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This paper presents a framework for programming in-contact tasks using learning by
demonstration. The framework is demonstrated on an industrial gluing task, showing that a
high quality robot behavior can be programmed using a single demonstration. A unified
controller structure is proposed for the demonstration and execution of in-contact tasks
that eases the transition from admittance controller for demonstration to parallel force/
position control for the execution. The proposed controller is adapted according to the
geometry of the task constraints, which is estimated online during the demonstration. In
addition, the controller gains are adapted to the human behavior during demonstration to
improve the quality of the demonstration. The considered gluing task requires the robot to
alternate between free motion and in-contact motion; hence, an approach for minimizing
contact forces during the switching between the two situations is presented. We evaluate
our proposed system in a series of experiments, where we show that we are able to
estimate the geometry of a curved surface, that our adaptive controller for demonstration
allows users to achieve higher accuracy in a shorter demonstration duration when
compared to an off-the-shelf controller for teaching implemented on a collaborative
robot, and that our execution controller is able to reduce impact forces and apply a
constant process force while adapting to the surface geometry.
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1 INTRODUCTION

Learning from demonstration enables programming of a variety of robotic tasks in a way that is
intuitive to a non-expert end-user. Previously, this method was utilized in an industrial context to
teach robot based assembly tasks e.g., peg-in-hole insertion task, as well as polishing and grinding
tasks. However, most existing approaches are applied on artificial or simplified benchmarks, and
often do not consider the tight tolerances and process requirements with regards to the applied force
that occur in a real manufacturing scenario. They often require multiple task demonstrations in order
to learn task constraints or achieve robust task executions. Lastly, they often do not encompass the
full pipeline of demonstration—encoding—execution from an end-user point of view.

In this paper we present a method for fast programming of a force-controlled industrial gluing
task from a single user demonstration. We propose the use of adaptive admittance control during the
demonstration phase to enable the user to kinesthetically move the robot more intuitively by
providing a better control response, allowing them to provide more accurate task demonstrations.

From a user demonstration of the task, we obtain information on the kinematic trajectory of the
robot. This allows us to then encode the motion in a motion primitive that allows both direct replay
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and generalization of the task. By detecting the contact state of the
robot and estimating the surface normal, we can segment the task
into phases of unconstrained (free-air) and constrained (in-
contact) movement. Simultaneously, we estimate the
constrained axes of the robot along the trajectory. This allows
us to formulate a parallel position/force controller for the
subsequent execution of the task, such that we can either
imitate the forces applied during the demonstration or allow
the user to specify a constant contact force, as is typical in
industrial applications.

We evaluate our system on a benchmark that is closely based
on a real industrial gluing task related to printed circuit board
assembly, as shown in Figure 1, showing that our method can
ensure constant and safe interaction forces and suitable
trajectories in a task with low contact-force requirements.

2 RELATED WORK

With the evolution of collaborative robots, new user-friendly
efficient and flexible ways for automating industrial tasks which
were previously done with specialized automation equipment are
possible (Gašpar et al., 2020). Furthermore, methods such as
Learning by demonstration (LbD) (Billard et al., 2008) and force
control can be exploited, thanks to the integrated sensors and
controllers of the collaborative robot systems.

In robotic learning by demonstration scenarios, robot
trajectories that describe the kinematic information are
recorded (Deniša and Ude, 2015). On the other hand, for
tasks associated with industrial robotics e.g., assembly (Abu-
Dakka et al., 2015) or polishing (Gams et al., 2013), dynamic
data is equally important. These two data sets lay the basis for in-
contact execution of robot tasks, where the learned trajectory
cannot be replayed but has to be adaptable to changes in the

environment. To facilitate this requirement, in a lot of works,
robot trajectories are represented with Dynamic Movement
Primitives (Ijspeert et al., 2013; Ude et al., 2014). With this
framework, both kinematic and dynamic trajectories can be
represented in a unified manner, and can be enhanced with
additional properties such as modulation and time scaling.

The benefits of the DMP framework can be efficiently
exploited for in-contact tasks, when coupling the DMP in a
force-based LbD scenario, as shown in Koropouli et al. (2012)
and Kormushev et al. (2011). In the work of Rozo et al. (2013) a
two stage force LbD approach was presented, where in the first
stage they recorded the positions and orientations of the desired
movement and in the subsequent stage the corresponding forces
and torques.

Simultaneous control of force and position for teaching and
execution tasks is physically impossible (Stramigioli, 2001), and
therefore these approaches all have to make compromises
between prioritising force control or position control. In
literature, classical position/force controllers are still adopted
for dealing with this challenge. One of the early works in this
field was presented by Asada and Izumi (1989). The measured
data was used to automatically program the position and force set
points for the hybrid force control framework (Raibert and Craig,
1981) used in Cartesian space. Furthermore, simultaneous
position and force control frameworks in the LbD literature
primarily focus on selecting the dimension of the constraint
frame on which the force or position control is applied
(Peternel et al., 2017) and the selection of the best control
frame (Ureche et al., 2015).

The main motivation for constraint selection methods is that
the dimension of the constraint frame that is exposed to a high
variance in force and low variance in position should favor force
control, and vice versa (Ureche et al., 2015). Constraint frames are
usually chosen manually based on the task specifications Raibert

FIGURE 1 | User demonstration of a gluing-like task on our benchmark system.
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and Craig (1981). Common choices include the tool frame
(Kronander and Billard, 2014; Peternel et al., 2017) and the
surface normals (Deng et al., 2016; Conkey and Hermans,
2019). The latter can also be estimated, e.g. from the velocity
of the contact point (Karayiannidis et al., 2014; Sloth and Iturrate,
2021). Conkey and Hermans (2019) present a framework for
learning a dynamic constraint frame aligned to the direction of
desired force using CDMPs and force control to ensure that the
force is aligned in the normal plane with the direction of the
movement. In (Kober et al., 2015), multiple demonstrations of a
task are used to segment a series of separate movement primitives,
each associated with a specific discrete frame of reference. The
transitions between each of the primitives—and therefore
compliant frames—are then separately addressed. Kumar and
Rani (2021) present a new hybrid force/position control approach
for time-varying constrained re-configurable manipulators for
physical human robot interaction with environment of unknown
stiffness. A review of hybrid position/force controllers is
presented in Ortenzi et al. (2017).

An alternative to hybrid force/position control is impedance
control with varying parameters. By changing the stiffness
parameters of the impedance controller, the interaction forces
can be adjusted between the robot and the environment (Buchli
et al., 2011). Stiffness adaptation can be learned from
demonstration in multiple ways, and typically requires
multiple demonstrations or iterative corrections of the path. In
Lee et al. (2015), the mean and covariance information of the
trajectories from multiple demonstrations of a task are used as an
approximation of the desired stiffness along different regions of
the path. Kronander and Billard (2012, 2014) allow the user to
iteratively re-execute the task and apply external disturbances on
the robot such that it deviates from the demonstrated path. The
magnitude of these deviations is then used analogously to
stiffness. Pastor et al. (2011) introduced a method for real-
time adaptation of demonstrated trajectories for task exertions,
depending on the measured sensory data. They developed an
adaptive regulator for learning and adaptation of demonstrated
motion, where actual and learned force feedback was utilized.
Schindlbeck and Haddadin (2015) presented a unified impedance
approach for safe online parameter adaptation, based on passivity
and energy tanks. Furthermore, a review of online adaptation of
impedance control parameters for human robot interaction is
presented in (Ficuciello et al., 2015; Müller et al., 2018) and in-
contact execution tasks are presented by Abu-Dakka and
Saveriano (2020). To adapt the controller parameters one can
estimate the compliance of the interaction between robot and
environment. This approach is taken in Santos and Cortesão
(2018), where the perceived stiffness is estimated and used for
controller gain scheduling.

For tasks where impedance control cannot be utilized because
of the physical limitation of the used systems, admittance control
(Siciliano et al., 2009) can be used for teaching and execution of
tasks in contact with the environment. A variable admittance
controller, for safe human-robot interaction, where the
admittance control parameters were adapted based on the
passivity criterion was presented by Ferraguti et al. (2019).
Furthermore, variable admittance control can be adopted in

human-robot cooperation tasks by means of learning (Dimeas
and Aspragathos, 2014, 2015). Finally, Li et al. (2020) consider the
robot to be in contact with both human and environment, similar
to the condition considered in this paper.

It is important to ensure the stability and guarantee
satisfactory performance despite varying controller gains and
environmental compliance. Elegant stability conditions are set
up in Müller et al. (2019) for a physical human-robot system with
delays in the human reaction. The system considered in this paper
has varying parameters in addition to input delays; thus, the
methods presented in Briat (2014) may be used for the stability
analysis and performance specification.

