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The low-cost Inertial Measurement Unit (IMU) can provide orientation information and is
widely used in our daily life. However, IMUs with bad calibration will provide inaccurate
angular velocity and lead to rapid drift of integral orientation in a short time. In this paper, we
present the Calib-Net which can achieve the accurate calibration of low-cost IMU via a
simple deep convolutional neural network. Following a carefully designed mathematical
calibration model, Calib-Net can output compensation components for gyroscope
measurements dynamically. Dilation convolution is adopted in Calib-Net for spatio-
temporal feature extraction of IMU measurements. We evaluate our proposed system
on public datasets quantitively and qualitatively. The experimental results demonstrate that
our Calib-Net achieves better calibration performance than other methods, what is more,
and the estimated orientation with our Calib-Net is even comparable with the results from
visual inertial odometry (VIO) systems.
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1 INTRODUCTION

Low-cost inertial measurement units (IMU) are widely used in our daily life (Nebot and Durrant-
Whyte, 1999; Ahmad et al., 2013; Rehder and Siegwart, 2017). Cheap IMU can provide the attitude
and position information by integrating three-axis angular velocity measurements and three-axis
linear acceleration measurements. Many devices (such as smartphones, autonomous robots, AR/VR
devices, etc) are equipped with low-cost IMU sensors to obtain inertial measurements in order to
achieve different features. However, the accuracy of IMU is easily affected by calibration parameters
include scaling factors, axes misalignments, etc. Inaccurate calibration will produce imprecise
angular velocity and linear acceleration, and the integration operation will lead to rapid error
accumulation and estimation drift.

In order to limit the drift as much as possible, precise IMU calibration must be performed for
both inertial odometry (IO) and visual-inertial odometry (VIO). A lot of research about IMU
calibration or camera/IMU calibration are studied in the past several years. Most methods
(Furgale et al., 2013; Rohac et al., 2015; Rehder et al., 2016) prefer to design a mathematical
model and take calibration model parameters as constant values. External devices are usually
needed for the pre-calibration procedure. Online calibration methods (Qin and Shen, 2018;
Yang et al., 2020) which optimize the spatio-temporal camera/IMU model parameters all
together are proved effective for the tracking performance of VIO systems. As deep learning
technology has achieved great success in the past decade, many researchers also introduce deep
learning technology into tasks like orientation estimation (Esfahani et al., 2019b), inertial
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odometry (Chen et al., 2018; Esfahani et al., 2019a; Brossard
et al., 2020a), visual-inertial odometry (Clark et al., 2017; Chen
et al., 2019b), and most of them adopt the recurrent neural
network which is memory consuming and computing
consuming.

In this paper, we propose a lightweight and efficient deep
convolutional neural network for low-cost IMU calibration. It is
designed based on a mathematical model and is trained driven by
historical data. The proposed method can calibrate the IMU
measurements dynamically. By using the calibrated IMU
measurements, accurate orientation estimation can be obtained
and the results can even be comparable with VIO methods.

Our contribution can be summarized as below:
• We present a deep convolutional neural network called
Calib-Net for low-cost IMU calibration. The Calib-Net
adopts dilation convolution for spatio-temporal feature
extraction, and learns to produce the compensation for
gyroscope measurements dynamically.

•We introduce a mathematical calibration model to construct
the training and calibration framework. Both constant
calibration matrix (3 × 3) and Calib-Net hyper-
parameters can be trained and optimized driven by a
carefully designed loss function.

• We implement the proposed framework and validate it
quantitatively and qualitatively on public datasets. The
experimental evaluations show that our Calib-Net
achieves satisfactory performance in IMU calibration,
and is also fruitful for VIO systems.

The rest of this paper is organized as follows. Section 2
introduces the related works of IMU calibration and
orientation estimation. Section 3 introduces the overview
architecture of the proposed calibration framework. Section 4
describes the details of the used mathematical model, neural
network architecture, and the loss function. Section 5 presents
the results of experimental evaluations. Finally, the conclusion is
drawn in Section 6.

