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The ability of a robot to generate appropriate facial expressions is a key aspect of perceived
sociability in human-robot interaction. Yet many existing approaches rely on the use of a
set of fixed, preprogrammed joint configurations for expression generation. Automating
this process provides potential advantages to scale better to different robot types and
various expressions. To this end, we introduce ExGenNet, a novel deep generative
approach for facial expressions on humanoid robots. ExGenNets connect a generator
network to reconstruct simplified facial images from robot joint configurations with a
classifier network for state-of-the-art facial expression recognition. The robots’ joint
configurations are optimized for various expressions by backpropagating the loss
between the predicted expression and intended expression through the classification
network and the generator network. To improve the transfer between human training
images and images of different robots, we propose to use extracted features in the
classifier as well as in the generator network. Unlike most studies on facial expression
generation, ExGenNets can produce multiple configurations for each facial expression and
be transferred between robots. Experimental evaluations on two robots with highly human-
like faces, Alfie (Furhat Robot) and the android robot Elenoide, show that ExGenNet can
successfully generate sets of joint configurations for predefined facial expressions on both
robots. This ability of ExGenNet to generate realistic facial expressions was further
validated in a pilot study where the majority of human subjects could accurately
recognize most of the generated facial expressions on both the robots.

Keywords: facial expression generation, humanoid robots, facial expression recognition, neural networks, gradient
descent

1 INTRODUCTION

Perceived sociability is an important aspect in human-robot interaction (HRI), and users want robots
to behave in a friendly and emotionally intelligent manner (Nicolescu and Mataric, 2001; Hoffman
and Breazeal, 2006; Ray et al., 2008; de Graaf et al., 2016). Studies indicate that in any interaction, 7%
of the affective information is conveyed through words, 38% is conveyed through tone, and 55% is
conveyed through facial expressions (Mehrabian, 1968). This makes facial expressions an
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indispensable mode of communicating affective information and,
subsequently, generating appropriate and realistic facial
expressions, which can be perceived by humans, and a key
ability for humanoid robots.

While methods for automated facial expression recognition
have been a research field in human-robot interaction for several
years (see Li and Deng (2020); Canedo and Neves (2019), for
overviews), facial expression generation for humanoid robots is a
younger line of research (Breazeal, 2003; Kim et al., 2006; Ge et al.,
2008; Horii et al., 2016; Meghdari et al., 2016; Silva et al., 2016).
Moreover, most of the existing studies use preprogrammed joint
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configurations, for example, adjusting the servo motors
movement for the eyelids and the mouth to form the basic
expressions in a hand-coded manner (Breazeal, 2003; Kim
et al,, 2006; Ge et al., 2008; Bennett and Sabanovic, 2014; Silva
etal., 2016). While this allows studying human reactions to robot
expressions, it requires hand-tuning for every individual robot
and re-programming in case of hardware adaptations on a robot’s
face. In contrast, the automated generation of robot facial
expressions could alleviate the “hard-coding” of expressions,
thereby making it easier to scale to different robots in a more
principled manner. Still, there are only a few studies that learn

robot dataset

human dataset

human and robot training pictures.

FIGURE 1 | We propose a novel approach to automatically learn multiple joint configurations for facial expressions on highly humanoid robots, such as Alfie (left)
and Elenoide (right). For generation of multiple facial expressions we tilize a classifier based on simplified images of extracted facial features from a mixed dataset of
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different configurations for expressions automatically (Breazeal
et al., 2005; Horii et al., 2016; Churamani et al., 2018), and most of
the studies only learn to generate a single configuration for each
facial expression. Humans, however, usually exhibit a variety of
different expressive ways instead of a single configuration per
facial expression. Such high expressiveness can be tedious to
hand-tune, which can potentially be achieved easier in a
generative setting.