Recently, automated gluing applications have become very
popular with the development of new industrial machines and
tools, which can be efficiently utilized by collaborative robots. The
majority of the work focuses on defining the robot trajectories
based on the CAD description of the industrial object (Castelli
et al., 2021). Other approaches, utilize simple Cartesian space
industrial manipulators coupled with computer vision (Pagano
et al., 2020). The vision system enables localization and
reconstruction of the shape of objects to which glue should be
applied. The gathered information is used to construct a motion
trajectory that can be executed with the specialized manipulators,
achieving the desired industrial performance.

3 PROBLEM FORMULATION AND
CONTRIBUTIONS

Given a gluing or similar in-contact processing or dispensing
task, our objective is to develop a full pipeline comprising the
demonstration, encoding and execution that enables a robust and
high-quality execution of the task with as little setup as possible
required from the end-user. In order to make the approach more
universally deployable in an industrial setting, we propose to
learn from a single user demonstration, while exploiting the
semantics of the task to adapt the robot controllers.

A key characteristic of the addressed task is that it is composed of
free-air approach and retraction motions, but the actual dispensing
or gluing consists in an in-contact motion whereby the manipulator
is partially constrained by the environment. In particular, this
constraint will be given by a surface normal during contact. In
addition to this, in the proposed learning from demonstration
scenario using kinesthetic teaching, the human is also in contact
with the robot, thus partially constraining its motion as well.

An illustration of how these concepts fit into our system
pipeline is shown in Figure 2. From an initial approach
motion consisting only of the robot in contact with the
human, the human will then move the robot into contact with
the target surface and perform a sliding motion for the actual
dispensing. This will correspond to a state where the entire system
dynamics are comprised of the robot, the human and the
environment. Finally, a retraction motion will move the robot
away from the surface and into a final state where the dynamics
will be given by the robot and human. If we consider the
subsequent autonomous execution of the task, the dynamics
will be the same, with the exception of the human’s contribution.
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We consider our main contribution to be our controller design
for kinesthetic teaching of processing tasks. We propose an
adaptive controller architecture that takes into account the
different constraints of the task at different phases of the
execution. In particular, our approach to demonstration
comprises the following:

1) We learn continuous kinematic and dynamic task constraints
from a single demonstration.

2) We use variable-gain admittance control for kinesthetic
teaching, where the damping is continuously adapted based
on a velocity-force rule in order to match the user’s intention
and reduce the physical effort needed during teaching.

3) We couple this controller with a contact detection algorithm,
such that we are able to detect the start of the dispensing phase
and increase controller damping to guarantee stability, even in
cases of sudden impact with a stiff environment.

4) Once contact with a surface is established, we additionally
couple our gain scheduler with a surface normal estimator.
The formulation of this estimator is guaranteed to converge
given adequate excitation and furthermore guarantees the
preservation of the unit norm. By estimating the surface
normal, we are able to adapt the eigenstructure of gain
matrices, such that we maintain higher damping in the
direction(s) constrained by the environment, while being
able to lower the damping—and thus assist the user—in
the non-constrained directions.

In addition to our controller for demonstration, we also
propose a second controller for task execution. This controller
adopts a similar structure to the one used for teaching, albeit with
a few modifications, and exhibits the following characteristics:

1) We use parallel position/force control to guarantee that both
the kinematic and dynamic targets of the task are met.

2) Task kinematics are encoded as Dynamic Movement
Primitives (DMPs). This allows us to learn from a single
demonstration, while adopting an encoding that enables
modulation of the motions. We specifically use modulation
of the DMP goal to ensure a smooth transition between the
approach and process motions, and to reduce the impact
forces upon first contact with the target surface.

3) Task dynamics are preserved by encoding the output of the
normal estimator during demonstration as Radial Basis
Functions (RBFs) synchronized with the DMPs. By
applying a user-defined process force magnitude in the
direction of the encoded normal vector, we ensure that
contact with the surface is maintained. We also use this
information to vary the gains of the parallel position/force
controller, such that force control is applied only on the
normal axis, while the other axes are position-controlled.

3.1 Comparison to Other Approaches
Our work is conceptually similar to Kronander and Billard
(2012); Kober et al. (2015); Lee et al. (2015); Conkey and
Hermans (2019), in that we are interested in learning task
constraints from demonstration, such that we can then adapt
the parameters/gains of a compliant controller to the structure of
the task. However, in contrast to other approaches (Kronander
and Billard, 2012; Kober et al., 2015; Lee et al., 2015), which
require either multiple (typically more than three)
demonstrations of the task or multiple execution iterations in
order to determine these constraints, our approach can do so
from a single demonstration by exploiting the surface normal
estimator to determine the task geometry.We consider this one of
the main contributions of our proposed approach, as single-
demonstration LbD methods are more widely applicable in
industrial scenarios.

Our work is methodologically most similar to Conkey and
Hermans (2019). While their method is also able to learn task
constraints from a single demonstration, they rely on the forces
observed during the demonstration to do so. Such an approach
assumes that the demonstration forces correspond with the forces
of an ideal execution and, furthermore, does not consider that the
forces measured by the sensor during demonstration will not only
be task/environmental forces, but will also be coupled with those
applied by the human demonstrator to kinesthetically move/
teach the robot. These two sets of forces will not always be
aligned; thus, using them to learn task constraints will result in an
alignment error in the constraint frame. By using the estimated
surface normal as the desired direction that the forces should be
applied in, our approach does not suffer from this coupling. The
magnitude of the desired force can simply be specified by the user

FIGURE 2 | Idea of the approach.
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or could, e.g., be computed from the average of the magnitude of
the demonstration forces in the normal direction.

As indicated above, in order to reduce contact force transients
during the execution, we modulate the goal of the DMP slowly
into the contact surface. Although this method is similar to
Conkey and Hermans (2019), our use of it is qualitatively
different. Whereas Conkey and Hermans (2019) use goal
modulation reactively to adapt to unforseen generalizations of
the task—i.e., a contact that is established either earlier or later
than anticipated—we do so proactively by purposely setting the
initial goal higher than originally demonstrated, to ensure that
impact forces are always reduced.

Note also that contrary to the above-mentioned works by
using surface normal estimation as the basis for determining task
constraints, our approach is able to use these constraints not only
to adapt the controller during the execution but also during the
demonstration phase to actively aid the user. This is, indeed, not
possible for approaches that determine task constraints a
posteriori based on positional variance or segmentation
(Kronander and Billard, 2012; Kober et al., 2015; Lee et al., 2015).

4 METHODOLOGY

The purpose of this section is to describe the proposed approach
to obtain high-quality robotic gluing based on learned behaviors
from kinesthetic teaching. It is challenging to learn the gluing
behavior, as it is a task that requires contact between robot and
environment; thus, both the motion and environment geometry
and dynamic parameters should be learned from a single
demonstration. As it is chosen to use only one demonstration
for learning the task, the parameters estimated from the
demonstration should be improved from executions of the
task. We describe the entire process of 1) Programming by
demonstration, 2) Encoding of robot behavior, and 3)
Execution of desired gluing control; however, the main focus

of the paper is the demonstration phase, as this is the novel
contribution of the paper.

We propose a unified controller structure for the kinesthetic
teaching and execution of tasks with interaction between robot
and environment. Figure 3 is a block diagram of the controller
that runs during demonstration. The controller is an adaptive
admittance controller, where the adaptation is conducted based
on the surface normal to the environment when the robot and
environment is in contact. This ensures stability and improves the
quality of the demonstrated behaviors. A similar control structure
is used for the execution, as shown in Figure 5; however, a parallel
position/force controller is used instead of the admittance
controller.

4.1 Adaptive Admittance Control for
Kinesthetic Demonstration
The purpose of this section is to describe the admittance
controller that is used for the demonstration of the gluing
task. The admittance controller uses the notation from
Caccavale et al. (1999) and is shown below

Mp 0

0 Mo

[ ] Δ€pcd

Δ _ωd
cd

[ ] + Dp 0

0 Do

[ ] Δ _pcd

Δωd
cd

[ ]
+ Kp 0

0 Ko

[ ] Δpcd

ϵdcd
[ ] � f

μd
[ ],

(1)

whereMp,Mo,Dp,Do, Kp, Ko are 3 × 3 matrices,f ∈ R3 is the force
applied to the end-effector of the robot given in Base frame, Δpcd �
pc − pd, μd ∈ R3 is the torque applied to the end-effector given in
desired frame, Δωcd � ωc − ωd, and ϵdcd � ηdϵc − ηcϵd − S(ϵc)ϵd.
The skew-symmetric operator is denoted by S and the unit
quaternion is (η, ϵ), where ϵ is the vector-part.

The objective of this paper is to adapt the controller according to
the interaction with both human and environment. In particular
the interaction with the environment can cause instability if the

FIGURE 3 | Block diagram of the controller architecture used for task demonstration.
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controller gains are not adapted. Therefore, the surface normal is
estimated during demonstration to allow the damping of the
controller to be increased only in the direction of the environment.