2 RELATED WORK

In the late 1990s, Nebot and Durrant-Whyte (1999) presented
an inertial error model for gyros and accelerometers aiming at
the IMU calibration for vehicle applications. Tedaldi et al.
(2014) proposed an IMU calibration method without using
external equipments, they need to move the IMU device by
hand and place it in multiple static positions. Based on a
specific sensor error model, Rohac et al. (2015) performed the
low-cost inertial sensor calibration to obtain the model
parameters using the nonlinear optimization under static
conditions. Furgale et al. (2013) present the open-source
Kalibr toolbox for the spatial and temporal calibration of
multiple sensors (cameras/IMUs). Afterward, Rehder et al.
(2016) extended the Kalibr toolbox and enabled precise
IMU intrinsic calibration following an inertial noise model.
They Rehder and Siegwart (2017) then further improved the
calibration method by introducing the displacement of
individual accelerometer axes into the mathematical noise

model. Barrau and Bonnabel (2020) recently adopted Lie
group for IMU error propagation. These calibration
methods usually adopt different inertial model variants and
estimate the parameters of these sensor error models. For the
calibration methods above, the parameters (scale factors,
misalignment errors, offsets, etc.) are usually taken as
constant values. Nevertheless, these parameters are always
varying as time goes on and the environment changes.

Aiming at the visual-inertial navigation system, Qin and
Shen (2018) presented an online calibration method to
optimize model parameters dynamically, and proposed
VINS-mono system (Qin et al., 2018) which is one of the
state-of-the-art visual-inertial systems. Yang et al. (2020)
studied and discussed the necessity and importance of
online IMU intrinsic calibration for visual-inertial
navigation systems, and proved that online calibration is
helpful for improving fusion performance. They also
demonstrated an open-source visual-inertial odometry
system called OpenVINS (Geneva et al., 2020). Campos
et al. took the IMU measurement uncertainty into account
(Campos et al., 2020), and proposed to use maximum a
posteriori (MAP) estimation during IMU initialization in
the ORB-SLAM3 system (Campos et al., 2021). Most of
these methods rely on a mathematical model and need to
calibrate every device before use.

As to the usage of deep learning in IMU calibration and
propagation, Yan et al. (2018) proposed to use the machine
learning technology to regress velocity vector with linear
accelerations and angular velocities as inputs. Nobre and
Heckman (2019) proposed to model the IMU calibration as a
Markov Decision Process (MDP) and use reinforcement learning
to achieve the regression of calibration parameters. Clark et al.
(2017) presented VINet which takes the visual-inertial odometry
problem as a sequence-to-sequence learning problem to solve and
avoids manual camera/IMU calibration operation. Chen et al.
(2018) introduced IONet for inertial odometry using the
recurrent neural network. Ionet formulates the odometry as an
optimization problem based on the neural network and estimates
the trajectories with raw measurements as network input.
Afterward, they Chen et al. (2019a) further extended the
network and also used it to predict model uncertainty.
However, the above learning methods usually adopt neural
networks with large weights which will consume lots of
computation resources.

Esfahani et al. (2019b) presented a recurrent neural network
called OriNet for orientation estimation. 3D orientation can be
obtained by OriNet with only low-cost IMUmeasurements as the
network input. They Esfahani et al. (2019a) also proposed
AbolDeepIO which simulates the noise model during training
and achieves robust inertial odometry with a novel deep neural
network. Instead of using recurrent neural networks, Brossard
et al. (2020b) adopted a convolutional neural network to estimate
the orientation with an IMU device. They Brossard et al. (2020a)
further achieved accurate and robust dead-reckoning with only a
commercial IMU. The Kalman filter is introduced and a deep
neural network is utilized to predict the dynamic parameters of
the filter.
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3 METHODS

3.1 Mathematical Model for Low-Cost IMU
Calibration
3.2 Architecture Overview
The overview of our proposed framework is shown in Figure 1.
Calib-Net takes sequential gyroscope measurements and
acceleration measurements as the input, and outputs the
compensation for raw IMU measurements. Dilation
convolution is utilized for spatio-temporal feature
extraction instead of recurrent neural networks. By
designing a mathematical calibration model, the
measurements can be dynamically calibrated and corrected
with the network output. In this way, accurate orientation can
be directly obtained through simple integration. Based on only
hundred seconds of labeled data, the hyperparameters of the
Calib-Net and the constant model parameters (matrix
includes) can be optimized at the same time driven by a
carefully designed loss function.

