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This paper presents an observer architecture that can estimate a set of configuration space
variables, their rates of change and contact forces of a fabric-reinforced inflatable soft
robot. We discretized the continuum robot into a sequence of discs connected by
inextensible threads; this allows great flexibility when describing the robot’s behavior.
At first, the system dynamics is described by a linear parameter-varying (LPV) model that
includes a set of subsystems, each of which corresponds to a particular range of chamber
pressure. A real-world challenge we confront is that the physical robot prototype exhibits a
hysteresis loop whose directions depend on whether the chamber is inflating or deflating.
In this paper we transform the hysteresis model to a semilinear model to avoid backward-
in-time definitions, making it suitable for observer and controller design. The final model
describing the soft robot, including the discretized continuum and hysteresis behavior, is
called the semilinear parameter-varying (SPV) model. The semilinear parameter-varying
observer architecture includes a set of sub-observers corresponding to the subsystems
for each chamber pressure range in the SPV model. The proposed observer is evaluated
through simulations and experiments. Simulation results show that the observer can
estimate the configuration space variables and their rate of change with no steady-state
error. In addition, experimental results display fast convergence of generalized contact
force estimates and good tracking of the robot’s configuration relative to ground-truth
motion capture data.

Keywords: soft robotics, fabric-reinforced, inflatable, hysteresis, linear parameter-varying, observer design, contact
force, sliding mode

1 INTRODUCTION

Soft robots are designed to safely interact with and adapt to their surrounding environment (Kim
et al., 2013). Their bodies are soft and deformable so that they can be compliant in narrow spaces or
when they make contact with objects (Bauer et al., 2014; Rus and Tolley, 2015). Hence, body
deformation and contact forces are the main issues that a soft robot has to confront during operation.
In order to complete a task, the controller of a soft robot needs to know the current states of the robot
as well as the information about disturbances such as contact forces acting on the robot body.
However, due to the continuously deformable nature of a soft robot, perceiving such information is
still technically challenging (Santina et al., 2020). Despite recent advances in soft sensor technologies,
it’s almost impossible to accurately measure those quantities by sensors integrated into the robot
body. A good alternative is using an observer for state and generalized contact force estimation.
There have been several authors working on the design of observers for soft robots. Santina et al.

Edited by:
Moritz Bächer,

Disney Research, United States

Reviewed by:
Jakub Bernat,

Poznań University of Technology,
Poland

Kristin M. De Payrebrune,
University of Kaiserslautern, Germany

*Correspondence:
Phuc D.H. Bui

phuc-bui@utulsa.edu

Specialty section:
This article was submitted to

Soft Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 29 July 2021
Accepted: 21 September 2021
Published: 03 November 2021

Citation:
Bui PDH and Schultz JA (2021) A

Semilinear Parameter-Varying
Observer Method for Fabric-

Reinforced Soft Robots.
Front. Robot. AI 8:749591.

doi: 10.3389/frobt.2021.749591

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 7495911

ORIGINAL RESEARCH
published: 03 November 2021

doi: 10.3389/frobt.2021.749591

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.749591&domain=pdf&date_stamp=2021-11-03
https://www.frontiersin.org/articles/10.3389/frobt.2021.749591/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.749591/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.749591/full
http://creativecommons.org/licenses/by/4.0/
mailto:phuc-bui@utulsa.edu
https://doi.org/10.3389/frobt.2021.749591
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.749591


(2020) designed an observer combined with machine learning to
detect contacts on a soft robot. The work focuses on
characterizing contact events on the soft robot when only
knowledge of its posture and actuation are available. Zhang
et al. (2016) used finite elements to estimate the configuration
matrices. The observer was based on the real-time finite element
method (FEM) that combined feedback signals from the real
robot and model information from the robot simulated by FEM.
Gillespie et al. (2016) used a Kalman filter to integrate
accelerations and angular velocities for robot postures. Ataka
et al. (2016) used a multi-stage Extended Kalman Filter to
estimate the soft robot poses. Rone and Ben-Tzvi (2013)
estimated the robot states using the displacement of passive
cables. Srivatsan et al. (2014) used Lie algebra to estimate the
shape of a medical snake robot. In general, due to the
complication of the soft robots, a lot of efforts were made in
the aforementioned works to estimate some states or to detect a
contact event. However, there has been no model-based observer
designed to estimate both soft robot state and contact forces. It is
worth noting that designing observers for soft robots is a
challenging task because they are highly nonlinear systems and
modeling processes for them are complicated. Currently there are
three predominant approaches to model a soft robot: Piece-wise
Constant Curvature (PCC) (Webster and Jones, 2010), discrete
Cosserat models (Renda et al., 2018) and 3D Finite Element
Models (Connolly et al., 2015). The PCC model seems to be the
simplest one among the three modeling approaches due to its
simplifications and assumptions but even so, a model-based
observer for a PCC soft robot is still very difficult to obtain.