4.1.1 Surface Normal Estimation
The surface normal is estimated during contact using the
following sliding condition

nTc _pc � 0, (2)

where nc is the surface normal and _pc is the velocity of the contact
point given by

_pc � _pe + S(ω)Re
er, (3)

and ω is the angular velocity of the end-effector, and Re is a
rotation matrix from base frame to end-effector frame, and er is a
vector from the end-effector to the contact point, which is
assumed to be constant.

Since er is assumed to be known, the estimate of nc can be
accomplished based on the estimation method presented in
Karayiannidis et al. (2014) summarized in the following
proposition. The proposition uses the projection matrix onto
the orthogonal complement of a column vector a ∈ R3, defined as
�P: a1I − aaT, where I is a 3 × 3 identity matrix.

Proposition 1. The integral adaptive law

_̂nc � −cn �P(n̂c)Ln(t)n̂c (4)

_Ln � −βnLn + 1

1 + ‖ _pc‖2
_pc
_pT
c , Ln(0) � 0, (5)

where Ln ∈ R3×3 guarantees that

1) the norm of the estimate n̂c(t) is invariant, i.e., given that
‖n̂c(0) � 1‖, ‖n̂c(t)‖ � 1 for all t ≥ 0

2) if ϑ(0) ∈ (−π
2,

π
2) then ϑ(t) ∈ (−π

2,
π
2) for all t > 0, where ϑ is the

angle between nc and n̂c
3) limt→∞‖ _̂nc‖ � 0
4) if _pc is persistently excited then ϑ converges to zero

exponentially which implies that n̂c converges exponentially
to nc with a rate that can be tuned by cn.

The proposition is based on Theorem 4.3.3 in Karayiannidis
et al. (2014) and ensures that n̂c remains a unit vector. The surface
normal estimate is initialized based on the velocity _pc when
contact is detected, i.e.,

n̂c(0) � _pc(0)
‖ _pc(0)‖

.

The projection matrix �P(n̂c) in Eq. 4 ensures that the norm of
n̂c is preserved, since _̂nc is tangent to the unit sphere; thus, we can
compute the instantaneous angular velocity ω(t) from _̂nc(t) and
n̂c(t) as

ω(t) � n̂c(t) × _̂nc(t)
This property must be preserved when implementing the

algorithm in discrete time. To accomplish this, we exploit the

instantaneous angular velocity ω(t) for the update of the
surface normal estimate. In particular, we implement the
surface normal estimation using the following difference
equations:

n̂c(k + 1) � eTsS(ω(k))n̂c(k) (6)

Ln(k + 1) � (1 − Tsβn)Ln(k) + Ts
1

1 + ‖ _pc‖2
_pc
_pT
c , Ln(0) � 0

(7)

where Ts is the sample time and

ω(k) � n̂c(k) × (−cnLn(k)n̂c(k)).

4.1.2 Contact Detection
A statistical method is used for contact detection; in particular, we
consider the signal

φ � _pT
tipftip, (8)

which will be negative when a collision occurs since a force is
applied in the opposite direction of the motion. To achieve a
robust collision detection, the non-restarting cumulative sum
method (CUSUM) is applied to φ (Gandy and Lau, 2013).

4.1.3 Parameter Adaptation
This section describes how the gains of the admittance controller are
changed based on the dynamics of the demonstrator and the
environment. Our approach is to change the eigenaxis of the
parameter matrices according to the surface normal, and change
the eigenvalues according to a force-dependent heuristic.

There exist multiple approaches for adapting the gains of an
admittance controller, including force-dependent variable
impedance control (Müller et al., 2018), velocity-dependent
variable impedance control (Ficuciello et al., 2015), and
passivity-based approaches (Ferraguti et al., 2019).

A force-dependent variable impedance control makes it easier
to accelerate and decelerate the robot, as the damping is given by
(Müller et al., 2018):

DVIC(Γ) � −αdiag(Γ)diag(sign( _x)) +D0, (9)

where Γ is the wrench vector, α > 0 is a tuning parameter, _x is the
Cartesian velocity, and D0 is a diagonal matrix.

To ensure stability of the impedance controller when
interacting with a human that varies the active damping
and stiffness, a lower bound can be found for the damping
that ensures stability; this is denoted Dobs. Finally, the
damping of the force-dependent variable impedance
control is given by

D � max {DVIC, Dobs}. (10)

To analyze the stability of the impedance controlled robot
during interaction with both environment and human, one can
describe the system as a linear parameter varying (LPV)
system. The varying parameters include the damping of the
impedance control, the compliance of the human and the
compliance of the environment. The stability of such
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systems has been considered in several work, including Müller
et al. (2019), but here several parameters are considered to be
constant. The presented stability criterion relaxes this
assumption.

The model used in similar physical human-robot
collaboration works such as Müller et al. (2019) is linear,
but most of the gains are varying in the considered
application. In particular, the compliance parameters of the
human and stiffness of the environment may vary. These
parameters may be estimated or considered to be unknown
but bounded to some set of feasible parameter values. Also the
damping of the controller is varying but known (in the force-
dependent variable impedance control, it depends on the
measured wrench). Finally, delays are present in the system
originating from the active response of the human and delays
in the control software.

The variations in the system dynamics may be modelled using
an N-dimensional exogenous variable ρ(t), but since the response
of the controller may be delayed compared to the response of the
system, the delayed variable ρh(t) � ρ(t − h) is introduced where
h ∈ [0, �h] is a constant time-delay.

Due to the linearity of the considered system dynamics, the
impedance controlled robot can be modelled as the following
LPV system with time-delays, see Briat (2014),

_x(t) � A(ρ(t), ρh(t))x(t) + Ah(ρ(t), ρh(t))x(t − h)
+E(ρ(t), ρh(t))w(t) (11)

z(t) � C(ρ(t), ρh(t))x(t) + Ch(ρ(t), ρh(t))x(t − h)
+F(ρ(t), ρh(t))w(t) (12)

x(s) � ϕ(s), s ∈ [−�h, 0], (13)

where x is the state of the system, w is a disturbance input, z is the
performance output, A, Ah, and E define the system dynamics,
and C, Ch, and F define the performance measure, and ϕ(s)
provides the initial condition. The value of the parameter vector ρ
must be within the compact set Δρ, and the rate of variation of the
parameters should be within the set Δv � [−1,1]N. To simplify
notation, we define the Hermitian operator (for real matrices) as
He(A) � A + AT, denote the set of positive definite n × nmatrices
by Sn_0, and define the following sets:

Pv � {ρ: R+ →Δρ: _ρ(t) ∈ Δv, t≥ 0} (14)

Ph � {(ρ, ρh): R+ →Δρ × Δρ: ρ ∈ Pv, ρh(t) � ρ(t − h), t≥ 0}
(15)

Δh
ρ � {(ρ, ρh) ∈ Δρ × Δρ: |ρhi − ρi|≤ �h, i � 1, . . . , N}. (16)

The stability of the time-delayed LPV system can be analyzed
by the use of the following theorem (Briat, 2014, Theorem 6.3.3),
which is based on identifying a parameter-dependent Lyapunov-
Krasovskii functional due to the existence of time-delays. Also, a
desired performance can be specified via a mixed sensitivity
description and optimized by minimizing c in the following
theorem.

Theorem 1. Assume that there exists a continuously
differentiable matrix function P: Δh

ρ → Sn_0, a matrix function

Q: Δρ → Sn_0, a constant matrix R ∈ Sn_0 and a scalar c > 0 such
that the LMI

ψ11 ψ12 P(ρ, ρh)E(ρ, ρh) C(ρ, ρh)T �hA(ρ, ρh)TR
p −Q(ρh) − R 0 Ch(ρ, ρh)T �hAh(ρ, ρh)TR
p p −cIp F(ρ, ρh) �hE(ρ, ρh)TR
p p p −cIq 0
p p p p −R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦30

(17)

holds for all ρ, ρh ∈ Δh
ρ and all ], ]h ∈ {−1,1}N ×{−1,1}N where

ψ11 � He[P(ρ, ρh)A(ρ, ρh)] +∑N
i�1

]i
zP(ρ, ρh)

zρi
+ ]hi

zP(ρ, ρh)
zρhi

( )
+Q(ρ) − R (18)

ψ12 � P(ρ, ρh)A(ρ, ρh) + R (19)

Then the LPV system is asymptotically stable for all constant
delays h ∈ [0, �h] and (ρ, ρh) ∈ Ph and the L2-gain from w to z is
less than c.

Theorem 1 applies to the considered robotic system; however,
to ease the computation of the stability condition, the system
model should be written as a polytopic LPV system. Then it is
sufficient to evaluate Eq. 17 at the vertices of the parameter space,
see Briat (2014) for details.

