the CC-HTM
representation introduced in Hayes and Scassellati (2016) with
the introduction of a new alternative operator (∨ in Figure 1). It
adjoins the sequential (→) and parallel (‖) operators. This set of
operators proves suitable to capture the complexity of the
collaboration, as well as the constraints of a task execution.
For example, the parallel operator allows for the two peers to
perform two disjoint subtasks as the same time; conversely, the
sequential operator constrains them to a specific sequence of
execution.

Thanks to their simplicity, HTM models can conveniently be
drafted by non-expert workers and remain intuitive to
understand. Differently from traditional TAMP approaches
(Kaelbling and Lozano-Pérez, 2010, 2013), their high-level of
abstraction also enables decoupling of the task planning
component from the robot control element. This increases
flexibility, in that the robot just needs to be equipped with
some motor primitives to match the atomic actions that
compose the HTM. From then on, the same library of motor
primitives can be used to repurpose the robot to a new task.
Furthermore, it becomes easy to port the same task to a new
platform with comparable motor and perception skills.

One of the main limitations of HTM-like approaches to HRC
is that it is unlikely for the designer to be able to encode the
entirety of the information about the actual components of the

FIGURE 1 | Example HTMs for human-robot assembly tasks. The user can retrieve information on the task execution, and inquire the system about task
progression that will be highlighted by the robot during execution (cyan block in picture). The operator type between subtasks (→for sequential tasks, ‖ for parallel tasks,
∨ for alternative tasks) is also available for the user to inspect. (A) HTM used in Roncone et al. (2017). (B) HTM used in this work. See Section 5.2 for details.
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task. Although this poses limits to the breadth of applicability of
such techniques, we argue that, for a robot to provide effective
support, perfect knowledge about task execution is not needed
in the first place. A partial HTM, and specifically one that
conveniently encodes only the information that matters to
the robot, is sufficient for it to operate and interact with the
human. For example, the robot does not need to know how to
perform a screwing action, nor how to perceive progression of

the human screwing. What matters for a supportive robot is
what objects are needed to complete said action, and that the
human may be facilitated if the robot holds the part steadily. As
discussed in Section 3.2, our POMDP model complements
partial knowledge about the task and the state of the world
through interaction with the human partner. It can for example
supplant lack of perception about subtask progression by asking
the human when the subtask is completed, or by directly moving
on to the next subtask if its likelihood of subtask completion is
high enough.

3.2 Partially Observable Markov Decision
Processes
In this work, we use POMDPs to formulate the decision problem
that the robot faces, given a task to solve collaboratively with a
human and represented as an HTM as explained in Section 3.1.
POMDPs are a generalization of Markov decision processes
(MDPs), where there is only partial observability of the state
of the process. This important relaxation of what defines an MDP
allows for a significant gain in flexibility. It is particularly relevant
to model-imperfect perception and hidden states such as user
preferences. We use such an approach to optimize the robot
actions despite incomplete knowledge of the task and uncertainty
regarding the dynamics of the collaboration.

More precisely, a POMDP is defined by a 7-tuple (S, A, Ω, T,
O, R, γ), where S is a set of states, A is a set of actions, T is a set of
state transition probabilities, R: S × A→ I R is the reward or cost
function, Ω is a set of observations, O is a distribution of
observation probabilities, and γ ∈ [0, 1] is the discount factor.
Similarly to a MDP, at any given time the system lies in a specific
state s ∈ S, which in the case of POMDPs is not directly
observable. The agent’s action a ∈ A triggers a state transition
to state s’ ∈ S with probability T(s’|s, a) and an observation o ∈ Ω
with probability O(o|s’, a) that depends on the new state s’.
Finally, the agent gets a reward r ∈ R for taking the action a
while in state s. In case of POMDPs, the agent’s policy is defined
on a probability distribution over states b, called the belief state,
which accounts for the fact that the agent has no direct access to
the real state s. The goal is for the POMDP solver to find a policy
π(b): b → a that maximizes the future discounted rewards over a
possibly infinite horizon: E[∑∞

t�0γtrt]. Interestingly, actions that do
not change the underlying state of the system but only the belief state
are also valuable in this context. This proves particularly beneficial
for human collaboration, since information-gathering actions belong
to this paradigm. For example, this intuition can be used to model
communicative actions that trigger observations to disambiguate
uncertainty, or to favor low-entropy beliefs with small uncertainty
for both the human and the robot. In reality, the belief state is usually
very large and continuous; we use a policy that is defined on the
history of previous actions and observations that we denote by h ∈H.
Please refer to Section 3.4 formore information on howwe compute
a robot policy from POMDP models.

3.3 Restricted Model
We propose an automated technique able to transform task-level
HTMs into low-level robot policies through POMDPs. To this end,