In this paper, we introduce a new observer design for our
recently developed fabric-reinforced inflatable soft robot
“Squishy” Williamson et al. (2021). It is a model-based
observer built around the new disc-thread model state
parameterization Schultz et al. (2020). We use a third-order
sliding mode approach, which is powerful and has high
robustness, to design the observer so that it can estimate a
large number of robot states and generalized contact forces.
The state estimation uses position data from markers placed at
several locations on the robot body. The estimator computes an
estimated contact force by considering it to be a disturbance to
the disc-thread model prediction.We will compare this to contact
force measurements acquired experimentally using a force sensor.
The advantage of the proposed observer over the existing ones is
that it can estimate a large number of both the robot states and
generalized contact forces. A preliminary version of this observer
architecture appears in the proceedings of ICRA 2021 (Bui and
Schultz, 2021), but this article includes additional details in the
formulation of the observer, new runs of the simulation with a
refinement to the model, and the experimental validation that did
not appear in the conference paper. In addition, the discussion of
the hysteresis behavior is new to this work. For the modeling part,
this paper uses the recently developed disc-thread approach to
model a fabric-reinforced inflatable soft robot. In the disc-thread
modeling approach, the soft robot is discretized into N discs
connected byN − 1 threads to represent a kinematic chain of rigid
bodies, and the equations of motion are formulated using the
Langrangian method. Since the modeling process produces ODEs

in the manner of a traditional robot, the observer is model-based
and has a closed form for the same class of robot models. In order
to design a model-based observer, at first we developed a linear
parameter-varying (LPV) system which is comprised of a set of
linear systems, each corresponding to different working
pressures, to represent the whole nonlinear soft robot. This
LPV model is also suitable to design a model-based controller
in the future.

This paper also discusses the hysteresis behavior of the soft
robot. Like almost every other viscoelastic system, this silicone
soft robot follows a different path when inflating than it does
when deflating. This behavior is interesting but it increases the
complexity in the modeling and control process of the robot
because the controller must keep track of whether the robot is
inflating or deflating. There have been only a few papers working
on the hysteresis of soft robots such as the work of Hošovský et al.
(2016) where hysteretic behavior of a two-DOF soft robotic arm is
analyzed, or the work of Vo-Minh et al. (2011) where the
hysteresis is modeled using several Maxwell-slip elements each
with different stiffness and saturation force. Our paper applies a
modified generalized Duhem model to describe the hysteresis
behavior of the robot. The advantage of this approach is that it
avoids backward-in-time definitions, making it suitable for
observer and controller design. We call the final system the
semilinear parameter-varying (SPV) model, which is the
proposed LPV system that accounts for the hysteresis behavior.

This article is structured as follows. In Section 2.1, we introduce
our soft robot and review the disc-thread model approach as well as
the formulation of the equations of motion. The LPV system is
addressed in Section 2.2. Section 2.3 discusses the hysteresis loop
behavior and the SPVmodel of the soft robot. Section 2.4 describes
the observer design for the soft robot. The settings of simulations
and experiments are described in Section 2.5. Section 3 shows the
simulation and experimental results of the observer. The conclusion
is presented in Section 4.