In this article, we propose a novel approach to automatically
learn multiple joint configurations for facial expressions on
humanoid robots, called ExGenNet. In particular, we suggest
utilizing state-of-the-art deep network approaches for image-
based human facial expression recognition as feedback to train a
pipeline of robot facial expression generation (See Figure 1 for an
overview). We evaluate ExGenNet on the two robots Elenoide
and Alfie (Furhat Robot) with highly human-like faces, where we
make use of facial feature extractors for smooth transfer between
the different robot types. The learned facial expressions are
additionally evaluated in a pilot study where we investigate
how images of the robots displaying the autogenerated
expressions are perceived by humans.

To summarize, our main contributions are threefold. First,
ExGenNet introduces a novel automated way of learning multiple
joint configurations per expression via a gradient-based
minimization of the loss between the intended expression and
the expression predicted by the trained classifier. Second,
ExGenNet uses facial features as a shared representation
between human training data and different robots. Finally, we
present insights on expression generation on highly humanoid
robots and the way they are perceived by humans.

The rest of the article is structured as follows. In Section 2, we
give a short overview of related work followed by the details of our
algorithm in Section 3. In Section 4, we present the results of our
experimental evaluations on two robots with highly human-like
faces. Finally, we conclude and discuss future work in Section 5.

2 RELATED WORK

Facial expression recognition has been well studied in human-
robot interaction (HRI) (e.g., Cid et al., 2014; Meghdari et al., 2016;
Simul et al., 2016; Bera et al., 2019). As deep learning methods
have become popular, facial expression recognition nowadays
mostly consists of preprocessing the facial images and directly
feeding them into deep networks to predict an output (Li and
Deng, 2020). Among all approaches, Convolutional Neural
Networks (CNNs) are widely used for performing facial
expression recognition during HRI (see Rawal and Stock-
Homburg (2021) for an overview). In particular, CNNs are
used for end-to-end recognition, i.e., given the input image, the
output is directly predicted by the network. ExGenNets employ
CNNss for the expression classification part of our pipeline.

In the field of computer vision, there are many works that
tackle facial expression generation within pictures of persons,
other characters, or even animals. For instance, Noh and
Neumann (2006) transferred motion vectors from a source to
a target face model. Here, the target face model could have

ExGenNet: Robotic Facial Expression Generation

completely different geometric proportions and mesh
structures, compared to the source face model. Pighin et al.
(2006) created photorealistic 3D facial models from
photographs of a human, and further created continuous and
realistic transitions between different facial expressions by
morphing between different models. Pumarola et al. (2019)
implemented a Generative Adversarial Network (GAN) to
animate a given image and render novel expressions in a
continuum. While these approaches are capable of generating
“images” of robots with different facial expressions, they are
incapable of directly being transferred to robots since the joint
angles need to be optimized to realize an expression.

This may explain why most approaches to facial expression
generation on humanoid robots rely on hand-tuned expression
generation. Only a few studies so far introduced automated ways
for expression generation based on simple Neural Networks (Breazeal
et al., 2005), Restricted Boltzmann Machines (RBM) (Horii et al.,
2016), and Reinforcement Learning (RL) (Churamani et al., 2018).

Specifically, Breazeal et al. (2005) used neural networks to
learn a direct mapping of human facial expressions onto a robot’s
joint space. Horii et al. (2016) used an RBM to generate
expressions on an iCub robot. The forward sampling in the
RBM is to recognize the human counterpart’s expression
based on facial, audio, and gestural data during HRI, while the
backward sampling is to generate facial, audio, and gestural data
for the robot. Churamani et al. (2018) generated expressions on
their robot Nico using RL. They used an actor-critic network
where the actor network receives the current mood affect vector
of the robot and generates an action (LED configurations for the
eyebrows and mouth) corresponding to this state. The action and
the state are then fed into the critic network that predicts a
Q-value for the state-action pair. The robot receives an award
based on symmetry in wavelengths generated by the network.

All of these studies only generate single configurations per
expression. In contrast, ExGenNets are able to generate a range of
joint configurations per expression. Additionally, even though the
robots used in related approaches are humanoid robots, their
faces are not as human-like as the faces of the robots used in our
experimental evaluation. Since these robots may start entering the
uncanny valley (Mori et al., 2012), we consider evaluation of the
human perception of expressions generated on robots with highly
human-like faces is particularly important.