For a typical low-cost Inertial Measurement Unit (IMU), it
usually consists of a three-axis gyroscope, a three-axis
accelerometer, and sometimes a magnetometer. The three-axis
gyroscope can provide angular velocity information, the three-
axis accelerometer can provide the linear acceleration
information. Considering the noise and bias of the sensor
measurements (Rehder et al., 2016), the IMU sensor model
can be represented as below:

ω̂t

ât
[ ] � C

ωt

at
[ ] + bω

t

bat
[ ] + nω

t

na
t

[ ] (1)

Where angular velocity ωt ∈ R3 and linear acceleration at ∈ R3

are the measurements of gyroscope and accelerometer,
bωt ∈ R3 and bat ∈ R3 are the gyroscope and accelerometer
bias, nω

t ∈ R3 and nat ∈ R3 are additive zero-mean Gaussian
noises for gyroscope and accelerometer, angular velocity

ω̂t ∈ R3 and linear acceleration ât ∈ R3 are the calibrated
measurements which would be used for integration. The C
is the intrinsic calibration matrix (approximate equals to I6)
for the IMU model (Rehder et al., 2016), and can be
modeled as:

C � Cω C×
03×3 Ca

[ ] (2)

Where Cω contains scale factor and axis misalignment for
gyroscope measurements, Ca contains scale factor and axis
misalignment for accelerometer measurements, both Cω and
Ca are approximately equal to identity matrix I3. C× is the
coefficient matrix. It indicates the effect that the linear
accelerometer has on the gyroscope, and is approximately
equal to 03×3. So the gyroscope measurement (angular
velocity) model can be represented as:

ω̂t � Cωωt + C×at + bωt + nω
t � Cωωt + Δωt (3)

In the formula above, we abbreviate the compensation
component for gyroscope measurements as:

Δωt � C×at + bω
t + nω

t (4)

Where the compensation component Δωt is related to both
gyroscope measurements and accelerometer measurements. By
integrating the corrected angular velocity ω̂t, we can achieve the
estimation of 3D rigid rotation follows the equation below:

Rt+ΔT � RtExp ω̂tΔT( ) (5)

Where Rt ∈ SO(3) and Rt+ΔT ∈ SO(3) are the rotation matrices. t is
the timestamp that IMU outputs measurements, and ΔT is the
minimal time interval between two consecutive IMU readings. In
our case, the IMU runs at 200 Hz, and the ΔT is 5 ms. Exp (·) is
the exponential map for SO(3). As indicated in the above formula,
incorrect ω̂t will lead to continuous error accumulation as more
integrations propagate.

FIGURE 1 | The overview of the proposed framework. By selecting a mathematical model, we introduce a simple but effective convolutional neural network for
dynamic IMU calibration.
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3.3 Calib-Net for IMU Measurement
Correction
As shown in Eq. 3 and Figure 1, Cω and Δωt play an important
role in IMU calibration and orientation estimation. In most cases,
Cω will be taken as a constant matrix, and Δωt is a small time-
varying vector affected by many factors. In our proposed
calibration system, we use the Caib-Net to estimate the
compensation part Δωt for angular velocity measurements.
The detailed structure of the Calib-Net is shown in Figure 2.
It takes the long temporal sequential gyroscope measurements
and accelerometer measurements as the network input, and
network can be represented as below:

Δωt � F ωt−kΔT, at−kΔT, . . . ,ωt, at( ) (6)

Where k is the number of IMU readings used as the input of the
proposed Calib-Net. F (·) represents the nonlinear function that
the Calib-Net stands for. Dilation convolution is adopted to
extract spatio-temporal features of IMU measurements. As
shown in Figure 3, by introducing the dilation convolution,
the historically temporal measurements are fed into the
network and used for feature extraction. Dilation size in
dilation convolution indicates the spacing between the
convolution kernel points, so with different kernel sizes and
dilation sizes, different temporal IMU readings will be taken

accordingly. To be specific, the length of the input depends on the
product of kernel size and dilation size. In the presented network
shown in Figure 2, the maximum product value is 448 which
means the network will take k � 448 IMU readings as the
network input.

The Calib-Net is composed of two dilation convolutional
layers, one residual block, and two fully connected layers. The
residual block includes two dilation convolutional layers and one
shortcut. The detailed configuration of each layer is given in
Figure 2. As to the matrixCω, we set it to the trainable variable. In
this way, following the mathematical model shown in Figure 1,
the parameters of Calib-Net and Δωt can be trained and
optimized driven by the carefully designed loss function.