2 MATERIALS AND METHODS

2.1 The Fabric-Reinforced Inflatable Soft
Robot and Disc-Thread Model
Our soft robot, “Squishy”, is an inflatable elastomeric chamber
made of Smooth-On Dragon Skin 30 silicone that has a thin band
of fabric embedded longitudinally to reinforce one side of the
robot. The details of the manufacturing process and basic
characteristics, such as the workspace volume and inflation-
displacement behavior can be found in (Williamson et al.,
2021). The undeformed shape of the chamber and the fabric
band are 2D circular arcs. The chamber is closed by two caps at
either end. One of the two caps has an inlet so that compressed air
can be pumped in. When inflated pneumatically, the
unreinforced side can undergo large strains while the fabric
side maintains a constant length. This causes the chamber to
bend and twist. Because of the fabric’s placement on the robot, its
tip can trace 3D curves rather than just 2D curves as would a
straight robot. Figure 1 shows the poses of the robot at some
different working pressures.
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The higher the robot chamber pressure is, the more it expands
and the more it bends down and twists. The entire length of the
robot arm could be used to perform some tasks such as scraping
or pushing against objects in its environment. The advantage of
this soft robot is that it can perform some tasks in 3D space with
only one actuator (which is the controlled compressed air P). It
should not damage objects, nor itself in the case of collisions due
to the soft body. When the robot is not in use, it can be deflated,
rolled, and stored in a tiny box to save space. The robot can also
be included as a single module within a larger system to perform
more sophisticated tasks.

To represent the motion of the robot, which is a continuum,
using a finite set of variables, we use the Disc-thread model, which
is briefly reviewed in this section. This was introduced in Schultz
et al. (2020), and has the advantages of describing the bending
and twisting of the soft robot in an easily customized fashion by a
set of differential equations. In this approach, we discretize the
chamber longitudinally into a sequence of N discs, each
connected to its neighbors on either side by a single
inextensible thread (representing the fabric reinforcement).
Each disc is considered to be a rigid body and is constrained
only by the thread. The frame assignments and their implications
are illustrated in Figure 2. Each pose of the soft robot is derived

from the relative position and orientation between pairs of
adjacent discs. Each disc is parameterized by five generalized
coordinates. The thread i is parameterized by two angles αi, βi ∈
[0; π]. The subsequent frames will involve a translation along the
inextensible thread (of a fixed distance ℓi), together with three
other rotations ci, ψi and ϕi, where the twisting of the robot is
accounted by ci. So by relying on these fictitious discs and threads
as well as angles from α1 to ϕ5(N−1), this approach models the soft
robot as a kinematic chain of rigid bodies. However, because the
joints are not prismatic or revolute this model contains a higher
number of variables than a traditional kinematic chain.

With the kinematics of the soft robot fully defined by the
disc-thread model, we formulate the Lagrangian and took its
derivatives to find the equations of motion using the Euler-
Lagrange formulation. The elasticity of the air is modeled by
treating the air as an ideal gas, which exerts a normal force on
the Nth disc in the zN direction. The elasticity of the walls is
modeled by connecting springs from some origin on disk i to
insertion on disk i + 1. The equations of motion has the familiar
form:

d
dt

zL
z _q

( ) − zL
zq

+ AT
qλ � Q (1)

FIGURE 1 | The poses of the fabric-reinforced inflatable soft robot at four different pressures, (A) At 1.5 psi, (B) at 2.5 psi, (C) at 3 psi, (D) at 3.5 psi [Reprinted from
(Bui and Schultz, 2021) with permissions].
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where q ∈ R5(N−1) is the configuration vector containing α1/ϕN−1
variables, zLzq is the partial derivative of the Lagrangian with respect
to each generalized variable, Q ∈ R5(N−1) is the generalized forces
due to the internal pressure acting on the surface of the last disc,
and Aq ∈ R5(N−1)×5(N−1) is the Jacobian of the Pfaffian constraints
arranged so that it can be multiplied by the vector of Lagrange
multipliers λ ∈ R5(N−1). In this work, we are trying to observe the
robot configuration (and contact force, if applicable), whether the
robot is in free space or in contact. In contact the product AT

qλ will
be nonzero and we replace it by Fc, where “c” denotes the effects of
the contact force on the robot’s configuration space. This term will
have the same units as the generalized force Q. By using the
canonical momenta vector p � zL

z _q � M _q with the mass matrix
M ∈ R5(N−1)×5(N−1), we can rewrite the above equation of motion
in the state space form as:

