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Communication delay represents a fundamental challenge in telerobotics: on one hand, it
compromises the stability of teleoperated robots, on the other hand, it decreases the
user’s awareness of the designated task. In scientific literature, such a problem has been
addressed both with statistical models and neural networks (NN) to perform sensor
prediction, while keeping the user in full control of the robot’s motion. We propose shared
control as a tool to compensate and mitigate the effects of communication delay. Shared
control has been proven to enhance precision and speed in reaching and manipulation
tasks, especially in the medical and surgical fields. We analyse the effects of added delay
and propose a unilateral teleoperated leader-follower architecture that both implements a
predictive system and shared control, in a 1-dimensional reaching and recognition task
with haptic sensing. We propose four different control modalities of increasing autonomy:
non-predictive human control (HC), predictive human control (PHC), (shared) predictive
human-robot control (PHRC), and predictive robot control (PRC). When analyzing how the
added delay affects the subjects’ performance, the results show that the HC is very
sensitive to the delay: users are not able to stop at the desired position and trajectories
exhibit wide oscillations. The degree of autonomy introduced is shown to be effective in
decreasing the total time requested to accomplish the task. Furthermore, we provide a
deep analysis of environmental interaction forces and performed trajectories. Overall, the
shared control modality, PHRC, represents a good trade-off, having peak performance in
accuracy and task time, a good reaching speed, and amoderate contact with the object of
interest.
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1 INTRODUCTION

Communication delay has been one of the biggest challenges in the
field of teleoperated systems, from healthcare applications to
construction robotics (Tao et al., 2020; Ferrell, 2013; Anderson
and Spong, 1989; Huang et al., 2017) and still represents one of the
biggest obstacles that prevent teleoperation from being commonly
used in delicate environments, such as healthcare (Mehrdad et al.,
2021; Avgousti et al., 2016; Buvik et al., 2016). This can either occur
directly in the automatic controller as can be the case for bilateral
teleoperation with force feedback, or indirectly by the human
operator overcompensating for perceived errors due to delayed
responses, giving rise to operator-induced oscillations (Smith and
Jensfelt, 2010). In the past, the application of statistical methods
and neural networks (NN) (Farajiparvar et al., 2020) have shown
promise to solve such a challenge, and simultaneous application of
both to multiple leader-follower communication channels has also
been explored (Sirouspour, 2005); Liu, 2015; Farahmandrad et al.,
2020). Statistical methods are characterized by a clear internal
model but have some drawbacks regarding the maximum
magnitude of the predictable delay, and the detection of new
trajectories’ onset (Takagi et al., 2020; Sharifi et al., 2017). On
the other hand, NN-based prediction systems are more versatile,
but the interpretability of their “black box” internal models is an
issue, and they typically need large amounts of data for training
(Huang et al., 2000; Nikpour et al., 2020). The aforementioned
delay problem is even more important when we consider haptic
feedback, because of the technical challenges raised by the encoding
and transmission of such information (Van Den Berg et al., 2017),
and of the more complex stabilization of force-based control
(Kanaishi et al., 2020; Park and Khatib, 2006; Okamura, 2004).
Overall, both strategies result in a delay-free prediction that is
shown with or instead of the delayed signal. Depending on the
accuracy of the prediction, the estimated signal can contain
significant errors that are going to undermine the user’s trust in
the prediction. Since the explored strategies exploit systems with 0
degree of autonomy (DoA), the contribution of the delay-free
prediction loses effectiveness when it is not being trusted.

In this paper, we focus on shared control as an effective way to
overcome the problem of delay. This is achieved by combining a
simple predictive system with shared control. The scientific
interest for human-robot cooperation and shared control has
been exponentially growing in the last 20 years (Ajoudani et al.,
2018), especially with regards to teleoperated systems (Luo et al.,
2020), and it has been shown to be a suitable substitute to human-
human cooperation at times (Ivanova et al., 2020). Human-robot
cooperation has been investigated for the achievement of both
known and unknown goals (Javdani et al., 2018; Hauser, 2013).
When the goal is unknown, the operator’s intention is predicted
by using either statistical methods (Tanwani and Calinon, 2017)
or neural networks (Reddy et al., 2018). The introduction to some
DoA has been proven beneficial to achieve a better performance
in a variety of tasks, from reaching motions to track following,
and faster task execution times: prior studies show that more
autonomy often brings more accuracy and precision (Muelling
et al., 2017). Given such an increase in performance, shared
control has also been introduced in surgical robotics to achieve

higher precision and faster timings (Ficuciello et al., 2019;
Attanasio et al., 2021; Abdelaal et al., 2020; Moustris et al.,
2011). Shared control has also been shown to help to
minimize the effect of sensor noise (Schultz et al., 2017), and
has been partially investigated as an answer to compensate delay-
induced motions (Inoue et al. 2009).