3 EXGENNET: EXPRESSION GENERATION
NETWORK

Expression Generation Networks (ExGenNets) learn multiple
joint configurations for previously defined facial expressions
on humanoid robots. To achieve this, they combine a
generator network, which reconstructs a simplified image of
facial landmarks for a given configuration, together with a
CNN-based expression classifier. Figure 2 summarizes the
overall approach.

Let us now introduce ExGenNets in detail. In Section 3.1, we
present the details of the automated expression generation of
facial landmarks. Section 3.2 introduces the facial feature-based
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FIGURE 2 | Network structure of the proposed ExGenNet (Expression Generation Network) and optimization procedure of the joint configuration 6. First, the
generator network generated an image of facial features for a given joint configuration (6). Next, we feed this image into an expression classifier that classifies the image
into five categories: angry, happy, neutral, sad, and surprise. The cross-entropy loss between the predicted expression and desired expression is calculated. We find the
value of the joint configuration (global minima) for which the cross-entropy loss is the minimum by performing a grid search. To find the local minima (mean and
standard deviation), we backpropagate the cross-entropy loss through the classifier and the generator networks to update the joint configuration. The goal is to find the
appropriate range of joint configuration for a given facial expression.

B

Raw image Landmark detection Simplified face image

.

Raw image Landmark detection Simplified face image

FIGURE 3 | An example of a simplified image showing the facial landmarks in black. The facial landmarks are detected using dlib (King, 2009). The simplified
expression image generator generates images of this kind.
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TABLE 1 | CNN Network structure for generator.
Layer (type)

dense (Dense)

batch_normalization (BatchNormalization)
leaky_relu (LeakyReLU)

reshape (Reshape)

conv2d_transpose (Conv2DTranspose)
batch_normalization_1 (BatchNormalization)
leaky_relu_1 (LeakyRelLU)
conv2d_transpose_1 (Conv2DTranspose)
batch_normalization_2 (BatchNormalization)
leaky_relu_2 (LeakyRel.U)
conv2d_transpose_2 (Conv2DTranspose)
batch_normalization_3 (BatchNormalization)
leaky_relu_3 (LeakyRel.U)
conv2d_transpose_3 (Conv2DTranspose)

TABLE 2 | CNN Network structure for expression classifier.

Layer (type) Output shape Param #
conv2d (Conv2D) (None, 46, 46, 32) 320
conv2d_1 (Conv2D) (None, 44, 44, 64) 18,496
max_pooling2d (MaxPooling2D) (None, 22, 22, 64) 0
dropout (Dropout) (None, 22, 22, 64) 0
conv2d_2 (Conv2D) (None, 20, 20, 128) 73,856
max_pooling2d_1 (MaxPooling2D) (None, 10, 10, 128) 0
conv2d_3 (Conv2D) (None, 8, 8, 128) 147,584
max_pooling2d_2 (MaxPooling2D) (None, 4, 4, 128) 0
dropout_1 (Dropout) (None, 4, 4, 128) 0
flatten (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 1,024) 2,098,176
dropout_2 (Dropout) (None, 1,024) 0
dense_2 (Dense) (None, 5) 5,125

expression classifier. Lastly, Section 3.3 explains the optimization
of joint values for different expressions.