_q
_p

( ) � 0 M−1

0 0
( ) q

p
( ) +

0

zL
zq

+Q − Fc

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ (2)

2.2 Linear Parameter-Varying Modeling of
the Soft Robot
The inflatable soft robot described in Section 2.1 will operate at a
range of pressures. Because the analytical expressions of M,
zL/zq and Q are functions of generalized coordinate q and
the input pressure P, the equations of motion of the soft robot
are not constant but change corresponding to each pressure
(operating point). Note that the expressions of these matrices
are complicated because they include partial derivatives of
expressions of many variables and they are varying nonlinearly
with pressure. Therefore, if we evaluate M, zL/zq and Q at a
particular pressure and obtain the numerical values at that

operating point, we can retrieve an affine linear-time-invariant
state space that represents the soft robot nearby that operating
point. In order to describe the robot throughout its entire range of
motion, we divide the entire system into K subsystems fixed to a
sequence of operating points, by evaluating the constituent
matrices at corresponding pressures. This action forms a
switched LPV (linear parameter-varying) system. Note that
input pressure is chosen as the switching condition because it
is the only input that changes the robot configuration. It is also
measured easily and we don’t have to know the robot pose
explicitly to select the correct operating points. The LPV
system consists of a set of linear systems whose state-space
operational modes are driven by an underlying decision
process based on the current input pressure. The LPV system
is expressed as the linear state space system:

_�x(t) � Av(u)�x(t) + Bv(u)u(t) + Θv(u)
�y(t) � C�x(t) (3)

where �x � [q p]T � [x1 x2]T, the output y ∈ Rm consists of
position measurements from motion capture markers
attached to the body of the robot. The output is related to
the states by C � [Cm×m

1 0] ∈ Rm×n which results from the
linearization of the nonlinear functions mapping the
measured data to the world frame. The switching rule v(u)
∈ SK ^{1, 2, . . .K} depends on input pressure P. For each j ∈
SK, the subsystem matrices Aj, Bj and Θj are evaluated at the q
corresponding the pose at the pressure Pj, resulting in
constant matrices and have the forms:

Aj �
0 M−1

j

0 0
⎡⎣ ⎤⎦

Bj �
0

Qj

⎡⎢⎣ ⎤⎥⎦

Θj �
0

zL
zq

( )
j

− Fcj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The number of operating points and their distribution are
carefully selected so that the switched LPV system can
adequately represent the whole continuous system. The system
is considered under the following Assumption.

Assumption 1 The generalized contact forces in Eq. 4 satisfy
the following conditions: Fcj has a derivative and both are upper
bounded as ‖Fcj‖ ≤ Lj, ‖ _Fcj‖≤ Lj.

2.3 Hysteresis Loop and Semilinear
Parameter-Varying Model of the Soft Robot
Before continuing with the discussion of the observer we discuss
the hysteresis behavior of the soft robot. Hysteresis is defined as a
“special type of memory-based relation between the input and the
output” (Macki et al., 1993) or “rate-independent memory effect”
(Visintin, 1994). Although there have been variations of the
definition, hysteresis is generally used to describe a dynamical

FIGURE 2 | Disc-thread model [Reprinted from (Bui and Schultz, 2021)
with permissions].
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system with a phase lag that depends on the input. Hysteresis
systems can be found in different areas such as physics, chemistry,
engineering or economics. For our robot, we conducted
experiments and observed that since our robot is made of
silicone and is stretchable, its behavior is described as a
hysteresis loop where the body of the robot follows different
curves depending on the changing direction of the input pressure.
Specifically, by using the motion tracking system to inspect the tip
position in the Y direction of the robot, we could see that the tip
followed the red curve while the chamber was inflating and
followed the blue curve while the chamber was deflating, as
shown in Figure 3. Note that the curves are generated by
polynomial regressions using data (the discrete points)
collected from the motion tracking system. It can be seen that
the deflating curve has a higher slope than that of the inflating
curve. In other words, when deflating, the robot can reach a
desired position faster than when it is inflating. This behavior of
the inflatable robot is interesting but it increases the complexity in
the system observation and control design.