FIGURE 2 | Simplified representation of the restricted model (RM) used
in this work. The figure represents an RM associated with a subtask 1 whose
successor in the HTM is subtask 2. This could be any of the terminating nodes
in Figure 1 that are connected via a sequential operator; please refer to
Section 3.3 to understand how to connect RMs with the alternative and
parallel operators). For the sake of simplicity, the figure only represents actions
that are taken starting from subtask 1. We assume that only two objects
“A” and “B” are available and that “A” is consumed by the subtask (like a
part of the assembly would be) while “B” is a tool used during the task
(e.g., a screwdriver). Each node represents a state, that is a factorization
of the HTM subtask, each possible combination of objects on the
workspace, and the user preference regarding the hold supportive
action. Full connections in the graph represent successful transitions for
the actions get and clean-up applied to objects “A” and “B” (that lead to a
none observation). When taken from other states (e.g., bringing “A”
which is already on the workspace), the action would fail, with an error
observation, and the state would not change. These cases are
represented by the red connections. Finally, the dotted connections
represent the hold and wait actions that, from any of the represented
states, lead to a transition to the state of the next subtask for which
object “B” only is present (i.e., the tool). This means that the transition
occurs even if the robot failed to bring all the required tools and parts: we
assume here that the human would be able compensate for robot
failures. The reward would however be maximal in the transition from
state with {A, B}. To simplify the figure, we omitted the states
corresponding to the no-hold preference. The graph for the no-hold
preference is nearly identical except for the fact that the hold action fails
from these states and hence wait is the only action to transition to the
next subtask.
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we convert each primitive subtask (that is, each leaf composing the
HTMs in Figure 1 into a small, modular POMDP, which we call a
restricted model (RM). Differently from Shani (2014), the RMs are
composed according to the HTM structure and the nature of its
operators, in particular: 1) a sequential operationwill concatenate two
RMs with a 100% transition probability; 2) an alternative operation
between two subtasks will split the robot’s belief space in two
branches composed of two RMs with a 50% transition probability
to each of them; 3) a parallel operator will bifurcate the belief space
similarly to 2) but will add a 100% transition probability to the
subtask not yet performed in each of the branches. In all, this approach
allows to conveniently mitigate the computational complexity of
planning a global policy in a high-dimensional state and action
space (due to the combinatorial nature of HTMs) by focusing on
short-horizon planning and the generation of a local policy for a single
subtask/RM. That is, each RM is mostly independent from the rest of
the problem and can be studied in isolation; however, RMs are still
connected to each other by the structure of the HTM and the agent
leverages this structure to maintain a belief that goes across subtasks
and across RMs. We consider this capability as being core of our
contribution, as it enables rich human-robot interactions that are
transparent to both the robot policy and the human.

Figure 2 depicts the RM developed in this work, which
incorporates information about the state space (affected only by
perceptual noise), information about the user preferences (unknown
to the robot), and information about the task (in the form of pre- and
post-conditions, objects and tools needed, and so forth). As
mentioned in Section 3.1, its action space corresponds to the set
of motor primitives available to the robot. For the purposes of this
work, we consider the following supportive actions: 1) wait for
the human to complete a subtask; 2) hold an object to provide
support to the human; 3) bring object (e.g., constituent parts,
small parts, buckets, or tools) onto the workspace; 4) clean-up
object from the workspace when not needed anymore. These
motor primitives are implemented as independent controllers
with their own logic: for example, the wait controller exploits
communication in order to ask the human when the current
operation has been completed before moving on to the new
subtask. Modularity is employed in order to derive a distinct
action for each object involved.

As mentioned earlier, the set of possible observations is
minimal by design: a none observation (the default), plus a set
of error observations returned by either the robot itself (e.g.,
object-not-found, kinematic-error) or initiated by the human
partner (e.g., wrong-action). Forcing the system to deal with a
limited set of observation is intentional. We additionally resorts
to the intuition that, when the robot’s execution is correct, the
human partner should not be concerned about reinforcing this
with positive feedback—which is time consuming and cognitively
taxing. Rather, feedback from the human partner should come
either if explicitly requested by the robot (to e.g., disambiguate
uncertainty), or if the robot’s decision making is wrong—and
negative feedback should be used to correct its course of actions.

Lastly, the state space S is composed of a set of factored states.
It is conceptually divided into three sub-spaces: 1) an HTM-
related state space Q pertains to task progression, and is derived
directly from the HTM representation. Each of the subtasks in the

HTM (i.e., each of the leaves) is assigned an unique state q ∈ Q;
additionally, one final state q̂ is associated with a virtual operation
that requires the robot to cleanup the workspace. 2) a subtask-
related state space is defined alongside the controllers that
perform each subtask; it is composed of information relating
parts and tools (e.g., if tools are present in the workspace, or if
parts have been “consumed”). 3) a human-related state space
encompasses information related to human preferences, beliefs
and intents. As shown in Section 4.3, in this work we
demonstrate how the proposed approach is able to adapt to
user preferences even if it is not explicitly made aware of them.

It is worth noting how the size of the state space S grows
exponentially with the number of preferences and objects, as
detailed in Section 3.4. In order to account for scalability of the
method, we define a generative POMDP model that circumvents
the issue of explicitly defining the full transition matrix T. Instead,
as detailed in Figure 1, we generate it as follows. Each action
affecting an object changes the state representing its presence in
the workspace: for example, bringing a screwdriver makes it
available on the workspace with high probability. The wait
action and eventually the hold action trigger the transition
from one HTM leaf to the next (according to their order in
the sequence, the final operations leading to a transition to the
special state q̂). This mechanism enforces that transitions between
HTM states are transparently synchronized with the human.
Hold only triggers the transition from states in which the
human has preference for holding and fails otherwise.
Additionally, the transition from one leaf to the next erases
from the state representation all the objects that have been
“consumed” by the subtask (typically, the parts that have been
used). The initial state is sampled by starting at the initial subtask
q0 ∈ Q; the workspace is assumed to be free of objects, and the
human preferences are randomly set.

Interestingly, the design choice of limiting the perception of
the state of the world naturally conforms to the statistical nature
of a POMDP approach. That is, adding uncertainty in the model
makes it ultimately more robust to actual uncertainty in the
collaborative interaction. Without loss of generality, the RM can
allow for unexpected transitions in order to account for actions
of the human that are not observed by the robot—e.g., when the
human partner fetches a required component by themselves,

TABLE 1 | Rewards used to train the policy on the POMDP model derived from
the HTM.