Our goal is to study the effect of communication delay and
investigate the effect of increasing autonomy as a possible
countermeasure in a unilateral teleoperation system. To do so,
we implement a discrimination task in which the subjects are asked
to remotely control a robot to touch two different objects, one hard
and one soft, and correctly identify them via visualization of haptic
data. The task will be repeated introducing delay up to 4 s and
testing four modalities of increasing autonomy, i.e.: non-predictive
human control (HC), predictive human control (PHC), (shared)
predictive human-robot control (PHRC) and predictive robot control
(PRC). This task was chosen as a trade-off between ease of learning
by the subjects (which has led to shorter familiarization times with
the system), and complexity of haptic interactions, to infer the
effect of the increasing DoA as a mitigation tool for the indirect
instabilities caused by adding communication delay. In HC, the
subject can only rely on the delayed data, whereas in PHC, the
leader develops and updates an internal model as the task is played,
and uses such a model to predict real-time sensors’ output. In PRC
mode, the robot uses the same internal model to select the best
position for a correct answer and the subject can only make the
decision, but cannot move the robot. Finally, in PHRC, the target
position selected by the robot and the remote commands are
combined and weighted depending on the internal model’s
accuracy around the target position.

Our hypothesis is that increasing the autonomy will increase the
performance,mainly assessedwith accuracy and task time, because it
would compensate for the indirect instability induced by the delay.
At the same time, we wish to investigate whether shared control can
outperform pure robot autonomy or human control, because fully
automated trajectories could largely differ from human strategy,
therefore frustrating the subject and not achieving ideal cooperation
between human and robot. We aim to show the following: HC is
sensitive to delays, whereas the introduction of the internal model in
the other modalities aids delayed control, and the introduction of
autonomy (PHRC and PRC) can improve performance (accuracy,
task time, and interaction forces).

In the remainder of the paper, we will introduce the
experimental setup in Section 2.1, followed by a detailed
description of the different components in the architecture:
the leader’s and follower’s control algorithms in Section 2.2.1
and Section 2.2.2, respectively. Finally, Section 3 will show the
results obtained in the experimental trials and will be followed by
the discussion and closing remarks in Section 4.

2 MATERIALS AND METHODS

2.1 Experimental Setup
To implement a remote operation setup, we use a 6 Degree of
Freedom (DoF) UR5 Robotic Arm (Universal Robots) that can
perform complex end-effector trajectories (see Figure 1).
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The robot is placed in front of the workbench used to perform
the experiments and it is directly controlled by a “server”
workstation via TCP/IP. A remote “client” machine can then
achieve teleoperation of the robot by connecting to the server
through a graphical user interface (GUI) client program. The
communication is implemented ad hoc for these experiments via
sockets, and appropriate sensing delays from the server to the
client can therefore be induced at will. The operator can access
visual feedback corresponding to a pressure map detected by a
distributed tactile sensor array placed at the tip of the end-
effector. In the proposed study, we restrict the robot’s
movements to vertical motions and translations. In every trial,
the end-effector is placed at a random height, between 0.5 and
2.5 cm over either a soft or a hard dummy: the two dummies are
both 8 cm3 cubes but the hard one is 3D printed with ABS,
whereas the soft one is obtained by silicone casting Ecoflex 00-10
into a 3D printed mold. The starting height is randomized to
avoid possible biases due to the adaptation of the subjects to the
trials. Every subject is asked to remotely control the robot and to
make contact with one of the dummies, also randomly selected in
each trial, and to determine if the dummy is soft or hard. All
subjects undergo a calibration trial in which they are made to
control the robot to touch both dummies while knowing the
correct answer. After the first trial, the subjects are then to
perform the experiment 10 times for each condition. The
different conditions include different introduced delays and
different control modalities: in this work we tested delays of 0,
2 and 4 s jointly with four different control modalities (HC, PHC,
PRC and PHRC), which will be described in Section 2.2.1, for a
total of 120 trials for subject. The experiments have been
performed block-wise, so all 10 trials for a given condition are
completed before changing the condition itself. The conditions

are tested in the following order: concerning the modalities, HC
first, followed by PHC, PRC and PHRC, and for each modality the
0 s added delay has been tested first, followed by 2 and 4 s. A total
of five subjects with no previous experience of remote task
teleoperation or technology-assisted navigation have taken part
in the experimental session, overall resulting in 600 trials. Among
the participants, two subjects have a background in engineering
and have previously interacted with robotic platforms, but not
similar to the follower-leader architecture employed in this study.
Given the length of the overall experiment (roughly 3 h) under
the constant supervision of the authors, the study has been
limited to five people.

The sensor used to collect haptic data is a hexagonal capacitive
sensor array with seven tactile elements, or “taxels”, providing
high sensitivity and spatial distribution over the surface of the
sensor. The sensor provides measurement with a resolution of 16
bits corresponding to a variation of capacitance proportional to
the pressure acting on top of the sensor. Details of the specific
sensor and its fabrication have been previously reported (Scimeca
et al., 2018; Maiolino et al., 2013). The collected data are
normalized with respect to the maximum and minimum of
each individual taxel and spatially calibrated to a visual
representation of the pressure map showed to the user (see
Figure 2).