Since the system configuration depends on the direction of the
input pressure, from the idea of an LPV system in Eq. 3, we can
express it as a generalized Duhem model as follows (Visintin,
1994):

_�x(t) � Av(u)x(t) + Bv(u)u(t) + Θv(u)( )g( _u(t))
�y(t) � C�x(t) (5)

where

g(w) � h+w if w≥ 0
h−w if w< 0{ (6)

where h+ and h− are different functions corresponding to the
direction of the input signal.

More specifically, this hysteretic system can be writen as an
SPV system as:

_�x(t)b _x(u) � A+
v(u)x(t) + B+

v(u)u(t) + Θ+
v(u) if _u≥ 0

A−
v(u)x(t) + B−

v(u)u(t) + Θ−
v(u) if _u< 0{

�y(t)by(u) � C�x(t)
(7)

This SPV system contains twice the number of subsystems in Eq.
3, including a half subsystem to describe the LPV systemwhile the
robot is inflating and the other half to represent the system in the
deflating direction of the input. The switching action takes place
when the control input changes its direction.

In the current formulation, we have to do backward-in-time
identification for the hysteresis curve and the input pressure,
which are not suitable when designing conventional observers
and controllers. To avoid such kind of identification and checking
the derivative of the input, we applied a transformation by
introducing a monotonically increasing independent variable,
�u ∈ [umin, 2umax − umin]. The transformation is inspired by the
work of Oh and Bernstein (2005). This helps us to rewrite the
model as a new semilinear Duhem model as follows:

_x(�u) � A+
v(�u)x(�u) + B+

v(�u)�u + Θ+
v(�u) if umin ≤ �u≤ umax

A−
v(�u)x(�u) + B−

v(�u)�u + Θ−
v(�u) if umax < �u≤ 2umax − umin

{
y(�u) � Cx(�u)

(8)

where

�y(�u)b �y+(�u) if umin ≤ �u≤ umax

�y−(umax + umin − �u) if umax ≤ �u< 2umax − umin
{

(9)

The new hysteresis curves describing the tip of the robot are displayed
in Figure 4 where the inflation curve is the red line and the deflation
curve is the blue line. Compared to the version in Figure 3, the
deflating curve is now flipped over so that the two curves form a
continuous function with respect to the new monotonically
increasing input �u. A system identification process has been

FIGURE 3 | The hysteresis loop describing the translation of the tip of the
soft robot in Y direction.

FIGURE 4 | The new hysteresis curves describing the translation of the
tip of the soft robot in Y direction with respect to �u
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performed to define each matrix in the SPV system in Eq. 8 at each
working point to complete all of its subsystems. Then the SPVmodel
can be used for observer and controller design.

2.4 Observer Design for the Soft Robot
Due to the deformable body of the soft robot, the numerical
values of q, p and Fc in Eq. 2 can not be obtained directly from
measurements from the sensors we are using. The model of the
soft robot in this study includes a large number of state variables,
and we need an observer to estimate both states and contact
forces. For these reasons, we selected the high-order sliding mode
observer, because it has a simple rule to select the observer gains,
no matter the size of the state space in observation; and based on
our knowledge, it is the best observer that works well for both
states and disturbance observation. The other alternatives are
more challenging to be applied to our system. The following
Lemma is re-stated to summarize the result of finite-time stability
of the dynamical system in the study of Levant and Livne (Levant,
2003), which is applied to develop the observer:

Lemma 1 Consider the following system:

_ε0 � −λ0|ε0|n/n+1sign(ε0) − η0ε0 + ε1,

_ε1 � −λ1|ε1 − _ε0|(n−1)/nsign(ε1 − _ε0) − η1(ε1 − _ε0)
+ ε2,
. . .

_εn−1 � −λn−1|εn−1 − _εn−2|1/2sign(εn−1 − _εn−2)
−ηn−1(εn−1 − _εn−2) + εn,

_εn � −λnsign(εn − _εn−1) − ηn(εn − _εn−1) − 1
L0

f(t)

(10)

where n is the relative degree, ε0, . . ., εn are the state variables, λ0,
. . ., λn and η0, . . ., ηn are appropriate positive scalar constants and
the perturbation f(t) satisfies the condition |f(t)| ≤ L0 with L0 a
proper positive constant. Then the system converges to the origin in
finite time.