3.1 Simplified Expression Image Generator
To learn a mapping between the robot joint configurations and
facial expressions, we train a generator network to convert from
joint angles to a simplified facial image

Ximage = hrobot (0) (1)

where X;mage denotes the image of the facial features generated by
the network, h,opo the generator network, and 6 the joint
configuration of the robot. To reduce computational effort, we
obtain simplified images by applying the dlib facial feature detector
(King, 2009) on the full images of the robot and constructing a
smaller and less detailed black and white image from this. An
example of such a simplified image can be seen in Figure 3.
For the generator network we use a CNN with five layers, which
generates images of size 48 x 48 x 1. The network structure is given
in Table 1. We created a dataset of the images of facial feature
extraction at various values of joint configurations from the robot.
Next, we trained the generator network f,qp, to generate images of
facial feature extraction from robot joint configuration. The
generator network that we use is similar to the generator
network in standard Generative Adversarial Networks (GANs),

ExGenNet: Robotic Facial Expression Generation

Output shape Param #

(None, 9,216) 55,296/27,648

(None, 9,216) 36,864

(None, 9,216) 0
(Nore, 6, 6, 256) 0
(None, 6, 6, 128) 294,912
(Nore, 6, 6, 128) 512
(None, 6, 6, 128) 0

(None, 12, 12, 64) 73,728
(None, 12, 12, 64) 256
(None, 12, 12, 64) 0

( ) 18,432
(None 24 24 32) 128
(None, 24, 24, 32) 0

(None, 48, 48, 1) 288

except we do not use a discriminator to train the images being
generated. As the output consists of only simplified images of facial
features, we found it is sufficient to train the generator network by
reducing the mean squared error between the pixels of the actual
output and the predicted output.

3.2 Feature-Based Expression Classifier
Most studies that perform facial expression recognition directly
train on facial images (Barros et al., 2015; Ahmed et al., 2019). In
contrast, we train the Convolutional Neural Network (CNN) on
simplified versions of the training images generated from
landmarks detected via dlib (King, 2009). As training images,
we used the KDEF dataset (Lundqvist et al., 1998) and additional
hand-labeled training images for our robots Alfie and Elenoide.
We used data augmentation to slightly translate the training
images both vertically and horizontally so that the faces are visible
completely. We also evaluate the models trained with different
combinations of data, ie., only human facial expressions, only
robot facial expressions, and both combined. The use of the
extracted features, i.e. landmark points, makes the classifier
hereby less sensitive to environmental changes such as lighting
conditions and generalizes better between different robot types
and human images. From the set of labeled training images, the
classifier should learn the mapping from the simplified facial
images to discrete predefined expressions

Yexpression = f classifier (Ximage) € {angl’Y, happY> neutral, sad, Slll’pl‘ise}
2

with the expression classifier f.,ssifier and the simplified image of
the extracted facial features Ximage Of size 48 x 48 x 1. For the
expressions classifier, we used CNN with four convolutional
layers and one fully-connected layer. The network structure is
given in Table 2

3.3 Automated Expression Generation

Here, we explain in detail how we automatically calculate and
obtain the values of joint configurations 6 by performing grid
search and gradient descent. To automatically find a set of joint
configurations that generate a desired facial expression y; on the
robot, we minimize the cross-entropy loss L between the
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6 =p+eoo.

FIGURE 4 | Alfie (real Furhat Robot) displaying (A) Angry, (B) Happy, (C) Neutral, (D) Sad, and (E) Surprise expressions at g — 26,4 — 6,4, 4 + 6, + 20
respectively. Here, p is the mean and ¢ is the standard deviation. We obtain the g and the ¢ values for various expressions from the ExGenNet by reparameterizing 6 as

predicted expression of the classifier j; = ( f dassifier (Frobot (6)))
and the desired expression

1 _ _
L=-% j=zl(yj logy;) + (1 - yjlog(1 - y)) (€)

with N predefined facial expressions. To find stable joint
configurations, we determined and averaged the loss for five
generator networks and five classifier networks.

Specifically, we first find the global minima for 6 values in the
whole range. To this end, we consider 6 values at discrete steps
and find the combination of joint angles for which the loss is
minimal for each expression. Then, we find the global minima.
We assume a range for values of 6 instead of just a single joint
configuration per expression by considering 8 ~ N (u, 6*) where
p is the mean and ¢ is the standard deviation. We
used reparameterization to sample from g and ¢ by

considering 6 =y + €00 and correspondingly propagate the
gradients to minimize the loss via gradient descent

minﬂL ( f classifier (hrobot (0))) (4)

using element-wise multiplication © and Gaussian noise
e~N(0,1).