2.2 Control
The control architecture is composed of a leader, a follower, and
two communication channels: one from the leader to the
follower and one from the follower to the leader. The
implemented architecture falls in the category of unilateral
teleoperation systems, due to the absence of a kinesthetic
feedback: the haptic data are visualized as an haptic map in

FIGURE 1 | (A) The teleoperated robot with capacitive pressure sensor at the end-effector, (B) the lateral and top view of the two dummies used in the experiment,
(C) the subject remotely controlling the robot with the keyboard, and (D) the interface showed by the leader with the visual map of haptic data.
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the GUI rather than used directly as haptic feedback. The leader
sends to the follower the motor commands according to the
selected control modality, and receives the delayed sensor’s
information.

The predictive modalities of operation investigated assume the
possibility of achieving an accurate predictive system of the tactile
sensor response. As mentioned in Section 1, many solutions have
been proposed for accurate prediction, including deep learning
architectures, however, these are beyond the scope of this work. In
these experiments, we assume near-perfect prediction of the robot
position, given the user control inputs, under delayed conditions.
We thus use a third, non-delayed, channel from the follower to the
leader, which allows the sensor prediction system to observe near-
real-time robot positions. This, in turn, allows us to observe more
rigorously only the effects of sensor delay on the human response,
and to dissociate the human response outcomes from the quality of
the robot position prediction under delay conditions.

In the following sub-sections, we will first analyse the leader
and its control modalities and later describe the follower and how
it reacts to the motor commands.

2.2.1 Leader
The leader, located on the client machine, is composed of a
graphical user interface (GUI) and an internal model. The GUI
shows to the operator the haptic map and it is used to remotely

move the robot. The leader can be configured in four different
modalities: HC, PHC, PHRC and PRC (see Figure 3).

HC: In the Human-Control modality the response of the
sensor Txt is delayed of the desired amount Δt, and the only
motor commands sent to the follower are the keyboard’s inputs
Kt. Since the motion is limited to the vertical axes, Kt can contain
the “up” and “down” keys, and it is empty when the operator is
not touching the keyboard: an empty Kt is interpreted as “stay”,
thus stopping the robot.

PHC: In the Predictive-Human-Control modality we exploit
the internal model to predict the real-time response. At each time
step t, the model takes as inputs the delayed sensor’s information
Txt−Δt and the delay-free height information zt and outputs the
delay-free sensor’s prediction T̂x

t
, the target position ltT and the

robotic initiative rit. A detailed explanation of how the model
itself is able to compute such variables will be provided later in
this section. The PHCmodality follows the same protocol as HC,
with the exception that the predicted signal T̂x

t
is shown to the

user in addition to the delayed signal Txt−Δt.
PRC: In the Predictive-Robot-Control modality, the user input

Kt is ignored and the leader only sends the information about the
target position ltT. The user can still observe both the delayed and
predictive sensor response Txt−Δt and T̂x

t
.

PHRC: In the Predictive-Human-Robot-Control modality, the
leader sends commands Kt, ltT and rit to the follower, while still

FIGURE 2 | Robot states and corresponding sensor response upon contact with hard (A) and soft (B) dummies. The brighter areas (white) correspond to high
recorded pressures by the corresponding taxels, while darker (blue and black) areas correspond to lower pressures. The brightness values are dynamic and change
based on the history of touched objects on each trial, where they are normalized based on the highest and lowest recorded values by each taxel. In order to maintain the
contact’s spatial information, the sensor data have been displayed according to the hexagonal geometry of the sensor, which is over-imposed onto a square black
background.
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observing delayed and predictive sensor response Txt−Δt and T̂x
t
.

Regardless of the control modality, at the end of each trial, the
user is asked to select if the touched dummy was the hard or the
soft one, and the next trial would automatically start after the
choice. As already mentioned, subjects are asked to perform a
block of 10 trials for each conditions’ combination, and the
internal model continuously gathers data throughout the block
and is reset only when the conditions are changed.

The dummy used for the task is randomly selected at the
beginning of each trial. Since the leader is unaware of the selected
dummy’s identity, the internal model must capture several task
environments. We have implemented four different sub-models:
the hard and soft template models (H and S, respectively), the
temporal model (TM), and the current model (CM). H and S
represent the a priori information about the dummies known
before the start of the trial by prior contacts with the object,
whereas TM is reinitialized every time the operator provides an
answer (A) and represents the a posteriori information derived
from the ongoing trial. Finally, CM is the sub-model used for the
prediction T̂x

t
(see Figure 4). Note that the model on the client-

side updates its variables based on the sensory response from the
server, and thus their updates are subject to delays (Δt) should
these be introduced. However, they hold the memory of
previously observed sensor values and thus can be used to

simulate the real-time sensory information for the operator.
As a result of this implementation, we are able to have two
different versions of the internal model, one for each dummy.
This strategy can be scaled up to an arbitrary number of separate
versions by adding template models.