Given position data from the marker set, we built a set of
observers based on the third order sliding mode approach of
Levant (2003), which has fast convergence and high robustness.
The number of observers is the same as the number of subsystems
in Eq. 8 The observer for subsystem j is of the form:

_̂x1j � M−1
j x̂2j − k1jL

1/3
j ‖x̂1j − x1j‖2/3sign(x̂1j − x1j)

− k2j(x̂1j − x1j)
_̂x2j � −k3jL1/2

j ‖M−1
j x̂2j − _̂x1j‖1/2sign(M−1

j x̂2j − _̂x1j)

− k4j(M−1
j x̂2j − _̂x1j) + zL

zq
( )

j

+Qj + F̂cj

_̂Fcj � −k5jLjsign(M−1
j x̂2j − _̂x1j)

− k6jLj(M−1
j x̂2j − _̂x1j)

(11)

where x̂1j, x̂2j are vectors of estimated states, k1j to k6j are the
observer gains to be designed and F̂cj is the vector of estimated

generalized contact forces. Note that x1j can be obtained from the
multiplication of the inverse of C1 and y. Since we have more
outputs than the number of states (one marker provides three
outputs including the 3D coordinate of that marker in X, Y, Z
direction), we can form a non-singular square matrix C1 so that it
is invertible.

Theorem 1 For system Eq. 8, if the observer set is designed as
in Eq. 11 and the observer gains are selected properly, then the
estimated states and contact forces will converge to the true values
in finite time, which follows from Lemma 1 (Levant, 2003).

Proof. The estimation error variables are defined by the
following formulation:

ϵ1j � x̂1j − x1j
Lj

ϵ2j � M−1
j (x̂2j − x2)

Lj

� M−1
j x̂2j − _̂x1j

Lj

� M−1
j (x̂2j −M _̂x1j)

Lj

ϵ3j � F̂cj − Fcj

Lj

(12)

the dynamics of the estimation errors are then obtained as:

_ϵ1j � 1
Lj

−k1jL1/3
j ‖Ljϵ1j‖2/3sign(ϵ1j) − k2j(Ljϵ1j)(

+M−1
j x̂2j −M−1

j x2)
� −k1j‖ϵ1j‖2/3sign(ϵ1j) − k2j(ϵ1j) + ϵ2j,

_ϵ2j � 1
Lj

−k3jL1/2
j ‖Ljϵ2j‖1/2sign(ϵ2j) − k4j(Ljϵ2j)(

+ F̂cj − Fcj),
� −k3j‖ϵ2j‖1/2sign(ϵ2j) − k4j(ϵ2j) + ϵ3j

_ϵ3j � −k5jsign(ϵ2j) − k6jϵ2j − 1
Lj

_Fcj

(13)

If the conditions in Assumption 1 are satisfied, it follows from
Lemma 1 that system Eq. 13 is finite-time stable, which
implies that the estimation variables converge to true
variables in finite time. According to the rule
recommended by Levant (2005), the convergence can be
guaranteed by defining the gains as k1j ≥ 3, k3j ≥ 1.5, k5j ≥
1.1 for this third-order system. Note that the larger the gains,
the faster the convergence and the higher sensitivity to input
noises and the sampling step. k2j, k4j, k6j can be selected
through trials in the simulation.

The block diagram in Figure 5 summarizes the design process
for the robot systems and the observer. The observer block stands
for the sub-observer j serving the corresponding subsystem j
working at a certain pressure value.
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2.5 Simulation and Experimental Validation
The soft robot and position of the fabric can be seen in
Figure 1 with the detailed dimensions (in mm) of the
undeformed shape are given in Figure 6. To apply the
Disc-Thread modeling into the simulations and
experiments, our soft robot is discretized into four discs
and three threads. The first and last discs are at the base
and the tip of the robot, correspondingly. The second disc is
considered to go through two points O2 and O2′ and the third
disc is consider to go through O3 and O3′ (see Figure 7). The
thread lengths are set at ℓ1 � 7 cm, ℓ2 � 9 cm and ℓ3 � 7 cm.

Note that the robot can be modeled with a higher number of
discs but it will result in longer expressions without much
improvement in model accuracy. For a robot of this size and
aspect ratio, this four-disc model can adequately describe its
behavior. We selected four operating points at different

FIGURE 5 | Block diagram of the observer.