The mean and the variance are updated by gradient descent

oL oL
oy = Wy — aa, Okt = Ok — o= (5)

using a learning rate & and computing the gradients by dL/ou =
0L/00 and 0L/0o = OL/0f @€.

Algorithm 1 summarizes the overall approach. Here, f is the
expression-classifier and & is the image generated for Alfie’s and
Elenoide’s face. The loss L and gradients 0L/08 and JL/000% are
averaged over minibatch.
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FIGURE 5 | Elenoide displaying (A) Happy, (B) Neutral, and (C) Surprise expressions at 4 — 26, 4 — o, 4, 4 + 0, 4 + 20 respectively. Here, p is the mean and ¢ is the
standard deviation. We obtain the g and the ¢ values for various expressions from the ExGenNet by reparameterizing 6 as 6 = py + eoo.

Algorithm 1. Generating multiple configurations for various
expressions.

1: Initialize 1 and o with 0 and 0.25 respectively
2: for i do in range (epochs):

3 For exploration, sample € ~ N (0, 1)

4 O=p+edo

5. §j = (felassifier (hrobot (8)))

N
6: Calculate loss according to L = 7% > (yjloggy) + (1 —yy) log(1 — g5)
=1

7 Calculate 9L/00
8: Update p and o by prg 41 = pp — a‘;—g and o4y = o — ozg—g © € respectively
9: end for

4 EXPERIMENTAL EVALUATION

We evaluated our proposed method on two highly humanoid
robots, named Alfie (Figure 4) and Elenoide (Figure 5). First,
we present the results of expression generation using our novel
ExGenNet approach in Section 4.1. Additionally, we report in
Section 4.2 the results of a pilot study, where we evaluated how
the generated expressions are perceived by humans. Finally, we
discuss the remaining limitations of our method in
Section 4.3.

4.1 Expression Generation on the Robots
We conducted experiments with the approach described in
Section 3 on our robots Alfie and Elenoide. The code is

written in Python using TensorFlow. Adam was used as an
optimizer. For the grid search, we considered discrete intervals
of 0.1 for each of the three joint angles for Elenoide and 0.2 for
each of the six joint angles for Alfie. For fine-tuning the 0 values
and obtaining a range for each expression, we initialized the mean
to 0 and standard deviation to 0.25 for all joint angles (8) for
both Elenoide and Alfie. We considered the following joints
for Alfie: BLINK_LEFT, BLINK_RIGHT, BROW_UP_LEFT,
BROW_UP_RIGHT, BROW_DOWN_LEFT, BROW_DOWN_
RIGHT, SMILE_OPEN, PHONE_CH_]J_SH, and
PHONE_BIGAAH. For Elenoide, we considered the joints in
the eyes, eyebrows, and mouth (mouth opening and mouth
corner pull). Alfie is able to generate angry, happy, neutral,
sad, and surprise expressions (see Figure 4). Elenoide is able
to generate only happy, neutral, and surprise expressions (see
Figure 5). Owing to restrictions in the degrees of freedom in the
mouth and eyebrows, Elenoide is not able to generate negative
facial expressions like sad and angry.

To have consistent values for the joint configurations, we
averaged the loss in Equation 4 for five generator and five
classifier models with different random initializations. The
graphs showing the loss and accuracy for the five classifier
models can be seen in Figure 6. The epoch number where the
loss is minimum is selected for the five classifier models that are
then used in the ExGenNet for obtaining the values of the joint
angles for various expressions.