Event Reward

Final state reached 100
Subtask transition 10
Missing tool or part on state transition −15
Uncleaned object on final state −15
User preference is honored 10
Hold action taken −2
Wait action taken 0
Other action taken −1

Instead of a table of rewards for all state transitions, actions, and observations, we
present the rewards as triggered by events that can be cumulated. For example, if a final
state is reached through a wait action, but the screwdriver is still on the workspace, a
reward of 85 is obtained.
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unexpected failures, or missing objects. To model this, and to
avoid the robot to be stalled in a wrong belief, we introduce low
probability random transitions between all the state
features in S.

Finally, rewards are provided in the following cases: 1) when
the robot proposes to hold, and the human has preference for
holding; 2) when there is a transition between a subtasks and its
successor; 2) at completion of the full task. Additionally, each
action taken by the robot has an intrinsic cost, and a negative
reward is also given when the human has to bring or clean an
object which was not taken care of by the robot. Table 1
provides a summary of the rewards used in the experiment
from Section 5.2.

3.4 POMDP Planner
In this work, we implement a planner based on POMCP (Silver
and Veness, 2010), which is able to plan from generative models
and can handle very large state spaces. This is achieved through
Monte-Carlo estimation of the beliefs by using a set of particles to
represent each belief. A policy is learned based on all the visited
histories, which constrains exploration to feasible states only.

Namely, n particles can approximate a belief over states as
follows: each particle i is in a given state si, and they collectively
represent the belief:

b � 1
n
∑
i�1

nδsi, (1)

Where δs is the indicator function on the state s. A pseudo-code
algorithm detailing how the belief is updated in practice is shown
in Algorithm 1; a similar process is applied for updating the belief
when the robot gets an observation from the environment. In this
case, new states that led to an observation different than the one

the robot obtained are then discarded. Using particles for belief
representation and Monte-Carlo techniques for value estimation
addresses the issue of the belief space being too large to be
explicitly represented in its entirety. In a realistic HRC
domain—such as those detailed in Section 5—there are
typically thousands of states and tens of actions, but the
amount of plausible states at any time is limited. Hence,
representing the |S|-dimensional belief is not feasible, but at
the same time, despite large state spaces, beliefs are sparse. This is
well represented through sets of particles, that naturally conform
to sparse representations. Further, this approach only requires a
generative model of the transitions instead of representing the full
transition matrix, whose dimension is |S|2 × |A| × |O|.

Algorithm 1. Algorithm to simulate potential future hypotheses
about the consequence of a robot’s action viaMonte Carlo sampling.
Given a belief on the current state, our method repeatedly samples
from the set of particles in the belief and applies the logic illustrated
in Figure 1 to the state that the particle holds [match_action(a)].
This process yields a new particle that is added to the updated belief
on the following state. Once the new belief contains the desired
number of particles, the process stops.

The computational complexity of the planning is bound to
an exploration-exploitation trade-off. Namely, the planner
explores a tree whose branching factor is equal to the
number of actions multiplied by the number of
observations. Therefore, an important parameter to control
the complexity of the problem is the horizon of the
exploration. More precisely, we define the horizon either in
terms of the number of transitions or as the number of HTM
subtasks that the exploration accounts for. Such optimizations
result in locally optimal decisions for what concerns a fixed
number of subtasks. In order to limit computational
complexity, it is also possible to remove part of the
stochasticity introduced in Section 3.3 for what concerns
the transitions and the observations—although it still occurs
in the belief transitions that hence still represent all the
possible hypothesis. By doing so, we prevent the planner
from exploring feasible but rare events. In case these rare
events occur during live interaction with the human, the online
component of the planner is able to re-compute a new policy.
This makes the algorithm robust to unexpected events without
penalizing the exploration. That is, we artificially simplify the
model of the interaction at the offline planning step, but we
then compensate for its imperfections online—i.e., during task
execution.

FIGURE 3 | The experimental setup, in which a human participant
engages in a joint construction task with the Baxter Robot. In the picture, the
robot is supporting its human partner by holding a leg of the table while the
human is screwing. See Section 4.2 for information about the task.
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4 IMPLEMENTATION

4.1 Experimental Setup
The experimental evaluation is carried out on a Baxter Research
Robot (cf. Figure 3), using the Robot Operating System (ROS
Quigley et al., 2009). As mentioned in Section 3, even though we
do not concern with improving the physical capabilities of the
platform, we leverage the state of the art in robot perception and
control in order to build up a set of basic capabilities for the robot
to effectively support its human partner. The resulting
framework, originally developed in Roncone et al. (2017),
exposes a library of high level actions, that are the only
interface through which the POMDP planner can send
information to—and retrieve information from—the Baxter
system and the experimental setup.

The system presented in Roncone et al. (2017) provides
multiple, redundant communication channels to interact with
the human partner “on human terms”Breazeal, 2002). Among
the list of available layers, for the purposes of this work we
employ: 1) a Text-to-Speech (TTS) channel, used to verbally
interact with the human; 2) a Feedback channel, shown in the
robot’s head display, which provides feedback about its
internal states and intents (see Figure 3); 3) an Error
channel that allows the human to send error messages to
the robot, and is triggered by pressing one of the buttons on
the robot’s end effectors. In addition to this, a fourth channel
has been implemented, in the form of a Speech-to-Text (STT)
system able to convert human sentences into robot-readable
commands. It employs the Google Cloud STT API Goo (2021)
combined with a text parser that relies on a dictionary shared
in advance with the human participant.

Both arms are able to perform precise, closed loop visual
servoing tasks thanks to a pair of cameras their end effectors
are equipped with. The left arm is equipped with a vacuum
gripper, able to pick up flat surfaces with constant texture,
whereas the right end-effector is a parallel electric gripper
capable of performing more complex grasping tasks. We

maximize the usage of both arms by leveraging their
respective embodiments: to this end, two different
perceptual systems have been employed (cf. Figure 4). The
perception system for the left arm (Figure 4A) is provided by
ARuco (Garrido-Jurado et al., 2014), a library capable of
generating and detecting fiducial markers that are
particularly suitable for being positioned on flat surfaces.
For what concerns the right arm (Figure 4B), a custom
color-based pose estimation algorithm has been
implemented. It is detailed in the following section.