FIGURE 6 | Soft robot dimension.

FIGURE 7 | The contact case at disc three for contact forces
measurement and 7 markers for the robot poses tracking.
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increasing pressures at (1.5, 2.5, 3, 3.5) psi (see Figure 1) and
evaluate M, zL/zq and Q at these points to generate four
corresponding subsystems that represent the entire working
range of the soft robot during its inflation. The set of these
matrices are provided in the supplemental data. Note that
these four subsystems are the same for the LPV system and
the inflating branch of the SPV system. Considering that
working with the whole SPV system is too long for this paper,
and it does not improve the illustration of the observer
performance, we only use the inflating branch of the SPV
system for our simulation and experiment. A set of sub-
observers is designed using the form of Eq. 11. The observer
gains are chosen as k1 � 3, k2 � 4, k3 � 1.5, k4 � 3, k5 � 1.1, k6 �
2 for all sub-observers. The disturbance is assumed to be
bounded by L � 20. At the run-time of the robot, when a new
subsystem is switched on due to the changing pressure, the
new corresponding sub-observer with updated system
matrices is switched on as well. The switching rule is
illustrated in Figure 8.

The proposed observer was validated by simulations and
experiments. The simulations were performed in Matlab
Simulink using S-functions for the dynamics of the plant and
observer. The experiments were conducted in our laboratory
environment. They are described in detail as follows:

Simulation 1: We examined the ability of the observer to
estimate the space variables qi at four operating points during
quasistatic motion in free space for the whole continuous
system.
Simulation 2: We assumed that the soft robot is undergoing a
motion in free space going through all four operating points
with a constant angular acceleration to check the estimation of
the rates of changes of each qi.

Experiment 1: We conducted this experiment to gather
data from a real contact event between the soft robot and its
surrounding environment. The data will be used to validate
the observer performance after it estimates the generalized

contact force. In order to measure the real contact forces, we
built a system that includes a load cell connected to an acrylic
plate on one end and connected to a frame on the other (see
Figure 7). The load cell is an Interface 6A27 which can
measure forces simultaneously in three mutually
perpendicular axes and three simultaneous torques about
those same axes. Initially, the robot was kept in a stable
position and the plate was located at 3.38 cm above the robot.
We inflated and deflated the robot with the input pressure
history shown in Figure 9. We observed that at first the robot
raised its head and then bent down and twisted (as can be
seen in Figure 1) when inflated, and returned to its original
pose when deflated. The input pressure and the initial gap
between the plate and the robot were chosen so that the robot
was in contact with the plate surface at the location
corresponding to disc three when the chamber pressure
was in the range [1.5–3.3] psi. During the contact event,
the contact forces in each direction were recorded by the load
cell. Then a set of 15 generalized contact forces (which have
units of torque) were calculated using Fc � JTbcF (where F is
the three components of the contact forces measured by the
load cell and Jbc is the relative Jacobian between the base and
the contact point). These values were the ground-truth
generalized contact forces. To simulate the observer
estimating generalized contact forces, the measured forces
were considered as disturbances to the robot model. When we
ran the Simulink model of the plant and the observer, the
observer could detect the disturbances (generalized contact
forces) and produced the close estimates of these same
measured forces.

Experiment 2: In this experiment, the robot was moving in free
space without any contact with the environment. We inflated and
deflated the robot with the same input pressure history shown in
Figure 9. Since the disc-thread model represents a discretization
of a continuum soft robot, the discs themselves are fictitious and
do not exist in the physical system. Thus, there is no ground-truth

FIGURE 8 | Switching rule.

FIGURE 9 | Input pressure for the experiment to estimate contact forces
and the robot poses.
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value against which to directly compare the state estimates (α1 to
ϕ3). However, we can compute what the marker locations should
be based on the estimated states and compare them to the
measured marker locations. The poses assumed by the robot
during its movement were recorded by seven markers of the
Polhemus electromagnetic motion tracking system. The 3D
location of the markers on the body of the robot are
considered to be the measured output of this robot system.
We then feed the data measured from the markers into the
observer into the Simulink model to estimate the soft robot poses.