Every sub-model is a Gaussian predictive model that divides the
task space into N × J normally-distributed random variables, where
N is the number of height levels (controlling the spatial resolution)
and J is the number of taxels relevant for the haptic mapping. For the
remainder of the experiments N � 50 and J � 7. For each random
variable we compute amean μij and variance σ2ij, where i ∈N is the ith

height level and j ∈ J is the jth taxel in the sensor array. Under the
assumption of Gaussian distributed data, every new sensor data
point xt

ij, received at time t, the mean and standard deviation of the
corresponding random variables are updated as follows:

μtij �
μt−1ij Ni + xt

ij

N + 1
∀ xt

ij ∈ Txt−Δt

σt2

ij �
σt−12
ij Ni + (xt

ij − μtij)2
N + 1

Ni � Ni + 1 if Ni <Nmax

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(1)

whereNi is the number of samples collected for level i andNmax is
the maximum number of points kept in memory, 10 in our case.

FIGURE 3 | Schematics of the control in the four different modalities: HC, PHC, PRC, PHRC, from top to bottom. In the figure, K represents the information about
the keys pressed by the user (“up” and “down”), lT is the target position selected by the internal model, ri is the robot initiative, A is the answer given by the user at the end
of the task, z is the information about the z coordinate of the end-effector, Δz is the motion of the end-effector along the same direction, Tx is the sensor’s data about the
taxels, and T̂x is the predicted sensor’s data obtained from the internal model. The apex t is used for any not delayed signal whereas Δt is the introduced delay.
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At each iteration, the distance between TM and the models for the
two dummies is computed as follows:

dM
i � ∑J

j�1
(μMij − μ̂ij)2 if N̂i > 0

dM
i � 0 if N̂i � 0

⎧⎪⎪⎨⎪⎪⎩ (2)

dM � ∑N
i�1

dM
i (3)

where the modelM is either H or S, dMi is the distance of a single
level i and dM is the total distance between the two models, N̂i is
the number of samples for level i in TM, μMij is the mean value of
taxel j and level i for the a priorimodel, soft or hard, and μ̂ij is the
same value for TM. The model corresponding to the smallest
distance is then selected and merged with TM as follows:

μWij � Nmax − N̂i

Nmax
μMij + N̂i

Nmax
μ̂ij

σW2
ij �

Nmax − N̂i

Nmax
σM

2
ij +

N̂i

Nmax
σ̂2
ij

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4)

whereM andW refer to the a priori template model selected and
CM, respectively, and the^denotes TM variables. For the sake of
computational time, the merging only occurs in the first
iteration and when and if the selected template model
changes. In all the other iterations, CM is simply updated

together with TM. When a new CM is created by merging,
the old CM is deleted from the internal memory. When the user
provides an answer, TM is reset and a new trial starts. Moreover,
if the answer was correct, the corresponding model in the
internal memory, H or S, is updated with the data of the last
trial. CM is then used for the real time prediction T̂x

t
at the

position zt and it is shown to the user together with the real
delayed data Txt−Δt.

In PRC, as we already discussed, CM is used by the robot to
decide autonomously the best position in order for the operator to
answer correctly, and the operator can only answer, but it is
unable to move the robot. The target position ltT is selected
calculating the average mean value of every level of the model
as follows:

li � ∑J
j�1

μWij ∀ i ∈ 1, 2 . . . n

ltT � arg min
l∈{l1 ,l2...ln}

l − lmax + lmin

2
( )( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(5)

where lmax and lmin are the maximum and the minimum li among
all levels, respectively. In PRC, the robot independently reaches the
target position. The position is selected as the one corresponding to
the average value of the sensor so to maximize the information
shown to the operator and avoid the saturation of the sensor while
making sure that the contact has happened.

FIGURE 4 | Internal model flow-chart: during the trial, the internal model continuously uses incoming data Txt−Δt to determine which model can better fit the
collected data. The same data are then used to update both TM and CM according to Eq. 1. When the closest model (Mt) changes from H to S or vice versa, the CM is
generated by mergingMt and TM (see Eq. 4). The black lines correspond to the flow chart and the blue ones to data storage. The prediction of T̂x

t
and the values for ltT

and rit is then given by showing theCM level corresponding to the height zt. When the user gives the answer A, TM is reset and the internal models are updated if the
given answer is correct.
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In PHRC, the leader also computes the error (e) corresponding
to each level and the robot initiative (rit) relative to the target
position which will be used by the follower to combine the
autonomous and human commands, as follows:

eti �
∑J

j�1σ
W2

ij

NW
i

(6)

rit � emax
T − etT
emax
T

if NT > 1

rit � 0 if NT ≤ 1

⎧⎪⎪⎨⎪⎪⎩ (7)

where emax
T is the maximum value of e for the target position T

and etT is the current error value for the same level.