4.1.1 6D Object Reconstruction From Single View
We consider here the scenario in which the end-effector is
vertically placed on top of the pool of objects, and the objects
are in the field of view of the camera. In order to be able to grasp a
variety of objects with the parallel gripper installed on the Baxter’s
right arm (see Figure 4B), the following two steps are to be
performed: objects need to be firstly detected in the camera view,
and then their position and orientation has to be reconstructed in
the 3D operational space of the robot. For what concerns the
former, a number of different computer vision techniques can be
employed. In this work, we utilize a Hue-Saturation-Value (HSV)
color segmentation algorithm: that is, each object is detected
thanks to its color in the HSV color space, and its bounding box is
stored for later use. After an object has been detected, it is
necessary to estimate its 3D pose in the world reference frame.
We assume here that the object’s physical sizes (width and height)
are known, and that the matrices of intrinsic and extrinsic
parameters K and [R|T] are available. Notably, whilst K can
be estimated via a prior camera calibration step, the extrinsic
parameters are computed thanks to the robot’s kinematics and
the knowledge of the current joint configuration. In this context, a
standard perspective transformation can be applied in order to
estimate the 3D position of a point Pw � [X Y Z 1]T in the world
reference frame from its corresponding image point pc �
[u v 1]T in the camera reference frame. The following
equation holds:

FIGURE 4 | Snapshot of the camera streams from the left and right end effectors (A,B). The left arm uses a fiducial marker tracking system based on Garrido-
Jurado et al. (2014), whereas the right arm implements the HSV-based 3D reconstruction software detailed in Section 4.1.1. See Section 4.2 below for a description of
the objects composing the construction task.
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s pc � K R|T[ ] Pw, (2)

Where s is a scale factor1. The perspective transformation
equation is then applied to estimate the pose of the mass
center of the object by iteratively minimizing the reprojection
error of its corners via a Levenberg-Marquardt algorithm
(Marquardt, 1963), using the OpenCV computer vision library
(Bradski, 2000).

The technique proposed here is subject to a number of estimation
and computational errors, in particular if the distance between the
camera and the desired object is significant. In spite of that, we
capitalize on the fact that the algorithm is employed in a visual
servoing setup, in which the robot refines its estimation the closer it
gets to the object. That is, even if the initial pose reconstruction may
be defective, it is continuously updated with a frequency of 30 Hz
and refined until the end-effector reaches the object. The authors
acknowledge that more advanced 3D reconstruction techniques
could be used, such as exploiting a depth sensing camera
properly calibrated with respect to the robot—e.g., Jiang et al.
(2011). The main advantage of the proposed solution is however
to employ a compact, self-contained estimation step that does not
rely on external equipment or burdensome calibration. We consider
this an important asset of our approach, that facilitates re-use and
applicability to novel domains.

4.2 Experiment Design
As detailed in Sections 1 and 4.1, we perform our experiments in
a collaborative scenario where human participants engage in a
construction task with the Baxter Robot (see Figure 3). The
collaborative task the two peers are engaged with is the joint
construction of a miniaturized table (cf. Figure 5). The table is
part of an open-source effort to standardize experiments in HRC
and improve reproducibility (Zeylikman et al., 2018). It is

composed of five structural elements (the tabletop and four
legs) and eight custom 3D-printed linkages (four brackets
secure the legs to the tabletop, whereas four feet are used to
stabilize the structure). A total of 16 screws are required for the
assembly. A screwdriver is the only tool needed to build the table,
which has an approximate size of 30 cm × 21 cm × 15 cm when
completed. Particular attention has been placed in the
conceptualization of the task. The main goal is to tailor the
design of the table to the typical constraints human-robot
collaboration experiments present. We purposely aim for: 1)
ease of reuse; 2) ease of retrieval of the constituent parts; 3)
scalability; 4) proximity with real-world HRC applications, that
are typically characterized by a combination of complex actions
to be performed by the human partner (which often involve the
use of tools), and simpler tasks the robot is usually assigned to.
The choices taken at the design stage allow us to comply with
these requirements: the brackets used in this experiment belong
to a larger library of linkages that has beenmade available online2,
whereas the table shown in Figure 5 is only one of the many
designs allowed by our solution.

For the purposes of this work, the two partners have distinct,
non overlapping roles: the human (hereinafter referred to as the
builder) is in charge of performing actions that require fine
manipulation skills (e.g., screwing) or complex perception
capabilities (such as inserting the top of the table onto a
bracket); the robot (also called the helper) is instructed to back
the builder with the supportive actions described below.
Importantly, the flexibility of the POMDP planner allows for a
certain slack in terms of role assignment and task allocation by
design. As detailed in Section 3, the planner is automatically able
to comply with unlikely states of the system, and to re-plan

FIGURE 5 | (A) The table building task is composed of one plywood tabletop, four dowels that act as legs, four brackets (top 3D printed objects in figure) and four
feet (bottom 3D printed objects in figure). A total of 16 screws are needed to secure parts together. Both the tabletop and the legs have been pre-drilled to facilitate
assembly. (B) The table after the construction task is completed. The only tool required for the assembly is a screwdriver (red object in bottom of figure).

1Please refer to Hartley and Zisserman (2004) for more information on the
perspective transformation problem in detail.