4.2 Learning Task Kinematics
In order to encode a gluing trajectory from a user demonstration
in a flexible manner that will allow us to reparameterize and reuse
the learned task, we adopt Dynamic Movement Primitives as our
representation for robot kinematic trajectories.

4.2.1 Cartesian-Space Dynamic Movement Primitives
In SE(3), dynamic movement primitives (Schaal, 2006; Ijspeert
et al., 2013; Ude et al., 2014) represent robot trajectories as a
second order dynamical system of the form:

τ
_z
_η

[ ] � αy βy(g − y) − z( )
αo βo2 log(go*�q) − η( )[ ] + fp(x)

fo(x)[ ] (20)

τ
_y

_q
⎡⎣ ⎤⎦ �

z

1
2 η p q

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ (21)

τ _x � −αxx, (22)

where αy, αo ∈ R+ and βy, βo ∈ R+ are constant gains, g ∈ R3 and
go ∈ SO(3) are attractor (goal) points for the positional and
orientational components of the DMP, respectively, τ ∈ R+ is a
time constant corresponding to the duration of the movement, x
is a phase variable, q is a unit quaternion, and p denotes the
quaternion product. Notice that in the absence of terms fp(x) and
fo(x), Eqs 20, 21 behave as a mass-spring-damper, and will
converge towards g and go regardless of their initial condition.
In this sense, constants αy, αo, βy and βo are usually chosen for
critical damping. By adding the forcing terms fp(x) and fo(x),
given by Eqs 23, 24, the system is modulated to fit an arbitrary
trajectory, typically provided by demonstration. The forcing
terms
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fp(x) �
∑N

i�1ψi(x)wp
i

∑N

i�1ψi(x)
x, (23)

fo(x) �
∑N

i�1ψi(x)wo
i

∑N

i�1ψi(x)
x, (24)

ψi(x) � exp −hi x − ci( )2( ), (25)

consist of N ∈ Z+ Gaussian radial basis functions (RBF) (Eq. 25)
with centers ci, widths hi and attached weight vectors wi ∈ R3.

The canonical system Eq. 22, controls the time evolution of
the system and at the same time guarantees convergence of Eqs
20, 21, as the influence of fp(x) and fo(x) will vanish as x → 0.

Given a demonstration trajectory ydemo, _ydemo, €ydemo{ }, Eqs
20, 21 can be reformulated:

fp,desired � τ2€ydemo − αy βy g − ydemo( ) − τ _ydemo( ), (26)

such that the open parameters in Eqs 23, 24, can be learned by,
e.g., least-squares weighted linear regression. The same approach
can similarly be applied to the orientation.

4.3 Encoding Task Dynamics
Process tasks, such as gluing, involve dynamic interaction with
the environment and require that contact between the robot and
the workpiece be maintained throughout the task execution. This
implies that a target force and torque trajectory must be generated
and inputted as a feed-forward signal into an appropriate robot
controller (such as a hybrid or parallel position/force controller).

Typically, force-learning within the context of DMPs has
consisted of running the robot task open-loop once the
kinematic trajectory has been encoded, while the task
interaction forces and torques are recorded. These force and
torque profiles are assumed to correspond to the desired task
profiles and can then be encoded as a mixture of RBFs (Nemec
et al., 2013; Abu-Dakka et al., 2015).

As the kinematic trajectory taught by the user is not likely to be
optimal, the forces and torques learned using the previously
mentioned approach might not be desirable and therefore not
result in the best possible task execution. This is particularly the
case for process tasks such as gluing, where often a constant
contact force is necessary in order to ensure even distribution of
glue along the target surface. Thus, we propose to instead record
the output of the surface normal estimator (see Section 4.1.1)
during the user demonstration and encode this as RBFs:

nc,d(x) � ∑K
i�1ψi(x)wnc

i∑K
i�1ψi(x)

x. (27)

The user can then manually input a desired force magnitude
Fin—which is often a known process variable—and this will then
be applied in the direction of the surface normal, i.e. the desired
force is fd(x) � Finnc,d(x).

4.4 Execution
Given the encodings of both the task kinematics (Section 4.2) and
dynamics (Section 4.3) the controller chosen for task execution

must ensure tracking of both the target position and orientation
and the target forces and torques. Simultaneously, it must handle
the prioritization of these two tasks in a way that guarantees both
the successful outcome of the task and the stability of the system.
Here, we apply segmentation in order to more effectively handle
the different requirements of different stages of the task, as well as
to allow us to apply strategies to increase the robustness of the
execution.

The remainder of this section will present our approach to task
segmentation and how it applies to task execution, and our
proposed parallel position/force controller.

4.4.1 Segmentation and Execution Flow
A key aspect to our overall approach is segmentation, whereby we
divide the overall task into an approach phase and a process phase
based on the output of the contact detector during the demonstration.
The approach phase includes all robot motions prior to establishing
contact with the target surface, while the process phase includes all in-
contact interactions with the surface, as well as retraction motions
where the robot leaves the surface. Technically, a third retraction
phase could easily be defined to encompass these motions, but this
has not been implemented in the current system iteration.

FIGURE 4 | Block diagram of segmented execution flow.
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Segmentation of the task phases is crucial to our method, as it
allows us to use the semantic information contained in the
different phases to apply appropriate control schemes and
approaches to generalization. Namely, the execution is split
into two separate DMPs, one for each of the phases, and these
DMPs are run with different termination conditions. Figure 4
shows the segmented execution flow.

The approachDMP ismodulated in a non-standardway by raising
its goal a preset distance in the direction normal to the initial contact
point in the surface. Once the robot reaches this point, if contact has
not been established, the DMP goal is slowly moved down along the
direction of the surface normal into the surface. This approach allows
us to minimize impact forces, thus ensuring safe interaction with the
PCB. A suitable trade-off between execution speed and impact forces
can be achieved by regulating the speed of modulation of the goal,
depending on the specific application. While this approach is similar
to Conkey and Hermans (2019), note that they use it in a reactive
manner, where the goal is modulated downwards towards the surface
only in the case that contact is not established at the same point as it
occurred in the demonstration, whereas we use it proactively in order
to purposely reduce impact forces.

Once contact has been established with the surface, the starting
point of the process DMP will be modulated to coincide with the
robot position at contact, in this way avoiding discontinuities.
Next, the parallel position/force controller parameters will be
changed to appropriate values for the contact state. The target
force will be obtained from the normal estimator, but instead of
being directly inputted to the controller, will be ramped up slowly
to avoid sudden overshoots. Finally, the processDMPwill be run in
parallel with the target forces obtained from the normal estimator.
The next section will examine the details of the parallel position/
force controller used for this purpose.

4.4.2 Parallel Force/Position Control
The purpose of this section is to describe the parallel force/
position control applied for the execution of the gluing
behavior. The controller uses the standard formulation from

(Siciliano et al., 2009, Section 9.4.3). The force-controller
component is chosen to be a PIV control, i.e., a PI control
on the force with velocity damping as explained in (Pérez-
Ubeda et al., 2020). In addition, the controller gains are
adapted according to the surface normal. The block
diagram shown in Figure 5 shows the use of the controller
during execution of the gluing task.

Notice the structural similarities with the admittance
controller used for demonstration in Figure 3. The most
notable differences are the removal of the normal estimation
block and addition of a DMP and encoded normals block. The
DMP provides the positional input to the parallel position/force
controller. The encoded normals are used for two purposes: 1) In
combination with an input process force, Fin provided by the user
they specify the force input to the parallel position/force
controller. 2) Through the gain scheduler, they specify the
structure for the gain matrices of the parallel position/force
controller, such that force-control is applied only in the axis
perpendicular to the surface of contact, while the other two axes
are purely position-controlled. Note that contact detection is also
incorporated in a manner similar to during the demonstration. In
this case, while contact has not yet been detected, the gains of the
force-control component of the parallel position/force controller
will be set to zero, such that the robot is purely position
controlled. Once a contact is detected, gain-switching occurs,
and the controller begins tracking the desired forces, Fd, so as to
minimize the force error, Fe.

5 EXPERIMENTAL EVALUATION

In order to evaluate the performance of our proposed system, we
constructed a benchmark from a real-world use-case provided by
a partner company. The original use-case involves gluing
electronic components to a PCB. For our evaluation, we 3D-
printed a replica of the PCB with the attached components.
Similarly, we substituted the original gluing dispenser tip with

FIGURE 5 | Block diagram of the controller architecture used for task execution.
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a 3D-printed model. Both the PCB and gluing tip mock-ups can
be observed in Figure 6. Note that, due to being 3D-printed, our
mock-ups actually introduce more challenges from a control
perspective than the original components. Printing
imperfections on the surface of the PCB mock-up increase
friction and introduce high frequency components in the
forces that the parallel position/force controller must then
address. The 3D-printed tip is also stiffer, which can challenge
the stability of the system when compared to the more compliant
true gluing tip.