2.2.2 Follower
The follower, placed on the server workstation, is programmed to
operate at a higher frequency than the leader, around 125Hz. It
receives the motor commands for the leader and executes them.
In the HC and the PHC mode, the follower moves the end-
effector at a speed of 0.5mm/s in the direction specified by the
corresponding key pressed by the operator. When operating in
autonomous mode, the end-effector is driven toward the target
position at the same speed, and in the case of shared control
(PHRC), the selected speed is determined as follows:

vs � ritva + (1 − rit)vr (8)

where va and vr are the desired autonomous and remote input
speeds, and vs is the resulting shared control speed. Note that va
and vr, when not 0, are equal in magnitude but could be different
in sign. The follower also communicates to the leader the sensor’s
data needed to create the haptic map and saves all the robot’s data
at the end of each trial.

3 RESULTS

3.1 Control Modalities
As introduced in the previous section, all subjects undergo blocks
of 10 trials for each delay level (0, 2 and 4 s) and each control
modality. In all the modalities, the sensor data is delayed by a
fixed and constant Δt. We mainly want to study the effects of the
magnitude of fixed delays, and as a result we do not consider
time-varying delay conditions. The only difference between the
10 trials is the initial starting point of the end-effector, which is
randomly generated in a range of 0.5–2.5 cm from the object: in
order to avoid user’s adaptation to the task, the starting point is
randomized, thus the users do not know the distance that they
have to cover before entering in contact with the dummy’s
surface. First, we analyse how the different modalities can
control the trajectory of the end-effector. Figure 5 shows
examples of how the three possible inputs can control the
motion, all in a 0 s added delay condition, and how different
control modalities result in different achieved trajectories. In the
case of HC and PHC, the only control input are the pressed keys
Kt. As it can be seen in sub-figure (A), that creates a jerky
trajectory because the robot stops every time the user is not

pressing any key, given that ltT is ignored for these modalities.
Since the starting height is unknown, the subject tends to stop
every few seconds in every delay condition to avoid sudden
impact. Therefore, the subject is able to stop soon after the
contact with the object, and answer usually within 20 s.
Conversely, PRC shows exactly the opposite trends: the
trajectories are a lot smoother, but the end-effector reaches a
much lower position before the internal model is able to process
enough data in order to correctly update the model change the
target position ltT. In this modality, Kt is ignored and not taken
into consideration. Finally, in PHRC, both inputs are accounted,
as explained in Eq. 8. The magnitude of ri depends on how much
data are gathered about ltT, therefore it increases as the end-
effector spends time in ltT. At the same time, the data gathered by
the sensor can shift the ltT, resetting ri to a new value. It can be
noticed that the trajectory is initially very similar to the sub-figure
(A) because ri is close to 0. Then, as ri increases, the trajectory
rapidly converges to the target position, with little oscillations.
When the ltT changes, around 20 s, ri drops, but it rapidly recovers
as soon as enough data are collected from the new target.

3.2 Delay Introduction
Next, we are interested in how the introduced delay affects the
different modalities, so we introduce a delay of 2 and 4 s to the
communication channel from follower to leader. Figure 6 shows
some trials taken from the experimental data. In all the graphs, it
is shown the trajectory of the end-effector of the robot and a
proxy of the delayed feedback showed to the user, obtained by
performing the sum of all taxels’ values present in Txt−Δt. The sum
of the taxels has been selected as a metric because it summarizes
effectively all the haptic information seen by the user. At 0 s delay
all four modalities have similar behaviors: the end-effector stops
when the contact is detected and then it undergoes small
adjustments to reach the correct height at which is possible to
recognize the touched object without the sensor’s saturation nor
detachment.

In the case of HC, adding delay causes the formation of
“chattering”: the users are able to see that they have touched
too late, therefore they do not stop the end-effector in time and
they saturate the sensor’s readings. Then, trying to move back to
the correct height, they are once again unable to stop at the correct
height and the end-effector moves away from the object, causing
the sensor’s signal to drop back to 0. Chattering is an example of
indirect instability, since it is originated by the user
overcompensating the perceived errors due to the delay added
to the visual representation of the haptic map. Compared with the
2 s delay case, the 4 s delay has longer and deeper oscillations, and
the elapsed time before the answer is very high in both cases when
compared with the 0 s case. Concerning the PHC, we can still
observe some oscillations, but their magnitude is strongly reduced:
it is evident that the users are able to use the information about the
predicted output to minimizing overshooting, thus reducing
chattering and giving an answer faster.