2scazlab.github.io/HRC-model-set hosts CAD models, specifications
for 3D printing, tutorials for assembling example designs, and reference links for
purchasing parts.
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accordingly. As a practical consequence to this, we are in the
position of allowing the human participant to take charge of some
supportive actions if he so chooses. That is, we disclose to the
builder that they are allowed to retrieve parts and tools by
themselves, even though we do not enforce it on them—nor
we convey that it is part of her duties as a participant of the
experiment. The robot helper is provided with a set of basic
capabilities encapsulated into a library of high-level actions. The
supportive actions it has been instructed to perform are the
following: 1) retrieve parts (e.g., tabletop, screws, or legs); 2)
retrieve the tool (namely, the screwdriver); 3) cleanup the
workplace from the objects that are not going to be needed in
the future; 4) hold structural parts in order to facilitate the
builder’s actions. To comply with the Baxter’s limited
manipulation capabilities, we positioned the smaller
components (i.e., the screws and the 3D printed objects) in
apposite boxes, to be picked up by the parallel gripper—see
screws_box and brackets_box in Figure 4B. Similarly, the legs
of the table have been equipped with a specific support in order to
be picked up by the vacuum gripper on the left arm (cf.
Figure 4A).

It is worth noting how this specific task is particularly
advantageous for the purposes of this work thanks to 1) its
simplicity and 2) the need for the human participant to
perform the same actions multiple times. We deliberately
designed a task that does not require any particular skill from
the builder, while being easy to understand and remember.
Although it may be tedious for the user, the need of performing
multiple actions of the same type is beneficial in terms of
showcasing the online user adaptation capabilities introduced in
Section 1. As detailed in Section 5 below, one of the assets of the
proposed system is to be able to abide by the builder’s preferences:
in such a scenario, the robot is able to receive eventual negative
feedback in case of wrong action, replan accordingly, and exhibit
the effects of such replanning within the same task execution,
i.e., without having to perform a new task from scratch.

4.3 Experimental Evaluation
We demonstrate the proposed system in a live interaction with
human participants. The robot is in charge of backing the user
with the right supportive action at the right moment by virtue
of a partial observation of the state of the world, the complete
knowledge of the task execution plan, and the HTM-to-
POMDP planner presented in Section 3. We devised two
distinct experimental conditions, in a within-subjects
design. For all the conditions, the skill set and capabilities
of the robot do not vary, but the user preferences are explicitly
altered, unbeknownst to the robot. That is, the robot is exposed
to a change in the state of the system—composed of the world
plus the human—that it could not observe, but needs to deduce
either by actively gathering information from the builder, or by
building upon feedback coming from her. Our experiments are
designed to evaluate the following hypotheses:

• H1. The proposed system is capable of operating under
uncertainty and maximizing returns even in the presence of
high combinatorial complexity;

• H2. The robot is able to personalize its behavior to
varying human preferences and replan for mistakes on
the fly, thus maximizing the capability of supporting the
human partner.

In the following sections, we detail the two experimental
conditions. Please refer to Section 5 for a comparative
evaluation.

4.3.1 Condition A—Full Support
In this scenario, the robot expects to support the human to the
best of its capabilities, that is by performing all the actions it is
allowed to. Firstly, the builder is introduced to the platform and
the construction task. The experimenter then proceeds to
illustrate the Baxter’s capabilities (i.e., providing parts,
retrieving tools, holding objects and cleaning up the
workspace) and the interaction channels the human is
supposed to employ during task execution. Next, the
experimenter communicates to the user that the robot is
supposed to perform all the supportive actions by itself, but
also that the participant is free to take charge of some actions if
she so chooses or if the robot fails. No information is given in
terms of what to expect from the robot, or how the human-robot
interaction is supposed to occur.

4.3.2 Condition B—Adaptation to User Preferences
(No Holding Actions Required)
This condition involves the same interaction between the human
and the robot as Condition A. As detailed in Section 4.3, the
independent variable we tweak in our within-subjects
experiments is the user preference for what concerns the
support that the human participants expects from the robot.
In this scenario, the human worker is told to prefer not to have
parts held by the robot while screwing. Since the robot is unaware
of this, it may still perform the holding action even if not required.
In case this happens, the human is instructed to negatively reward
the robot by sending an error signal to the Baxter.

5 RESULTS

The framework detailed in Sections 3 and 4.1 has been released
under the open-source LGPLv2.1 license, and is freely available
on GitHub3. A number of C++ based ROS packages has been
made available for robot-related software, whereas the planner
has been encapsulated into a ROS-independent Python package.
In the following sections, we evaluate the proposed approach.
Firstly, we perform a series of off-line experiments to assess if the
proposed model can derive effective policies against a variety of
tasks and experimental conditions. We show how our method
outperforms ad-hoc policies on simulated interactions from these
models (Section 5.1). Lastly, we validate our system in a live

3github.com/scazlab/human_robot_collaboration hosts the
source code for the robot controllers, whereas github.com/ scazlab/

task-models hosts the HTM to POMDP planner.
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interaction with human participants. We demonstrate how
effective task policies can be computed that enable supportive
behaviors during collaborative assembly tasks (Section 5.2).

5.1 Synthetic Evaluation in Simulation
In this section, we present a quantitative evaluation of the
proposed approach during off-line explorations. To this end,
we focus on the two most important aspects that are involved in
the design of effective human-robot interactions: 1) the flexibility
of our method against a variety of task structures (Section 5.1.1)
2) its adaptability to custom user preferences (Section 5.1.2).