We used a Universal Robots UR10e collaborative robot
manipulator for our experiments. The robot is equipped with
an internal force-torque (FT) sensor at the wrist 3 joint, close to
the tool flange. All force-torque measurements and control were
performed using the output of this sensor. The controllers were
implemented in Python 3, using the ur_rtde1 library for
communication with the robot, both for streaming data and
for sending commands to the internal robot controller. Our
Python control application and the internal robot controller
both run at a frequency of 500 Hz.

The following sections will evaluate our full system pipeline,
from a demonstration of a task, as shown in Figure 1, to its
segmentation, encoding and subsequent execution. We will
present results for each of the system components previously
described in Section 4. Note that all figures in the following
sections are expressed in robot base frame, that is, with the z-
axis normal to the table surface and its positive direction
pointing out of the table, while the x − y plane coincides
with the table plane.

5.1 Demonstration and Encoding
We will first evaluate the components of the system involved in
the demonstration and task encoding pipeline. This consists of

the surface normal estimator, damping adaptation scheme for the
admittance controller, and DMPs for both the approach and
process phases.

5.1.1 Admittance Controller Parameter Adaptation
Figure 7 shows adaptation of the damping term in the admittance
controller used for kinesthetic teaching of the task, as outline in
Section 4.1.2. Notice that the damping is varied slightly in all
directions between t � 0 s and t ≈ 3 s, that is during the free air
(approach) phase of the task. This is followed by an abrupt increase
in damping in all axes of both the position and the orientation) at
t ≈ 3 s, when contact with the surface of the PCB/table is detected.
This ensures that the stability of the interaction is maintained
despite the sudden increase in the environmental stiffness. The
high damping value is maintained for another half a second, after
which the parameters are allowed to vary again, albeit this time
around the increased damping value as base value. This is
particularly noticeable in the positional axes at t ≈ 8 s. Here, the
user attempted to increase the speed of movement in a direction
parallel to the plane of contact. This caused a decrease in damping
in the x- and y-axes, accompanied by a slight increase in damping
in the z-axis, as the robot was not moving in this plane. Once the
robot leaves the surface during the retractionmotion at t � 15 s and
is moved again in free air, the damping in the z-axis very rapidly
decreases. In all of these cases, the damping adaptation aims to
assist the user in accomplishing their demonstration intention.

5.1.2 Comparison of Admittance Controller vs.
Freedrive for Demonstration
To test the usability of our adaptive admittance controller for
demonstration, we devised an experiment where we compared it
to the Free-drive control mode implemented in the Universal
Robots. We programmed the robot to draw a reference figure-
eight trajectory on a flat steel surface using a permanentmarker. This
was subsequently used as a visual reference in a small-scale user
experiment consisting of six subjects. The subjects were instructed to
kinesthetically teach the robot to follow the reference as closely as
possible, without any requirements as to speed or time of the
demonstration. Each subject repeated the demonstration three
times with each controller, alternating between freedrive and our
proposed adaptive admittance scheme.

To account for different timescales, we used Dynamic Time
Warping (DTW) (Müller, 2007) to temporally align all
demonstrations to the reference trajectory. We used DTW
distance as a measure of deviation from the reference.
Likewise, we measured the duration of the demonstration. The
results are shown in Table 1, where each value is the average of
the three attempts for that condition.

Although the sample size is not large enough to achieve
statistical significance, the results show a clear trend that users
achieve lower distances from the reference in a shorter amount of
time when using our adaptive admittance controller compared to
when using Freedrive.

5.1.3 Surface Normal Estimator
We evaluated the surface normal estimator on a separate curved
surface based on an eigenfunction of the L-shaped membrane, as

FIGURE 6 | Robot executing the taught gluing-like task on our
benchmark system. Notice the 3D-printed mock-up PCB (in green) and the
3D-printed mock-up gluing tip in a conical shape attached to the robot end-
effector.

1https://gitlab.com/sdurobotics/ur_rtde.
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shown in Figure 8. This surface is composed of a flat plane in one
of its quadrants, which transitions into a smooth continuous
function along the other three quadrants. Using a compliant
controller, the robot was taught a motion along the surface, starting
on the planar quadrant and moving onto and along the surface
peak. The surface normal estimator was initialized to the value [0,
0, −1]. Figure 9 shows the evolution of the angular error along the
path. An error of ∼ 6° is maintained along the planar quadrant of
the surface. At t � 4 s the robot tool is moved onto the curved
section of the surface, resulting in a discontinuous jump in the
error up to ∼ 12°. This is to be expected, as the surface is in fact
discontinuous at this point. The estimator then begins converging
and the error decreases to 8° at t � 5 s. Amaximum angular error of
∼ 16° is reached at t ≈ 6.5 s, coinciding with the area along the
surface that exhibits the fastest rate of curvature change, after
which the error decreases to ∼ 9° at t ≈ 8.5 s.

5.1.4 DMP Encoding
The segmented approach phase of the demonstration, together with
the output of the corresponding DMP learned from it are shown in
Figure 10 for the position and Figure 11 for the orientation,
respectively. Likewise, the process phase is shown in Figures 12,
13. Notice, particularly in the y-axis of component of Figure 10 and
quaternionw- and z-components of Figure 11 that some error in the
least-squares fit for the RBFs is present. However, at the scale this is
apparent, it has little effect on the robot motion and is irrelevant to
the approach phase overall.

5.2 Execution
Now that we have examined the components involved in
demonstration and encoding processes, we will analyze the
results of execution, particularly with regards to the
performance of the parallel position/force controller.

FIGURE 7 | Damping adaptation throughout a demonstration of the gluing task.

TABLE 1 | Comparison of the mean distance from reference (lower is better) and mean duration (lower is better) between our adaptive admittance controller and Universal
Robots’ freedrive controller for an experiment with six subjects. Each number is an average of three attempts performed by that subject.

Mean distance from reference Mean duration

Subject Adaptive admittance (ours) Freedrive Adaptive admittance (ours) Freedrive

A 16.1 25.0 28.9 34.5
B 52.3 79.3 18.6 27.3
C 40.0 42.1 17.3 22.5
D 72.2 80.5 25.3 27.5
E 58.0 105.7 18.1 34.6
F 62.1 83.8 13.3 21.1

All 50.1 69.4 20.2 27.9
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Figure 14 shows the target force reference of the controller,
together with the actual forces measured by the robot f/t sensor
end-effector during execution. The detected contact point with
the surface of the PCB is indicated by a red dotted line at t ≈
4.5 s. Note that the output of the normal estimator previously
shown in Figure 8multiplied by the user-inputted process force
magnitude, which in this case was set to 5 N, is the target force.
Furthermore, this means that the majority of the force control
happens in the z-axis, as the robot was nearly perpendicular to

the contact surface throughout the task. We will consequently
focus most of our analysis on the z-axis component. During
contact, the robot experiences an impact force of ∼ 9 N
(together with ∼ 2.5 N in the x-axis). Such a low impact
force is achievable due to our slow modulation of the
approach DMP goal, as described in Section 4.4.1 and
visualized in Figure 4. Following this, the force target is
ramped up from 0 to 5 N between impact and t ≈ 7.5 s, after
which it maintains a nearly constant process force of 5 N. Notice
that after t ≈ 17.5 s, the robot is unable to maintain the target
force. This is because the position reference moves it up and
away from the contact surface, as can be seen in Figure 15. This
can similarly be observed in the x-axis force, and is reflected
again in the x-axis of Figure 15, as the prevalence of the force
target means that the robot does not actually meet the position
target. Since the retraction motion is not considered crucial to
the successful completion of the task, it is currently not explicitly
handled by the segmentation algorithm. Were it so, it would
suffice with setting either the target force or the force control
gains to zero in order to more precisely follow the position
target.

A prevalent issue visible in Figure 14 is the amount of noise
present in the FT sensor measurements. Notice that this is
noticeable even before impact, at t < 4.5 s, when the robot is in
free air. This shows that this is an issue in the sensor used in the
Universal Robots themselves, and not in our system. Indeed,
similar performance to our results here has been reported by,
e.g. Pérez-Ubeda et al. (2020) when applying force control on
Universal Robots arms.

FIGURE 8 | Output of the surface normal estimator compared to the ground truth value for a taught robot tool path along a curved surface defined by an
eigenfunction of the L-shaped membrane.