3 RESULTS

Simulation 1: The simulation occurred over 4 s and is shown in
Figure 10. From the initial time, after each second, the system
switched to a new subsystem which is illustrated by a different
shading from the light to the darker gray with the darker
segments corresponding to a higher pressure. There will be, in
total, 15 generalized coordinates to track but due to space
considerations, only the estimates of a few representative
variables are shown. We can see that from their initial values

FIGURE 10 | Estimation of space variables, (A) q1, (B) q7, (C) q9, (D) q11, (E) q13, (F) q15.

FIGURE 11 | Estimation of the rate of changes of space variables, (A) p1, (B) p7, (C) p9, (D) p11, (E) p13, (F) p15.
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at −0.2 rad, the estimated variables returned by the observer
quickly converge to the true states (from the simulation of the
plant), in every subsystem.

Simulation 2: The simulation also ran for 4 s and is shown in
Figure 11. It can be observed that the estimates of the rates of
changes of the space variables can quickly converge to the true
values from their initial values at 5, and without steady-state
errors. There are definitely some biases when switching between
the subsystems but the steady estimates will be obtained within a
short time after entering a new subsystem. Note that the
convergence can be smoother at switching points if we

linearize the robot by a higher number of subsystems (at more
pressure points) but the resulting systemwill be more complex. In
this case, the biases happen in a short time with low magnitudes
so their effects are negligible.

Experiment 1: The result is shown in Figure 12 where the
estimated generalized contact forces are red lines and the ground
truth are blue lines. The initial values of estimated contact forces
were set at −0.5 Nm, while the initial values of the real generalized
contact force were at 0 Nm (there is no contact at the initial time).
It can be seen that the observer successfully estimates the
generalized contact forces in this experiment with fast

FIGURE 12 | Estimation of generalized contact force, (A) Fc1, (B) Fc3, (C) Fc6, (D) Fc8, (E) Fc11, (F) Fc13.

FIGURE 13 | Estimation of marker positions, (A) y1, (B) y6, (C) y11, (D) y13, (E) y14, (F) y15.
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convergence. Note that since the contact was at disc 3, the
generalized contact forces for all the discs being distal to disc
three were zero. Therefore, the real and estimated forces for disc
four converge to zero as shown in Figure 12E and Figure 12F.
There is some chattering in the estimated forces but due to their
low magnitudes, this can be ignored.

Experiment 2: The robot pose is defined as the X, Y, Z
coordinates of the seven points that coincide with the markers
attached on the body of the robot. The 3D location of the markers
are shown as blue lines in Figure 13while their estimates (provided
by the observer) are red lines. To save space, only the estimates of
certain selected points (O2, O3, O4, O4′) are shown in this
experiment. We can see that the poses of the soft robot,
represented by marker coordinates are well estimated. The
estimated coordinates quickly converge to the marker
coordinates from their initial values at zero. This indicates that
the estimated states of the real robot obtained by the observer are
plausible and can be used for model-based control design and
implementation.

4 CONCLUSION

This paper introduces an observer method to estimate the
generalized states and contact forces for a fabric-reinforced
inflatable robot. The proposed observer is a switched linear
observer and the switching condition only requires a simple
measurement of the chamber pressure. It is based on the disc-
thread discretization of the continuum soft robot. An SPV model
is developed to equally describe the nonlinear and the hysteretic
behavior of the robot. Simulations and experiments are
performed to examine the performance of the observer. The
results show that the observer works well in simulation by driving
the estimated states to the true states in static poses and during
movements. The results from the first experiment indicate that
the proposed observer can precisely estimate the generalized
contact forces during a contact event. The second
experimental result shows that by closely estimating the true
position of the markers, the observer successfully estimates the
system states of the robot. This observer can serve to provide
estimates of quantities that are very difficult to measure by
sensors. In addition to providing a solution for soft robot
perception, by applying this modeling approach and observer
design, we may exploit well-developed model-based linear

control theory for a class of inflatable soft robots. Although
the control schemes for soft robots are not exactly like those
for traditional robots, the ability to apply traditional control
algorithms can provide stability guarantees and could save
considerable effort in controller design. Our future work will
develop another sensing approach that can replace the motion
capture system and allows the observer to run in real-time.
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