5.1.1 Task Structures
In order to demonstrate how the proposed method is able to
provide effective support to a human partner in real-world
collaborative tasks, we evaluate it on three task models,
derived from distinct HTMs. The HTMs differ in the number
of subtasks to solve, and in the type of relational operators
between subtasks. They therefore illustrate how we can derive
policies from various task models. All task models in this section
are characterized by primitive subtasks that require a
combination of: 1) a set of tools that the robot needs to
initially bring and then clean at the end of the task; 2) a
shared supportive action ‘a’; 3) another supportive action, that
can be either ‘b’ or ‘c’. Let denote ‘B’ the subtask that involves
supportive actions ‘a’ and ‘b’ and ‘C’ the one involving ‘a’ and ‘c’. The
first HTM, denoted as sequential task, consists of a sequence of 20
subtasks ‘B’. The second taskmodel is denoted as uniform; it consists
of an alternative between 24 subtasks, each composed of a sequence
of four subtasks, each of type ‘B’ or ‘C’. In other words, for each
episode the current task is randomly chosen among any sequence of
three subtask of type ‘B’ or ‘C’. The last HTM, denoted as alternative
task, is an alternative between only 4 sequences of four subtasks:
‘BCCC’, ‘BBBB’, ‘CBBC’, and ‘CCBC’. It thus introduces a
dependency between the successive required actions.

We compare the performance of the proposed approach
against two hand-coded policies. A random policy initially
brings all the required tools (which is always a successful
strategy); it then takes action ‘a’, and after that it randomly
chooses between action ‘b’ and ‘c’ until one succeeds. It finishes by
cleaning the workspace. When observing a failure (except on ‘b’
and ‘c’), the policy simply repeats the last action. The repeat policy
is instead designed for the sequential task. Similarly to the random
policy, it starts by providing the required tools, and then it repeats
actions ‘a’ and ‘b’ 20 times and then cleans the workspace. Similarly
to random, it repeats failed actions until success. Figure 6 presents
the average return of each policy on the three conditions. Although
repeat is very efficient on the sequence task, it is unfitted to the others
and fails on the two other tasks. The random policy is suboptimal on
all but the uniform task but can still solve them with a few failures.
On the other side, the POMCP policy that is learned from each task
model matches or outperforms the other policies, providing full
support to H1. This experiment hence demonstrates that we can
leverage knowledge about the task structure to automatically derive
efficient policies for a wide variety of tasks characterized by a wide
range of combinations.

5.1.2 User Preferences
Being able to comply with—and dynamically adapt to—custom
user preferences is crucial for a robot that needs to provide the
best support to its partner. A prompt and personalized response
allows for a more natural interaction and a less cognitively
demanding execution, which ultimately result in a more
efficient collaboration. To this end, we present a system that
is successfully able to account for user preferences. As detailed
in Section 4.3, the participant is allowed to choose if the robot
should provide support by holding the structure while the
human is screwing. We compare our approach against two
hard-coded policies: the most proactive strategy (i.e., always
offering to hold for support) and the most conservative one
(i.e., never proposing to support the human). Figure 7 collects
results from 6,000 simulated interactions, in which the human
has a preference for “holding” pH that ranges from 0.0 (“I never
want the robot to hold’) to 1.0 (“I always want the robot to hold
when needed”). The two hard-coded policies are only optimal
when they match with the expected user preference; in the
intermediate scenarios, their performance degrades quickly as
the uncertainty on the actual user preference increases.
Conversely, our system is able to adapt to whether the human
partner would like the robot to provide hold support or not, and
outperforms both strategies in the majority of conditions with high
average returns. Importantly, the POMCP policy is capable of
adapting on the fly in intermediate cases: when the probability of
holding preference pH is between the extreme cases (i.e., 0.0 < pH <
1.0), the user is free to “change their mind” and signal this to the
robot through an error message. These results validate H2 in

FIGURE 6 | The POMCP policy matches or outperforms ad-hoc
strategies against three different HTMs (sequential, uniform, and alternative
task). The results are the distribution of returns over 100 evaluation episodes
from the two hand-coded policies (repeat and random) as well as the
POMCP policy derived from the POMDP. On the last two tasks, the repeat
policy fails in most of the cases and is stopped by an upper bound on the
horizon of the episode. It gets a very low average return (between −300 and
−400) that has been omitted from the figure to better compare the other
policies.
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simulation; we refer the reader to Section 5.2 for comparable results
in the real world.

5.2 Live Interaction With Human
Participants
The synthetic experiments described in Section 5.1 demonstrate
the ability of the algorithm to yield good rewards in a range
of scenarios including variable task complexities (H1) and
user preferences (H2). These experiments, however, do not
validate our algorithm in a real human-robot interaction,
which is what the majority of prior work stops at. Although
the simulation demonstrates that the algorithm successfully
reaches high reward, they cannot guarantee that these
rewards accurately approximate—or even correlate with—the
actual utility of having a robot supporting a human during a
live interaction. In this section, we address this issue through an
experimental scenario where a human participant is engaged in
the joint construction of furniture with the Baxter robot.

We define the construction task detailed in Section 4.2 as a
sequence of eight subtasks, whose HTM is shown in Figure 1,
bottom. All the subtasks depicted in figure require high dexterity
and perception skills, and thus need to be performed by the
human builder exclusively. For each of the four legs, the builder
is in charge of firstly screwing the linkages (bracket and foot)
onto the leg, and subsequently screwing the bracket onto the
tabletop. As introduced in Section 4.2, retrieving parts and tools
from their respective pool has been designed as one of the
supportive actions the helper robot can choose from. Further,
the Baxter robot is allowed to hold parts in order to facilitate the

participant’s work, and to clean up the workstation when it
deems it appropriate. For more information about the actual
interaction, we refer the reader to the accompanying video,
which has been summarized in Figure 8 (full resolution
available at youtu.be/OEH-DvNS0e4).