FIGURE 9 | Estimation error for the surface normal compared to the
ground truth.
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6 DISCUSSION AND PERSPECTIVES

In the previous section, we evaluated our system on a benchmark
inspired by a real industrial gluing use case, and analyzed the
performance of the different system components both during a task
demonstration and during the subsequent execution of the learned
primitive. During demonstration, we showed that the adaptive
damping in the admittance controller can assist the user in
accomplishing their intended motion, while at the same time
guaranteeing a stable interaction despite a changing
environmental stiffness. Similarly, we showed that our surface
normal estimator works satisfactory and allows the admittance

controller to change the structure of its gain matrices, such that the
normal direction maintains a higher damping to ensure stability,
while the damping in the other directions is reduced to assist the
user. During execution, we showed that our controller is able to
track positional targets while applying the target force profile in the
normal direction. We also showed the system’s ability to reduce
impact forces by using DMP goal modulation.

However, there are many factors that were not fully considered
and that could be improved upon in future iterations of the
system.

When it comes to our adaptive admittance controller for
demonstration, our small-scale usability evaluation in

FIGURE 10 | Demonstrated position and corresponding Position DMP for the approach motion.

FIGURE 11 | Demonstrated orientation (quaternion) and corresponding Quaternion DMP for the approach motion.
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Section 5.1.2 shows a clear trend that our controller enables
users to provide both more accurate and more efficient
demonstrations of a path-constrained task when compared
to Freedrive, as implemented on Universal Robots
manipulators. This was verbally confirmed by the
participants following the experiment. The subjects also
reported that demonstrating was considerably more
physically taxing using Freedrive, whereas our adaptive
admittance scheme assisted in completing the task, making
it easier to keep contact with the surface and to maintain a
smooth continuous motion. As a full usability evaluation falls
beyond the scope of this paper, backing this up with, e.g. the

NASA-TLX (Hart and Staveland, 1988) or SUS (Brooke et al.,
1996) tests is left for future work.

In gluing and dispensing tasks, it is often imperative for an
optimal process outcome that the feed-rate be kept constant
throughout the surface of application. While approaches that
are able to adjust the feed-rate of the gluing gun to compensate for
changes in robot speed exist 2, by far the majority of
applications use constant feed-rate gluing guns and
therefore require constant robot movement speed. With our

FIGURE 12 | Demonstrated position and corresponding Position DMP for the process motion.

FIGURE 13 | Demonstrated orientation (quaternion) and corresponding Quaternion DMP for the process motion.

2https://aim-robotics.com/.
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approach, a skilled demonstrator can with some practice
provide a near-constant speed demonstration, as is close to
the case with the y-axis of Figure 15. However, it would be
preferable to normalize execution speed in the encoding of the
task to allow for imperfect demonstrations. Some approaches
to DMP speed-scaling have been presented (Nemec et al.,
2018a,b), typically through modulation of the time-
constant, τ, with an additional term ](x) that can be
encoded as a mixture of RBFs. This method was considered
for our system, but we were unable to achieve better
performance than was demonstrated with it, as it did not
result in constant speed. Alternative modulation schemes
for DMP-speed will be investigated in future work.

The performance of the surface normal estimator is imperative
for obtaining a good performance of the admittance controller
used during the demonstration. It is of importance to both obtain
fast convergence and little noise on the estimate. As seen in
Figure 9, the convergence of the estimator might be improved;
however, the parameters were chosen as a compromise between
convergence rate and noise on the estimate. The surface normal
estimation could potentially be improved by using a slidingmodel
observer as presented in Hasan and Husain (2009). An analysis of

the stability of the interconnection between the adaptive
controllers and the surface normal estimator was omitted, as
the faster dynamics of the controller when compared to those of
the gain adaptation according to the surface normal estimator
preclude instability. Note that the performance of the surface
normal estimator still enables tracking of curved surfaces, as
shown in Figure 8, despite its dynamics being slower than those
of the controller.

In applications relying on force control it is important to
ensure that force limits are not surpassed. Especially when relying
on programming by demonstration there is a high chance that the
nominal behavior will not comply with force constraints. Thus, it
is relevant to modify the position/force controller such that it
guarantees compliance with force constraints. This can e.g. be
ensured by set invariance control as shown in Polverini et al.
(2017). High forces will likely occur in the transition between free
and constrained motions if small positional uncertainties are
present. Therefore, it could be beneficial to adapt the reference
path according to the measured force as proposed in De Wit and
Brogliato (1997) with an adaptive approach. This would be an
alternative approach to the goal modulation proposed in
Section 4.4.1.

FIGURE 14 | Target forces input to the parallel position/force controller (labelled target) compared to the actual measured forces (labelled actual). The dotted
vertical red line shows the point at which contact with the surface was detected, upon which the gains of the parallel position/force controller are adapted and the forces
are ramped to the target process force magnitude.

FIGURE 15 | Target positions input to the parallel position/force controller (labelled target) compared to the total controller output consisting of combined position
and force contributions (labelled controller output) and to the actual measured positions (labelled actual).
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As our system relies heavily on the performance of several
parameter estimators, particularly the surface normal estimator, a
possible improvement would be to allow for repetitive update of
our parameter estimates, for instance through the use of Iterative
Learning Control (ILC) (Wang et al., 2009). Such methods have
already shown good performance in learning from demonstration
systems for peg-in-hole tasks (Nemec et al., 2013; Abu-Dakka
et al., 2015).

7 CONCLUSION

In this paper, we have presented a full system for learning from
demonstration of gluing and dispensing tasks that encompasses
the full pipeline of demonstration, encoding and execution.

During the demonstration, our system is designed to assist the
user and provide a non-obtrusive kinesthetic teaching experience.
By adapting the damping of an admittance controller according
to a force-velocity law, we aid the user during acceleration or
deceleration. Furthermore, when contact against the target
surface is detected, a surface normal estimation algorithm is
used to adapt the gain matrices of the controller to guarantee
higher damping and preserve stability in the normal direction,
while allowing lower damping in the other directions. Unlike
previous approaches in the literature, we do not assume diagonal
gain matrices. Rather, we allow the whole eigenstructure to
change. This results in lower user forces and better adaptation
to the user’s intention.

During the encoding, we segment the task based on the initial
contact into an approach phase and a process phase. Each of these
are encoded as Dynamic Movement Primitives. Similarly, the
surface normal estimate is encoded as Radial Basis Functions and
synchronized with the process DMP phase system.

During the execution, a parallel position/force controller is
used to meet both a position target and a force target, which is
calculated based on a user-specified force magnitude applied on
the encoded normal direction. The encoded normal is again used
to vary the eigenstructure of the force controller gain matrices so
as to apply force control in the contact direction and position
control otherwise. Finally, we are able to reduce impact forces
during the transition from approach to process by slowly
modulating the goal of the approach DMP.

We have evaluated and analyzed our system on a benchmark
based on a real industrial PCB gluing application and verified the
suitability of our proposed methods, showing robust execution
performance capable of meeting both the kinematic and dynamic
requirements of the task. We have also shown that the surface
normal estimator works satisfactorily on curved geometries, and
that the adaptive controller used for demonstration results in
faster and more accurate executions compared to a standard
controller implemented on a collaborative robot.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

CS provided the initial suggestion for the system design and II,
AK, and CS subsequently contributed to the conceptual
development of the system. II implemented the core of the
system, with AK and CS suggesting improvements. All three
authors helped with the practical evaluation. II set up the initial
article structure and first draft, and all three authors contributed
to the writing and revision of the manuscript. II was mainly
responsible for the figures.

FUNDING

The work leading to this publication is funded by the Innovation
Fund Denmark (Innovationsfonden) as part of the Programming
Ignition for Robotic Assembly Tasks (PIRAT) project, grant
number 9069-00046B.

REFERENCES

Abu-Dakka, F. J., Nemec, B., Jørgensen, J. A., Savarimuthu, T. R., Krüger, N., and
Ude, A. (2015). Adaptation of Manipulation Skills in Physical Contact with the
Environment to Reference Force Profiles. Auton. Robot 39, 199–217.
doi:10.1007/s10514-015-9435-2

Abu-Dakka, F. J., and Saveriano, M. (2020). Variable Impedance Control and
Learning—A Review. Front. Robotics AI 7, 177. doi:10.3389/frobt.2020.590681

Asada, H., and Izumi, H. (1989). Automatic Program Generation from Teaching
Data for the Hybrid Control of Robots. IEEE Trans. Robot. Automat. 5,
166–173. doi:10.1109/70.88037

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). “Robot Programming
by Demonstration,” in Springer Handbook of Robotics (Berlin Heidelberg:
Springer), 1371–1394. doi:10.1007/978-3-540-30301-5_60

Briat, C. (2014). Linear Parameter-Varying and Time-Delay Systems: Analysis,
Observation, Filtering & Control. Berlin Heidelberg: Springer, 3, 5–7.

Brooke, J. (1996). Sus-a Quick and Dirty Usability Scale. Usability Eval. industry
189, 4–7.