After generating the expressions for the two robots, we verified
the facial expressions using the previously trained classifiers. For
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1.6 4 —— average training loss

—— average validation loss
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FIGURE 6 | Graphs showing the average loss and the average accuracy for the five classifier models trained with random seeds. The epoch number where the loss
was minimum was selected for obtaining the values of the joint angles for each of the five classifier networks.
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B human and robot dataset
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Alfie (real robot)
mmm only robot dataset

FIGURE 7 | Comparison of classifier accuracy for Elenoide, Alfie (real robot), and Alfie’s simulator when trained with combined human and robot dataset (blue), only
robot dataset (orange), and only human dataset (green). Classifiers trained with combined human and robot dataset performed the best for all Elenoide, Alfie, and Alfie’s

Alfie (simulator)
B only human dataset

both Elenoide and Alfie, we tested the five classifiers to recognize
the expressions for images obtained at
p—20,u—0,u,pu+0,u+20. We also sample 10 images from
p and o and average the classification results. On Elenoide, the
average accuracy for recognizing the expressions correctly
was 81% for the five classifiers trained on human and robot
dataset (see Figure 7). For classifiers trained on only robot
and only human datasets, the average accuracies were 69 and
52% respectively. In the case of Alfie, we trained the
ExGenNet and obtained the mean and standard deviation
for various expressions on the simulator. Figure 4 shows the
final results on the real robots. For the classification results on
the images of the real robot, the average accuracy was 70% for

the five classifiers trained on the human and robot dataset.
The classifiers trained on only human and only robot datasets
had average accuracies of 43 and 30%, respectively. We also
tested the classification results on Alfie’s simulator. The
average accuracy for the five classifiers trained on human
and robot data combined was 75%, followed by the classifiers
trained on only robot data 51%. The accuracy for the
classifiers trained on only human data was 39%. For
Elenoide, Alfie, and Alfie’s simulator, the classifier that is
trained on the combined dataset of humans and robots gives
the best results. While the classifier trained on only robot data
has a higher expression recognition rate for Elenoide and
Alfie’s simulator, the classifier trained on only human data has
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TABLE 3 | Results of Pearson’s correlation test for various expressions on
Elenoide and Alfie.

Robot Expression Pearson’s correlation coefficient p-value
Alfie Happy 0.87 p < 0.001
Neutral 0.68 p < 0.001
Surprise 0.82 p < 0.001
Alfie Angry 0.37 0.04
Neutral 0.45 0.01
Sad -0.17 0.37
Elenoide Happy 0.63 p < 0.001
Neutral 0.24 0.19
Surprise 0.89 p < 0.001

better results in the case of Alfie. This is because the classifier
trained on only robot data consists of simplified face images of
only Elenoide and Alfie’s simulator. As Alfie and Alfie’s
simulator has a different rendering and the classifier trained
on only robot data overfits to the data of Elenoide and Alfie’s
simulator, the classifier trained on only robot data performs
worse than the classifier trained on human data for Alfie.

4.2 Human Perception of Generated

Expressions

To validate the results further, we also conduct a pilot study to
investigate how images of autogenerated expressions are
perceived by humans. Here, we conducted three surveys, one
for humans to be able to recognize the expressions generated on
Elenoide (happy, neutral, and surprise) and another two for
humans to be able to recognize the positive expressions
(happy, neutral, and surprise) and the negative expressions
(angry, neutral, and sad) on Alfie. In each survey, we
randomly showed three images per expression and asked two
questions. The first question is how positive or negative the
expressions look and the second question is to recognize the
expression in the image out of five categories: angry, happy,
neutral, sad, and surprise. There is also an additional optional
category for “other” expressions in case it seems that the
expression in the image does not belong to any of the five
categories. The first question is rated between 1 and 7, where
1 indicates that the expression looks negative and 7 indicates that
the expression looks positive. The second question is rated on a
five-point Likert scale, where 1 indicates strongly disagree and 5
indicates strongly agree. In between the survey, there was a
screening question to check the participants’ attention. The
screening question asked the participants to choose “strongly
agree” on the same five-point Likert scale.