The system has been evaluated with four participants;
each participant performed the task in both Condition A and
B, in a within-subject design (see Section 4.3 for a description of
the experimental conditions). In all the demonstrations
performed, the robot was successful in providing support to
the human with minimal overhead on them: as shown in
Table 2, the user feedback is minimal and only necessary in
case of robot mistakes. In all, we register a reduction of task

FIGURE 7 | Comparison of the proposed strategy (red) against an
“Always Hold” (green) and a “Never Hold” (blue) strategy during simulated
interactions with varying degree of user preferences. For each of them,
average return values and standard deviations with respect to the
probability of the “Hold” preference pH are shown. The three strategies are
tested against a single “Assemble Leg” subtask (see Figure 1, bottom) with
20 different values of pH, ranging from 0.0 (i.e., the human never wants the
robot to hold) to 1.0 (i.e., the human always like the robot to hold). For each of
the 20 different preferences, the results are averaged from 100 simulated
interactions, for a total of 6,000.

TABLE 2 | Evaluation of the human-robot collaboration.

Condition A—hold Condition
B—no-hold

Average completion time 649 [s] 747 [s]
Average number of robot actions 21 14

For both conditions, average completion time and average number of robot actions are
shown. We register an overall improvement in task completion time when the robot is
allowed to better support the human through “hold” actions (which results in an
increased number of robot actions per tasks).

TABLE 3 | Example histories of actions and observations during the interaction, for
the two conditions.

Condition A—hold Condition B—no-hold

actions obs p̂H actions obs p̂H

1 bring screws none 0.34 bring screws none 0.43 1
2 bring leg none 0.38 bring leg none 0.46 2
3 bring screwdriver fail 0.36 bring screwdriver none 0.44 3
4 bring top none 0.37 bring joints fail 0.38 4
5 bring joints none 0.39 bring top none 0.38 5
6 bring screwdriver fail 0.43 bring joints none 0.35 6
7 bring screwdriver none 0.42 hold fail 0.03 7
8 hold none 0.41 bring leg none 0.03 8
9 hold none 0.86 wait none 0.02 9
10 bring leg none 0.97 wait none 0.01 10
11 hold none 0.97 wait none 0.01 11
12 hold none 0.99 bring leg none 0.01 12
13 bring leg none 1.0 wait none 0.01 13
14 hold none 1.0 wait none 0.02 14
15 hold none 1.0 bring leg none 0.03 15
16 bring leg none 1.0 wait none 0.03 16
17 hold none 1.0 wait none 0.04 17
18 hold none 1.0 clear joints none 0.04 18
19 clear screws none 1.0 clear screws none 0.04 19
20 clear joints none 1.0 clear screwdriver none 0.01 20
21 clear screwdriver none 1.0 wait none 0.01 21
22 wait none 1.0 22

p̂H is the estimation of the probability for the “hold” preference in the robot’s internal
belief. In Condition A, the human prefers the robot to hold the structure: thanks to a
“none” observation when “hold” is offered (step 8, left), the internal estimation of human
preference progressively grows to 1.0 over time. Conversely, in Condition B the robot
offers to “hold” and receives an error message (step 7, right). This observation
progressively lowers pH to zero, and the robot did not perform this supportive behavior in
the future.
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completion time (13.2% on average) in Condition A. That is,
when the robot is allowed to provide more support to the human
and is thus intervening more in the task, the overall team
performance improves despite the fact that the robot is
operating under high uncertainty (thus further validating H1).

More interesting is to evaluate the extent to which the planner
is able to recover from robot failures and policy errors in the
presence of unobservable human preferences (H2). To this end,
we highlight two example trajectories in Table 3. They
correspond to actual trajectories, one from Condition A,
where the robot is expected to hold the parts, and one from
Condition B, where the user will signal her preference about not
wanting parts to be held. The interaction channels described in
Section 4.1 allow for a certain degree of flexibility for what
concerns the type of communication the builder and the helper
can engage into. In particular, the Baxter is allowed to gather
information about the user preference by engaging in a hold
action in order to better estimate this variable through the
feedback coming from the user. This would ultimately
disambiguate its uncertainty, because the builder would
communicate failure in case her preference is a “no-hold.” For
the purposes of this work, we examine here three prototypical

interactions, color-highlighted in Table 3 with their
corresponding preference update in the third column of each
table:

—Robot-initiated failure detection: as described in Section 3,
the robot is not allowed to directly perceive the state of the world
and the progression of the task. Still, it is possible for it to detect
an action failure by using its own internal sensors. If this is the
case, e.g., when the robot tries to pick up the screwdriver but the
gripper is empty, the system is able to re-plan its execution and re-
schedule the action at a later stage. As highlighted in Table 3, blue
sequence, the robot does not necessarily repeat the same action
right after the failure is detected, since other actions may have
higher priority at that point.

—Successful hold action (green sequence in Table 3): the robot
starts with a non-zero estimation p̂H of probability for the hold
preference. If, while performing an “hold” action, it does not
receive negative feedback from the user (observation: “none”), p̂H

increases as it becomes more likely that the builder wants the
robot to hold. This is further enforced with subsequent “hold”
actions.

—User-initiated failure: in Condition B, the system
experiences an user-initiated failure while proposing to hold the

FIGURE 8 | Snapshots acquired during the collaborative assembly of the table in Condition A (full support, top) and Condition B (no holding required, bottom).
Condition A (A–C): 1) Baxter provides the tool to the participant; 2) the robot supports the human by holding the tabletop while the human screws the leg in place; 3) the
user has finished his task and observes the robot freeing the workspace from the box of linkages. Condition B (D–F): 1) The user signals to the robot that the holding
action is not required by pressing the error button, and the robot acknowledges back by signaling into its display that it received this information; 2) The hold action
is not performed any more, but other actions such as the retrieval of the leg are still performed; 3) The human participant completes the execution of the task without the
help of the robot, as requested.
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part (observation: “fail,” red sequence in Table 3). As a
consequence of this, the probability of the hold action in the
belief distribution p̂H decreases, and the robot will not perform this
action in the future. Rather than hold parts for the user, it will wait
for her to complete the action, and will move on to the next step
when she communicates completion of the subtask.