Buchli, J., Stulp, F., Theodorou, E., and Schaal, S. (2010). Learning variable impedance
control. Int. J. Robot. Res. 30, 820–833. doi:10.1177/0278364911402527

Caccavale, F., Siciliano, B., and Villani, L. (1999). The Role of Euler Parameters in
Robot Control. Asian J. Control. 1, 25–34. doi:10.1111/j.1934-
6093.1999.tb00003.x

Castelli, K., Zaki, A. M. A., Dmytriyev, Y., Carnevale, M., and Giberti, H. (2021). A
Feasibility Study of a Robotic Approach for the Gluing Process in the Footwear
Industry. Robotics 10, 6. doi:10.3390/robotics10010006

Conkey, A., and Hermans, T. (2019). “Learning Task Constraints from
Demonstration for Hybrid Force/position Control,” in 2019
IEEE-RAS 19th International Conference on Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 76787816

Iturrate et al. Quick Setup of Gluing Tasks

https://doi.org/10.1007/s10514-015-9435-2
https://doi.org/10.3389/frobt.2020.590681
https://doi.org/10.1109/70.88037
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1177/0278364911402527
https://doi.org/10.1111/j.1934-6093.1999.tb00003.x
https://doi.org/10.1111/j.1934-6093.1999.tb00003.x
https://doi.org/10.3390/robotics10010006
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


(Humanoids), Toronto, Canada, October 2019, 162–169. doi:10.1109/
Humanoids43949.2019.9035013

De Wit, C. C., and Brogliato, B. (1997). Direct Adaptive Impedance Control
Including Transition Phases. Automatica 33, 643–649. doi:10.1016/s0005-
1098(96)00190-2

Deng, Z., Mi, J., Chen, Z., Einig, L., Zou, C., and Zhang, J. (2016). “Learning Human
Compliant Behavior from Demonstration for Force-Based Robot
Manipulation,” in 2016 IEEE International Conference on Robotics and
Biomimetics (ROBIO), Qingdao, China, December 2016 (IEEE), 319–324.
doi:10.1109/robio.2016.7866342

Deniša, M., and Ude, A. (2015). Synthesis of New Dynamic Movement Primitives
through Search in a Hierarchical Database of Example Movements. Int. J. Adv.
Robotic Syst. 12, 137. doi:10.5772/61036

Dimeas, F., and Aspragathos, N. (2014). “Fuzzy Learning Variable Admittance
Control for Human-Robot Cooperation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, September 2014
(IEEE), 4770–4775. doi:10.1109/iros.2014.6943240

Dimeas, F., and Aspragathos, N. (2015). “Reinforcement Learning of Variable
Admittance Control for Human-Robot Co-manipulation,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, September 2015 (IEEE), 1011–1016. doi:10.1109/iros.2015.7353494

Ferraguti, F., Talignani Landi, C., Sabattini, L., Bonfè, M., Fantuzzi, C., and Secchi, C.
(2019). A Variable Admittance Control Strategy for Stable Physical Human-Robot
Interaction. Int. J. Robotics Res. 38, 747–765. doi:10.1177/0278364919840415

Ficuciello, F., Villani, L., and Siciliano, B. (2015). Variable Impedance Control of
Redundant Manipulators for Intuitive Human-Robot Physical Interaction.
IEEE Trans. Robot. 31, 850–863. doi:10.1109/TRO.2015.2430053

Gams, A., Nemec, B., Zlajpah, L., Wachter, M., Ijspeert, A., Asfour, T., et al. (2013).
“Modulation of Motor Primitives Using Force Feedback: Interaction with the
Environment and Bimanual Tasks,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Japan, November 2013 (IEEE),
5629–5635. doi:10.1109/iros.2013.6697172

Gandy, A., and Lau, F. D.-H. (2013). Non-restarting Cumulative Sum Charts and
Control of the False Discovery Rate. Biometrika 100, 261–268. doi:10.1093/
biomet/ass066

Gašpar, T., Deniša, M., Radanovič, P., Ridge, B., Savarimuthu, T. R., Kramberger,
A., et al. (2020). Smart Hardware Integration with Advanced Robot
Programming Technologies for Efficient Reconfiguration of Robot
Workcells. Robotics and Computer-Integrated Manufacturing 66, 101979.
doi:10.1016/j.rcim.2020.101979

Hart, S. G., and Staveland, L. E. (1988). “Development of Nasa-Tlx (Task Load
index): Results of Empirical and Theoretical Research,” in Advances in
Psychology (Elsevier), 52, 139–183. doi:10.1016/s0166-4115(08)62386-9

Hasan, S. M. N., and Husain, I. (2009). A Luenberger–Sliding Mode Observer for
Online Parameter Estimation and Adaptation in High-Performance Induction
Motor Drives. IEEE Trans. Ind. Applicat. 45, 772–781. doi:10.1109/
TIA.2009.2013602

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).
Dynamical Movement Primitives: Learning Attractor Models for Motor
Behaviors. Neural Comput. 25, 328–373. doi:10.1162/neco_a_00393

Karayiannidis, Y., Smith, C., Viña, F. E., and Kragic, D. (2014). “Online Contact
point Estimation for Uncalibrated Tool Use,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China, May
31-June 5, 2014, 2488–2494. doi:10.1109/ICRA.2014.6907206

Kober, J., Gienger, M., and Steil, J. J. (2015). “Learning Movement Primitives for
Force Interaction Tasks,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), Seattle, May 2015, 3192–3199. doi:10.1109/
ICRA.2015.7139639

Kormushev, P., Calinon, S., and Caldwell, D. G. (2011). Imitation Learning of
Positional and Force Skills Demonstrated via Kinesthetic Teaching and Haptic
Input. Adv. Robotics 25, 581–603. doi:10.1163/016918611x558261

Koropouli, V., Hirche, S., and Lee, D. (2012). “Learning and Generalizing Force
Control Policies for Sculpting,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal, October 2012 (Vilamoura:
IEEE), 1493–1498. doi:10.1109/iros.2012.6385957

Kronander, K., and Billard, A. (2014). Learning Compliant Manipulation through
Kinesthetic and Tactile Human-Robot Interaction. IEEE Trans. Haptics 7,
367–380. doi:10.1109/toh.2013.54

Kronander, K., and Billard, A. (2012). “Online Learning of Varying Stiffness
through Physical Human-Robot Interaction,” in 2012 IEEE International
Conference on Robotics and Automation, Saint Paul, MN, May 2012,
1842–1849. doi:10.1109/ICRA.2012.6224877

Kumar, N., and Rani, M. (2021). A New Hybrid Force/position Control Approach
for Time-Varying Constrained Reconfigurable Manipulators. ISA Trans. 110,
138–147. doi:10.1016/j.isatra.2020.10.046

Lee, A. X., Gupta, A., Lu, H., Levine, S., and Abbeel, P. (2015). “Learning from
Multiple Demonstrations Using Trajectory-Aware Non-rigid Registration with
Applications to Deformable Object Manipulation,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, September 2015, 5265–5272. doi:10.1109/
IROS.2015.7354120

Li, H.-Y., Dharmawan, A. G., Paranawithana, I., Yang, L., and Tan, U.-X. (2020). A
Control Scheme for Physical Human-Robot Interaction Coupled with an
Environment of Unknown Stiffness. J. Intell. Robotic Syst., 1–18.
doi:10.1007/s10846-020-01176-2

Müller, F., Jäkel, J., Suchý, J., and Thomas, U. (2019). Stability of Nonlinear Time-
Delay Systems Describing Human-Robot Interaction. Ieee/asme Trans.
Mechatron. 24, 2696–2705. doi:10.1109/TMECH.2019.2939907

Müller, F., Janetzky, J., Behrnd, U., Jäkel, J., and Thomas, U. (2018). “User Force-
dependent Variable Impedance Control in Human-Robot Interaction,” in 2018
IEEE 14th International Conference on Automation Science and Engineering
(CASE), Munich, Germany, August 2018, 1328–1335. doi:10.1109/
COASE.2018.8560340

Müller, M. (2007). “Dynamic Time Warping,” in Information Retrieval for Music
and Motion. Berlin Heidelberg: Springer, 69–84.