Next, the PRC shows almost no chattering because it does not
rely on the user’s input, but the delay directly affects the update
timing of ltT: both in the 2 and 4 s case the target position is only
updated after 2 and 4 s after the previous one is reached,
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respectively. This could cause potentially dangerous contacts if
the end-effector and the object exchange high forces for a
prolonged time: this is evident in the 4 s delay case, in which
we can see the end-effector almost “vibrating” at its lowest point,
indicating that it was trying to go further but it was stopped by the
environment. We also know that such a contact saturated the
sensor’s signal because ltT is changed as a consequence of it.
Moreover, it can also be noticed that this modality does not allow
any oscillation, once the final ltT is determined: in all the remotely
controlled modalities with no delay the users use a small

oscillation as a strategy to successfully complete the task.
However, this modality showcases much faster trials’ time,
likely due to the absence of chattering. Finally, in PHRC we
can still observe a little oscillation, but it is mixed with the target
following behavior proper of PRC. This modality is shown to be
slightly slower than PRC, but it allows to some extent small
movements and deviations from the target position, thus
ensuring to some extent the user’s freedom of motion.

To further validate our hypothesis, we have analyzed the
percentage of cases in which we can detect chattering, defining

FIGURE 5 | Examples of the different controlling modalities in 0 s delay condition. In HC and PHC, the motion is entirely controlled by the keyboard inputs given by
the user (A). In PRC, the input is completely ignored and the robot is driven toward the target position determined by the internal model (B). In PHRC, both the target
position and the input keys are used to determine the motor command given to the robot, according to Eq. 8 (C). In the trajectories’ plots, the horizontal line is the height
at which the top surface of the dummy is positioned.
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chattering as the presence of at least one detachment from the
dummy after initial contact ismade. Figure 7 shows the cumulative
percentage computed among all trials and all subjects. It is clear
that chattering is common in remotely control modalities,
especially HC, but can be strongly reduced by introducing
autonomy. Note that the modalities are listed from the least
autonomous, HC, on the left, to the most autonomous, PRC, on
the right. Therefore, autonomy in the system can be considered a
valid answer to strongly limit such behavior. To the right, it can be
noticed that introducing any delay strongly increases the
chattering, but going from 2 to 4 s does not produce additional
chattering: as already discussed, this further increase in delay only
produces greater and wider oscillations, not affecting the presence
of chattering, but its severity.

3.3 Group Study Results
The main results shown in Figure 8 are the accuracy, to the left,
and the decision time, to the right. The decision time is calculated

from the first contact made with the dummy to the moment in
which the operator gives the answer, in order to avoid any bias
related to the random initial height. The accuracy plot illustrates
that there is a clear cut betweenHC and all the other modalities as
the introduced delay increases: at 0 s delay, HC’s accuracy is 90%,
but it rapidly decreases when the delay is introduced. The PHC
also decreases in performance as the introduced delay increases,
but less severely. Since both the fully remotely operated
modalities have noticeably decreasing trends as the delay
increases, we can infer that the delay compromises the
stability of the feedback loop relying on the human action. On
the other hand, the other two modalities seem not to be affected
by delay as much, especially in the case of PRC, in which the
accuracy stays between 80 and 85%. The PHRC seems to increase
its performance as the delay increases: on one side, it could be
inferred that PHRC is better exploited with delay, on the other
side this may be due either to the small sample size or to the fact
that every subject undergoes 0, 2 and 4 s delay trials in this specific

FIGURE 6 | Examples of trials for different delays and all four different control modalities: each row represent a control modality and each column represent a delay
condition. In blue the z position of the end-effector and in orange the sum of the taxels’ value. The black line indicates the position of the dummy’s surface.
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order, thus they may find the control modality not intuitive at
first, but learn and become better over time. We believe that
PHRC is able to achieve better results than PRC because the user is
able to slightly tune the motion of the end effector, thus exploring
the contact zone and gather more useful information. Similarly,
the decision time of all four modalities is within a 3 s difference
when looking at the no-delay condition, but there is a clear
difference among them as the delay increases. In high delay
conditions, the four modalities are largely separated: HC is the
slowest, followed by PHC and PHRC, and the fastest is PRC. We
believe that this is due to the fact that both PHRC and PRC are
effective in keeping the end-effector at the right range so as to
avoid sensor saturation and contact detachment, thus not wasting

time in regions with no information. Overall, HC and PHC are
more sensitive and they lose stability when the delay is
introduced, whereas PRC and PHRC show a much more
robust behavior, showing that complete or partial automation
is able to contrast the unstable behavior of delayed human-in-the-
loop teleoperation.

Next, Figure 9 shows some more metrics useful to assess the
performance: the deepest point reached during contact and the
total average trial time. The deepest reached point is a proxy for
how strong the interaction with the environment has been during
the trial. Ideally, it is not needed to reach deep in the dummy in
order to achieve good discrimination, and going too deep can
produce high forces that could damage the robot or the

FIGURE 8 | Box plots of accuracy (A) and decision time (B) as a function of the delay introduced, in the four different control modalities. Decision time is the time
elapsed from the first contact to the subject’s answer.