One last aspect worth elaborating on is the fact that, in order
for the robot to be perceived as an effective collaborator,
transparency of the system during interaction is paramount.
The human needs to be able to access (to a certain degree)
what the robot’s internal state is, what it thinks about the task
progression and, importantly, how it intends to act next. Failure
to deliver transparency results in user frustration and task
inefficiency. Within this context, the overlapping, redundant
interaction channels (cf. Section 4.1) are beneficial in
guaranteeing a transparent exchange of information between
the two partners. This is particularly important in case of
unexpected deviations from the robot’s nominal course of
actions—that is, robot failures. Both in case of a robot-
initiated failure and a human-initiated error signal (Figures
8D–F), the system was able to acknowledge the user about its
error state through the Baxter’s head display and/or speech
utterances. In this way, it was always evident to the user that
the robot failed, and eventually why it failed (in case the failure
was not of robot-initiated).

6 DISCUSSION AND FUTURE WORK

In this work, we present a system able to convert high-level
hierarchical task representations into low-level robot policies.
We demonstrate robustness to task representations with varying
complexity, as well as a certain degree of customization with
respect to task-relevant variables such as user preferences and
task completion time. Further, we provide demonstration of our
technique in a mixed-initiative human-robot collaboration. As
evident in the accompanying video, the human maintains full
control throughout the task execution, but the robot acts
independently, anticipates human needs, and does not wait
to be told what to do. The paradigm in which we operate is
neither to attempt implementing the ideal system that never fails
(or does not contemplate the occurrence of failures), nor
shaping the environment in such a way that it prevents the
robot to fail. Rather, we decidedly embrace the idea that robots’
perception and actions are inherently faulty, and errors during
operation are possible and expected to occur. The approach we
present does not intend to compete with the optimized assembly
lines that takes months to design, but provides an easy-to-
deploy, reconfigurable paradigm, suitable for small and
medium enterprises.

To our knowledge, this work is the first attempt at a practical
demonstration of supportive behaviors in a realistic human-robot
collaborative scenario. In addition, we fundamentally differ from
past research on the topic, where collaboration typically translates
to the human and the robot tasked with parallel, non overlapping
subtasks and structured, transactional interactions. Rather,
our experiment shows a fully integrated interaction, where the

human and the robot physically engage in shared-environment
collaboration.

A more extensive evaluation of the scalability of the proposed
framework to a broader domain of applications is the major
direction for future work. Although the simulated interactions
shown in Section 5.1.1 proved its feasibility in theory, it remains
to be seen howmuch the approach can scale up to more complex
tasks in practice. In particular, we plan on leveraging the
flexibility of the HTM representation to: 1) model more
complex task structures; 2) apply the method to different
interaction paradigm. Furthermore, our previous work
introduced a model that allows the robot to effectively
exploit basic communication capabilities in order to target
the problem of task allocation and information gathering
(Roncone et al., 2017; Brawer et al., 2018). Bringing this level
of interaction in the current setup is also a direction of
convergence.

In this work, we assume that the high level representations
our system relies on are either already available or easy enough
to generate. It is however a matter of future work to explore how
this assumption holds in various application domains, and
whether sufficiently precise models can be learned from
spoken instructions or user demonstrations. Our method also
relies on existing controllers for the supportive actions.
Interesting directions of future work would entail the ability
for users to teach new primitives to the robot (e.g., by
demonstration) and then combine these primitives into more
complex task models.

An important factor to consider when applying high-level
task planners to HRC is that there is no theoretical guarantee
that the reward parameters set in the system correctly
approximate the value of the robot’s behavior to the user.
We consider this as being one of the main obstacles that
researchers face when applying research from POMDP
planning to HRI. Consistently with prior work, in this
paper we have made the decision to focus on task
completion as the main metric to measure collaboration
performance (as seen in e.g., Roncone et al. (2017));
however, there may be other sources of value in support
that are not directly measured by completion time—such as
reduced cognitive load or physical fatigue on the human
partner. As a consequence, the design of the reward
function explicitly relates to task completion time, either
directly or indirectly. This conveniently allows to set reward
parameters based on empirical measures, which constitutes a
promising calibration procedure for the system. Some reward
parameters are directly related to measurable time (such as the
reward for advancing to the next subtask which is identified by
the average completion time for that subtask, or the reward for
fetching a tool which is related to the time it would take the
human to fetch it). Others can be estimated indirectly (e.g., the
reward for respecting the hold preference can be computed by
measuring how much time users are ready to sacrifice to get
their preference followed). Exploring whether this constitutes
a sound and efficient calibration mechanism is out of the scope
of this paper but an important avenue to be explored in
future work.
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In conclusion, in this work we presented an interactive and
effective HTM-to-POMDPmethod that will open the door to a wide
array of user studies to assess the quality and the effectiveness of the
interaction between the human and the robot. The degree of
proaction shown by the robot during collaboration can
significantly lower the barrier to entry for non-expert users, in
that users can immediately see what the robot is capable of,
without over- or under-estimating its skill set. In this regard, an
extensive user study would help solidifying this intuition, and
assessing how useful the proposed system is in setting
expectations for naive users. Finally, although our prior work
showed a general user preference toward our system (Roncone
et al., 2017), a broader user study would prove statistical
significance in terms of reduced levels of stress and cognitive
load to the user. Importantly, this would also allow to highlight
potential friction points that can be leveraged to better design the
human-robot interaction.
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