We obtained responses from 30 participants for each survey.
We did not consider the responses of the participants who
answered the screening question incorrectly and ended up
evaluating the results for 27 participants in the case of
Elenoide, 29 participants to recognize the positive expressions
for Alfie, and 27 participants to recognize the negative
expressions for Alfie. Out of all the participants, 65% were
male and 35% were female with an average age of 35 years.
We performed the Pearson’s correlation test using the Scipy

ExGenNet: Robotic Facial Expression Generation

library in Python. First, the mean values of all the
expressions for all participants on a five-point Likert scale
were calculated. Next, the intended labels were assigned. For
example, if the intended class is happy, the intended labels
would be [1,5,1,1,1,1]. The Pearson’s correlation test was
performed to compare the classes chosen by humans with the
intended classes. The Scipy library in Python returns both the
Pearson’s correlation coefficient and a two-tailed p-value for
the Pearson’s function. The Pearson’s correlation coefficient
and the two-tailed p-value are given in Table 3 for various
expressions.

We found that in the case of Alfie, all the positive expressions
are positively correlated, happy being the most positively
correlated, followed by surprise and thereafter neutral. In the
case of negative expressions, sad was found to be negatively
correlated. Alfie does not have a joint configuration in its mouth
that can make the corners of its mouth turn downward in case of
a sad expression, always forming a slight smile. Therefore, Alfie
cannot express sadness the way a human does. Neutral and
angry were found to be positively correlated. The p-value for all
expressions except sad was less than 0.05. Therefore, the
correlation coefficient for all expressions except sad is
significant. In the case of Elenoide, all three expressions were
positively correlated, “surprise” is the most positively correlated,
followed by happy and neutral. For neutral, the p-value was
greater than 0.05, implying that the result is not significant.
While observing the data obtained from the participants, it was
found that the neutral images of Elenoide were reported as both
happy and neutral. This is probably because the corners of the
mouth for Elenoide are always pulled upward even for neutral
expressions, forming a smile.

4.3 Discussion of Limitations

While our proposed approach successfully generated multiple
joint configurations for facial expressions of the two robots,
which were correctly recognized by human subjects in the
majority of cases, we also noticed some limitations of the
current method.

The robots used in our experiments seemed to show hardware
limitations, which made it harder to generate negative
expressions than positive ones. The mouth corners of both the
robots cannot directly move down, making it hard for the two
robots to express sadness the way humans did in the training
images. Also in the case of the neutral expression on Elenoide,
human subjects would sometimes mistake it for happy, due to the
constantly slightly upward pull of the mouth corners. One
question here is whether we require robots to show negative
expressions and if yes, whether they should show these in the
same way humans would or not. Besides considering full ranges
for expression generation possibilities in hardware design, it
might also be interesting to investigate if there would be ways
to express sad on our robots, which would deviate from the
human training images but could still be classified correctly by
human subjects.

Another limitation of our method in the current form is that
even though we are able to generate multiple joint configurations
per expression, they do not directly map to a level of intensity of
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the expression. However, humans usually are able to generate and
recognize different intensities in expressions and we, therefore,
consider this an interesting direction for extending our method in
future work.

5 CONCLUSION AND FUTURE WORK

We introduce a novel framework, called ExGenNet, to optimize
facial expressions for the robots Alfie and Elenoide. This deep
generative approach is based on neural networks for recognizing
expressions. Using our ExGenNet, we obtained a range of joint
configurations for Alfie to be able to express angry, happy,
neutral, sad, and surprise and for Elenoide to express happy,
neutral, and surprise. The limitations in the degrees of freedom in
the mouth and eyebrows of Elenoide prevent ExGenNet from
being able to generate negative expressions like sad and angry. In
the pilot study, humans were asked to recognize the facial
expressions generated by the two robots. The Pearson’s
correlation test showed that while angry, happy, neutral, and
surprise are positively correlated, sad is negatively correlated in
the case of Alfie. In the case of Elenoide, all three expressions
surprise, happy, and neutral are positively correlated. However,
the result for neutral in the case of Elenoide was not significant. In
future work, one should conduct human-robot interaction (HRI)
experiments where the robots are able to recognize the human
facial expressions and generate their own facial expressions
accordingly. One should also extend facial expressions to other
modalities such as gesture-based expressions in the case of
Elenoide.
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