FIGURE7 | Total percentages of chattering trials among all subjects and all conditions, for a total of 600 trials, as a function of the different modality (A) and the delay
condition (B). Chattering is defined as the detachment of the sensor from the dummy’s surface after initial contact is made.
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environment. The plot illustrates that only the shared control
mode seems to be affected by the delay added to the system. The
autonomous mode always reaches deeper than the other
modalities and the two fully remote-controlled modes show
the best results, having a light interaction in all cases. Even
when the delay is introduced, the subjects are able to avoid
deep contacts by moving slower, thus they do not reach
deeper than necessary in the dummies, but, as previously
shown, they compromise the task execution’s speed. Shared
control approaches the autonomous values as the delay
increases, likely because the control architecture tends to trust
the robot more than the remotely given motor commands.
Concerning the approaching speed, the fastest modality is PRC
and it is completely not affected by the delay: once the target
position is set, the end-effector will approach the phantom at a

constant speed va, regardless of the sensor’s data. The other three
modalities are quite close to each other for the 0 s case, but as the
delay increases it is shown that PHRC tends to go toward the PRC,
PHC decreases slightly and then stabilizes, and HC tends to
decrease its performance. Once again, PHRC approaches PRC as
the delay increases, likely due to the increased trust toward the
internal model. While working in high delay conditions, if the
user is left in charge of the motion, the motion will result jerky
and oscillating, thus collecting data points for more height levels
than a smooth trajectory: this additional data can make the
internal model much more precise, thus increasing rit and
consequently approaching the trajectories of the PRC.

More in detail, Figure 10 illustrates the precision of the
internal model in all the different conditions. The distance
between prediction and real data is calculated as follows:

FIGURE 9 | Box plots of approaching speed (A) and deepest reached point (B) as a function of the delay introduced, in the four different control modalities. In the
deepest reached point’s graph, the black line represents the height at which the first contact with the dummy is made.

FIGURE 10 | Box plots of average distance between predicted output T̂x
t
and real output Txt (A), and average robotic initiative ri (B). Average ri is computed by

using Eq. 8 and taking the mean value for 0 ≤ t ≤ tend.
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D � ∫tend

0
∑J

j�1(x̂t
j − xt

j)2dt
tend

∀ xt
j ∈ Txt∧x̂t

j ∈ T̂x
t

(9)

where tend is the overall duration of the trial. The data show that the
internal model is able to give a better prediction in PHRC than in the
other modalities, especially as the introduced delay increases. The
increasing trend of ri with respect to delay further supports that the
introduction of delaymakes themodel more reliable and thusmakes
the robot behaving more autonomously (see Eq. 8). Moreover, both
too little and too much autonomy seem to result in lower
performance upon the introduction of delay. For PHC, the
prediction’s accuracy decreases as the delay increases because the
model is trying to predict the sensor’s output for wider and more
chattering trajectories, whereas, in PRC, it decreases because the
sensor gathers data from a lower number of different levels.
Compared with PHC, PHRC allows voluntary small oscillations
that can gather data from adjacent levels, increasing the overall
quality of the model, and thus the average value of ri.

To further study how the interaction differs among soft and hard
dummy, the average heightwhile interactingwith the environment and
the interaction forces are reported in Figure 11. Due to the different

stiffness of the two dummies, the end-effector reaches deeper when
interacting with the soft dummy in all cases. When comparing trials
belonging to the same dummy, it is evident that during PRC the
subjects tend to interact more with the surface of the dummy, reaching
deeper. Concerning the soft dummy, it is also clear that the magnitude
of the delay affects the performance, likely due to the slower updating
speed of the internal model. When analyzing the interaction forces, we
focused on the maximum registered taxels’ value and the average
momentum. For each trial, the average momentum is computed using
the average taxels’ value to calculate the impulse of the trial, later
averaged using the total time of each experiment, as follows:

M � ∫tend

0
∑J

j�1x
t
jdt

tend
∀ xt

j ∈ Txt (10)

Both metrics show that PHRC is able to achieve on average softer
interactions, exchanging less force with the environment and thus
achieving a safer performance. Even if the interaction force is not
considered as a main result, it is preferable to maintain it as low as
possible, as long as it does not negatively affect the main performance
metrics.

FIGURE 11 | On top, average height after contact in the case of hard (A) and soft (B) dummies. On the bottom, the maximum recorded taxels’ value (C) and the
trials’ average momentum (D), both used to quantify the strength of the interaction between robot and environment.
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The high variance shown is mostly due to inter-subject, as
opposed to intra-subject, variability. This is explained by both the
starting baseline and the general ability to recognize the two
different objects, which largely varies from person to person.