3.4 Loss Function for Regression
There are many losses that are widely used for solving the
regression problem (Jadon, 2020). The losses include L1 Loss
using Mean Square Error (MSE), L2 Loss using Mean
Absolute Error (MAE), Huber Loss using Smooth Mean
Absolute Error, etc. L1 Loss is robust to outliers. however,
its gradient is always the same during the training and is still
large even faced with small loss values. In this way, it is hard
and inefficient for L1 Loss to find the minima at the end of
training. On the contrary, L2 Loss is sensitive to outliers, but it
is easier for L2 Loss to find a stable solution. Huber loss
combines the advantages of L1 Loss and L2 Loss, it is more
robust to outliers than L2 Loss and can decrease the gradient
around the minima.

In our proposed Calib-Net, we choose to use the log hyperbolic
cosine (log-cosh) loss for gyroscope measurement correction
regression. Compared with the Huber Loss, it approximately
equals (y − y′)2/2 for the small loss and to |y − y′| − log(2)
for the large loss, so it has all the advantages of Huber Loss and is
twice differentiable for both small loss and large loss. The loss
function is defined as below:

L y, y′( ) � ∑n
i�1

log cosh y − y′( )( ) (7)

FIGURE 2 | The details of the Calib-Net structure. The proposed Calib-Net takes temporal gyroscope measurements and accelerometer measurements as inputs,
and outputs the compensation part for angular velocity measurements.

FIGURE 3 | The illustration of 1D Dilation Convolution. Dilation size
indicates the spacing between the convolution kernel points.
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Where y is the label (ground truth) of orientation in our case, and
y′ is the estimated orientation using the calibrated gyroscope
value (namely angular velocity).

We also use multi-scale orientation loss to achieve better
calibration performance. The orientation is estimated through
the integration of calibrated angular velocity. So we adopt

TABLE 1 | Orientation estimation results of different learning-based methods. The networks shown in the table are all trained using same sequences of the EuROC dataset
(Burri et al., 2016). Both 3D orientation and yaw estimation results are given in the table. The best results are made in bold.

Seq Calib-net OriNet GyroNet Raw IMU data

ori. (°) yaw (°) ori. (°) yaw (°) ori. (°) yaw (°) ori. (°) yaw (°)

MH_02_easy 2.01 1.91 5.75 0.51 1.39 0.85 146 130
MH_04_difficult 0.97 0.41 8.85 7.27 1.40 0.25 130 77.9
V1_01_easy 0.79 0.44 6.36 2.09 1.13 0.49 71.3 71.2
V1_03_difficult 1.25 0.35 14.7 11.5 2.70 0.96 119 84.9
V2_02_medium 3.82 1.23 11.7 6.03 3.85 2.25 117 86.0

mean 1.77 0.87 9.46 5.48 2.10 0.96 125 89.0

• training sequences: MH_01_easy, MH_03_medium, MH_05_difficult, V1_02_medium, V2_01_easy, V2_03_difficult.
• testing sequences: MH_02_easy, MH_04_difficult, V1_01_easy, V1_03_difficult, V2_02_medium.

FIGURE 4 | Plots of estimated orientations with different methods. (A) Estimated orientation for MH_04_difficult with different methods. (B) Estimated orientation
for V1_03_difficult with different learning-based methods.
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different time intervals to compute the loss and perform the back-
propagation driven by the loss. The loss used for network training
is shown below:

L � ∑n
i�1

LΔt +∑n/2
i�1

L2Δt +∑n/4
i�1

L4Δt +/ + LnΔt (8)

Where n ·Δt is the maximum time interval used for computing
the loss, and its value is n � 2x. By carefully selecting different Δt
and n using the trial and error method, we can adopt the suitable
rotation transformation combination to train the calibration
parameters.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
Calib-Net using the public EuROC dataset Burri et al. (2016).
Both quantitive and qualitative experiments are performed for
comparison. We first compare the orientation estimation
performance of our Calib-Net with different deep learning
methods. Then we replace the gyroscope measurements used
for the OpenVINS system with the calibrated angular velocity

from our Calib-Net, and compare the performance with state-of-
the-art VIO methods.