Nemec, B., Abu-Dakka, F. J., Ridge, B., Ude, A., Jørgensen, J. A., Savarimuthu,
T. R., et al. (2013). “Transfer of Assembly Operations to New Workpiece
Poses by Adaptation to the Desired Force Profile,” in 2013 16th
International Conference on Advanced Robotics (ICAR), Montevideo,
Uruguay, November 2013 (IEEE), 1–7. doi:10.1109/icar.2013.6766568

Nemec, B., Likar, N., Gams, A., and Ude, A. (2018a). Human Robot Cooperation
with Compliance Adaptation along the Motion Trajectory. Auton. Robot 42,
1023–1035. doi:10.1007/s10514-017-9676-3

Nemec, B., Žlajpah, L., Šlajpa, S., Piškur, J., and Ude, A. (2018b). “An Efficient Pbd
Framework for Fast Deployment of Bi-manual Assembly Tasks,” in 2018
IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids) (IEEE), 166–173. doi:10.1109/humanoids.2018.8625010

Ortenzi, V., Stolkin, R., Kuo, J., and Mistry, M. (2017). Hybrid Motion/force
Control: a Review. Adv. Robotics 31, 1102–1113. doi:10.1080/
01691864.2017.1364168

Pagano, S., Russo, R., and Savino, S. (2020). A Vision Guided Robotic System for
Flexible Gluing Process in the Footwear Industry. Robotics and Computer-
Integrated Manufacturing 65, 101965. doi:10.1016/j.rcim.2020.101965

Pastor, P., Righetti, L., Kalakrishnan, M., and Schaal, S. (2011). “Online Movement
Adaptation Based on Previous Sensor Experiences,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco,
September 2011 (San Francisco), 365–371. doi:10.1109/iros.2011.6095059

Pérez-Ubeda, R., Zotovic-Stanisic, R., and Gutiérrez, S. C. (2020). Force Control
Improvement in Collaborative Robots through Theory Analysis and
Experimental Endorsement. Appl. Sci. 10, 4329. doi:10.3390/app10124329

Peternel, L., Rozo, L., Caldwell, D., and Ajoudani, A. (2017). AMethod for Derivation
of Robot Task-Frame Control Authority from Repeated Sensory Observations.
IEEE Robot. Autom. Lett. 2, 719–726. doi:10.1109/lra.2017.2651368

Polverini, M. P., Nicolis, D., Zanchettin, A. M., and Rocco, P. (2017). “Robust Set
Invariance for Implicit Robot Force Control in Presence of Contact Model
Uncertainty,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, Canada, September 2017, 6393–6399.
doi:10.1109/IROS.2017.8206544

Raibert, M. H., and Craig, J. J. (1981). Hybrid Position/force Control of
Manipulators. J. Dyn. Syst. Measur. Control Trans. ASME 103, 126–133.
doi:10.1115/1.3139652

Rozo, L., Jiménez, P., and Torras, C. (2013). A Robot Learning fromDemonstration
Framework to Perform Force-Based Manipulation Tasks. Intel Serv. Robotics 6,
33–51. doi:10.1007/s11370-012-0128-9

Santos, L., and Cortesão, R. (2018). “Perceived Stiffness Estimation for Robot Force
Control,” in 2018 IEEE International Conference on Robotics and Automation

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 76787817

Iturrate et al. Quick Setup of Gluing Tasks

https://doi.org/10.1109/Humanoids43949.2019.9035013
https://doi.org/10.1109/Humanoids43949.2019.9035013
https://doi.org/10.1016/s0005-1098(96)00190-2
https://doi.org/10.1016/s0005-1098(96)00190-2
https://doi.org/10.1109/robio.2016.7866342
https://doi.org/10.5772/61036
https://doi.org/10.1109/iros.2014.6943240
https://doi.org/10.1109/iros.2015.7353494
https://doi.org/10.1177/0278364919840415
https://doi.org/10.1109/TRO.2015.2430053
https://doi.org/10.1109/iros.2013.6697172
https://doi.org/10.1093/biomet/ass066
https://doi.org/10.1093/biomet/ass066
https://doi.org/10.1016/j.rcim.2020.101979
https://doi.org/10.1016/s0166-4115(08)62386-9
https://doi.org/10.1109/TIA.2009.2013602
https://doi.org/10.1109/TIA.2009.2013602
https://doi.org/10.1162/neco_a_00393
https://doi.org/10.1109/ICRA.2014.6907206
https://doi.org/10.1109/ICRA.2015.7139639
https://doi.org/10.1109/ICRA.2015.7139639
https://doi.org/10.1163/016918611x558261
https://doi.org/10.1109/iros.2012.6385957
https://doi.org/10.1109/toh.2013.54
https://doi.org/10.1109/ICRA.2012.6224877
https://doi.org/10.1016/j.isatra.2020.10.046
https://doi.org/10.1109/IROS.2015.7354120
https://doi.org/10.1109/IROS.2015.7354120
https://doi.org/10.1007/s10846-020-01176-2
https://doi.org/10.1109/TMECH.2019.2939907
https://doi.org/10.1109/COASE.2018.8560340
https://doi.org/10.1109/COASE.2018.8560340
https://doi.org/10.1109/icar.2013.6766568
https://doi.org/10.1007/s10514-017-9676-3
https://doi.org/10.1109/humanoids.2018.8625010
https://doi.org/10.1080/01691864.2017.1364168
https://doi.org/10.1080/01691864.2017.1364168
https://doi.org/10.1016/j.rcim.2020.101965
https://doi.org/10.1109/iros.2011.6095059
https://doi.org/10.3390/app10124329
https://doi.org/10.1109/lra.2017.2651368
https://doi.org/10.1109/IROS.2017.8206544
https://doi.org/10.1115/1.3139652
https://doi.org/10.1007/s11370-012-0128-9
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


(ICRA), Brisbane, Australia, May 2018, 1667–1672. doi:10.1109/
ICRA.2018.8460925

Schaal, S. (2006). “Dynamic Movement Primitives-A Framework for Motor
Control in Humans and Humanoid Robotics,” in Adaptive Motion of
Animals and Machines (Tokyo: Springer), 261–280.

Schindlbeck, C., and Haddadin, S. (2015). “Unified Passivity-Based Cartesian
Force/impedance Control for Rigid and Flexible Joint Robots via Task-
Energy Tanks,” in 2015 IEEE international conference on robotics and
automation (ICRA), Seattle, May 2015 (IEEE), 440–447. doi:10.1109/
icra.2015.7139036

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). Robotics - Modelling,
Planning and Control. Springer.

Sloth, C., and Iturrate, I. (2021). “Simultaneous Contact point and Surface normal
Estimation during Soft finger Contact,” in Proceedings of the 20th International
Conference on Advanced Robotics, Ljubljana, Slovenia, December 2021.

Stramigioli, S. (2001). Modeling and Ipc Control of Interactive Mechanical
Systems—A Coordinate-free Approach. New York: Springer-Verlag.

Ude, A., Nemec, B., Petrić, T., and Morimoto, J. (2014). “Orientation in Cartesian
Space Dynamic Movement Primitives,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), Hong Kong, China, May 2014 (IEEE),
2997–3004. doi:10.1109/icra.2014.6907291

Ureche, A. L. P., Umezawa, K., Nakamura, Y., and Billard, A. (2015). Task
Parameterization Using Continuous Constraints Extracted from Human

Demonstrations. IEEE Trans. Robot. 31, 1458–1471. doi:10.1109/
tro.2015.2495003

Wang, Y., Gao, F., and Doyle, F. J. (2009). Survey on Iterative Learning Control,
Repetitive Control, and Run-To-Run Control. J. Process Control. 19,
1589–1600. doi:10.1016/j.jprocont.2009.09.006

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Iturrate, Kramberger and Sloth. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 76787818

Iturrate et al. Quick Setup of Gluing Tasks

https://doi.org/10.1109/ICRA.2018.8460925
https://doi.org/10.1109/ICRA.2018.8460925
https://doi.org/10.1109/icra.2015.7139036
https://doi.org/10.1109/icra.2015.7139036
https://doi.org/10.1109/icra.2014.6907291
https://doi.org/10.1109/tro.2015.2495003
https://doi.org/10.1109/tro.2015.2495003
https://doi.org/10.1016/j.jprocont.2009.09.006
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Quick Setup of Force-Controlled Industrial Gluing Tasks Using Learning From Demonstration
	1 Introduction
	2 Related Work
	3 Problem Formulation and Contributions
	3.1 Comparison to Other Approaches

	4 Methodology
	4.1 Adaptive Admittance Control for Kinesthetic Demonstration
	4.1.1 Surface Normal Estimation
	4.1.2 Contact Detection
	4.1.3 Parameter Adaptation

	4.2 Learning Task Kinematics
	4.2.1 Cartesian-Space Dynamic Movement Primitives

	4.3 Encoding Task Dynamics
	4.4 Execution
	4.4.1 Segmentation and Execution Flow
	4.4.2 Parallel Force/Position Control


	5 Experimental Evaluation
	5.1 Demonstration and Encoding
	5.1.1 Admittance Controller Parameter Adaptation
	5.1.2 Comparison of Admittance Controller vs. Freedrive for Demonstration
	5.1.3 Surface Normal Estimator
	5.1.4 DMP Encoding

	5.2 Execution

	6 Discussion and Perspectives
	7 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