4 DISCUSSION

This work investigates humans’ behavior in teleoperation as
communication delay increases and proposes a possible solution
to minimize its effects on performance: an internal model to predict
future sensory data, and shared control. In scientific literature,
multiple studies tried to predict future sensors signal using either
statistical methods or NN, but we introduce shared control as an
additional tool on top of a statistical predictor. Shared control,
especially when used in a repetitive task, has already been proven
to enhance precision and task speed, and we show that it is also an
effective strategy against possible errors due to communication
delay. More in detail, this study compares four different control
modalities at increasing degree of autonomy (DoA): non-predictive
human control (HC), predictive human control (PHC), (shared)
predictive human-robot control (PHRC) and predictive robot
control (PRC). Every modality has been tested with 0, 2, and 4 s
delays added to the communication channel from follower to leader.
The experimental protocol is composed of blocks of 10 trials for
every combination ofmodality and delay, for a total of 120 trials, and
has been carried out on five subjects with no previous experience of
remote task teleoperation or technology-assisted navigation.

Each block needs to be completed before moving to the next
one and the internal model is reset between blocks. The proposed
unilateral teleoperated system is composed of a leader and a
follower: the leader is composed by a GUI shown on the user’s
computer screen, that displays the haptic map received from the
follower and allows the user to move the end-effector with the
keyboard, and an internal model, based on a hierarchical
arrangement of Gaussian sub-models, used to predict delay-
free signals, whereas the follower is made of a UR5 robotic
arm, that executes the leader’s imposed motions, and a
capacitive pressure sensor, used to gather data for the haptic map.

The results clearly show that the HC, which is the standard
control modality for state-of-the-art teleoperation, is extremely
sensitive to added delay: the subjects tend to oscillate more
during the trials and the overall performance results less
accurate and slower both in approaching the phantom and
taking a guess after the contact is made. Just adding a
prediction of the sensor’s signal, in PHC, is enough to strongly
limit the oscillations and to noticeably increase the accuracy and
approaching speed, but the decrease in decision time is not
substantial. In both cases, the delay causes indirect instabilities
through the user’s overcompensation and creates strong deviations
from the intended trajectories. The shared control architecture,
PHRC, and the autonomous one, PRC, show faster timings and
increased performance, likely due to the increase autonomy of
those modes, that allows them to avoid indirect instabilities and
maintain a good contact with the dummies, without detachment or
sensor’s saturation. All in all, both modalities showcase a stable
behavior even in high delay conditions, thus we consider the

addition of some DoA to be a stabilizing factor for delayed
teleoperation. Nevertheless, the PHRC shows slightly higher
accuracy than PRC as the delay increases: by observing the 0 s
delay cases it can be noticed that small oscillations are often used as
a strategy during the task, and those voluntary small oscillations can
still be performed during PHRC, but not during PRC, given the
complete autonomy of this modality. Moreover, it can also be
noticed that the PRC reaches deeper than the other three
modalities, regardless of the operating conditions, and this
produces high contact forces that could harm the environment
or the sensor: ideally, we want to be able to recognize the touched
object without strong physical interaction with the object itself.
Finally, from the results, it can be observed that PHRC’s
performance tends to approach PRC’s as the delay increases,
and this is explained by the shared control trusting more the
internal model in high delay conditions: high delays produce high
oscillations, and this also means that more data from different
height levels are collected faster, thus making the model more
reliable and increasing the autonomy of this modality. In other
words, when the user performs wider trajectories, it gathers data
from a wider range, thus increasing rapidly the internal model’s
precision, thus leading the system toward a more autonomous
behavior, and those types of trajectories are affected by the
introduced delay: higher delay produces longer and greater
oscillations. One limitation within the experimental conditions
lies within the long trials needed to gather the relevant data
from each participant. This in turn has limited the number of
participants to 5. However, whilst harder to capture the cross-
participant variance of the results, the findings show a coherent
trend for each individual across several trials in different
conditions, supporting the results shown in this work.

We showed that both signal prediction and shared control can
be used to minimize the negative effects of delay in teleoperation,
up to 4 s, especially concerning indirect instabilities. Overall, the
PHRC is proven to be a good trade-off between fully user-driven
modalities and complete autonomy, having high accuracy, fast
decision time, average approaching speed, and moderate contact
interaction. The choice of the experimental scenario in this paper
was limited to a 1 DoF reaching and recognition task. In more
challenging tasks, the system necessary to achieve appropriate
haptic interactions can have several DOFs, inducing longer
training times by the user as well as higher degrees of control
skills. Additional work on tasks with higher degrees of system
control could shed some light onto whether the complexity of the
task (or the controller) can also influence the ability of shared
control to mitigate communication delays. We analyzed the
problem of communication delay from follower to leader, but
the delay is bidirectional in real-life scenarios, and this issue is not
considered in our discussion. Moreover, we focused on the effect of
delay’s magnitude, thus adopting constant delays during the
experiments. While this prevents the generalization of the
results to time-varying delay for now, future work could extend
this study to such a case, under the assumption that the predictive
system is capable of capturing the varying delayed sensor response.
As a closing remark, if shared control can be used to minimize or
nullify the effect of communication delay, it could make
teleoperation possible over long distances and unstable internet
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connections, such as teleoperating a robot through space or
performing a medical examination on a patient located in an
unreachable location.
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