For the training of our Calib-Net, most computers with a
normally configured GPU are enough. In our case, we use a
desktop equipped with an Intel i7-8700K CPU with 3.7-GHz
and an Nvidia GeForce GTX 1060 GPU with 6 GB memory.
The framework of Calib-Net is implemented based on
PyTorch. We use the ADAM optimizer for the network
training, the learning rate is set to 0.01, and the weight
decay is 0.1. The consine anneal warm restart scheduler is
adopted for network learning. The weight parameter for log-
cosh loss is 1e6. The IMU runs at 200 Hz, so the ΔT is 5 ms in
our case. For loss computing, we set Δt to 80 ms and n to 2 (as
illustrated in Eq. 8) which means we use 16 and 32 IMU
readings for integration. We training the network for 1,200
epochs and it only takes about 8.5min with the Nvidia GTX
1060 GPU which can be reached easily. For the test procedure,
our proposed lightweight Calib-Net can easily reach real-time
performance for calibration and orientation estimation (the
IMU reading is 200 Hz).

4.1 Calibration Performance Evaluation
Among Learning-Based Methods
We first evaluate the proposed Calib-Net by comparing the
orientation estimation performance with other learning-based
methods. Absolute Orientation Error (AOE) is adopted as the
evaluation metric. We choose the evaluation tool (Zhang and
Scaramuzza, 2018) to compute the metric. Except for AOE, we
also adopt the yaw error as the metric as achieving the accurate
yaw angle estimation is most difficult for IMU.

The public EuROC dataset (Burri et al., 2016) is used for the
evaluation, and the uncalibrated ADIS16448 IMU is adopted in
the dataset. We take MH_01_easy, MH_03_medium,
MH_05_difficult, V1_02_medium, V2_01_easy,
V2_03_difficult as the training sequences, and take
MH_02_easy, MH_04_difficult, V1_01_easy, V1_03_difficult,
V2_02_medium as the testing sequences. As shown in
Table 1, our proposed Calib-Net outperforms the raw IMU
data in terms of the orientation estimation and yaw

TABLE 2 | Orientation estimation results of different VIO methods. The Open-
VINS* method takes the calibrated gyroscope data (produced by our
proposed Calib-Net) as the input. Both 3D orientation and yaw estimation results
are given in the table. The best results are made in bold.

Seq Open-VINS* Open-VINS VINS-mono

ori. (°) yaw (°) ori. (°) yaw (°) ori. (°) yaw (°)

MH_02_easy 1.40 1.03 1.11 1.05 1.34 1.32
MH_04_difficult 1.81 1.10 1.60 1.16 1.44 1.40
V1_01_easy 0.62 0.42 0.80 0.67 0.97 0.90
V1_03_difficult 2.48 2.39 2.32 2.27 4.72 4.68
V2_02_medium 1.08 0.63 1.85 1.61 2.58 2.41
mean 1.47 1.11 1.55 1.37 2.21 2.14

• training sequences: MH_01_easy, MH_03_medium, MH_05_difficult,
V1_02_medium, V2_01_easy, V2_03_difficult.
• testing sequences: MH_02_easy, MH_04_difficult, V1_01_easy, V1_03_difficult,
V2_02_medium.

FIGURE 5 | Plots of estimated trajectories with different VIO methods. (A) Estimated trajectories for sequence V1_01_easy. (B) Estimated trajectories for sequence
V2_02_medium. Open-VINS* takes the corrected IMU measurements from our proposed Calib-Net.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7725836

Li et al. Calib-Net

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


estimation. When comparing with the state-of-the-art learning-
based calibration methods, our framework defeats both OriNet
(Esfahani et al., 2019b) and GyroNet (Brossard et al., 2020b) on
most sequences. What is more, OriNet (Esfahani et al., 2019b)
adopts the Long Short-Term Memory (LSTM) component for
spatio-temporal feature extraction and needs larger GPU
memory. Our framework adopts dilation convolutions and
proper loss function which construct an easy (less
hyperparameters) but efficient (better feature learning) neural
network.

We also plot the estimated orientation in Figure 4 to give a
more compact demonstration of our system’s performance. The
blue line indicates the ground truth of the orientation (roll, yaw,
pitch), the red line indicates the estimated orientation with our
Calib-Net, the green line indicates the estimated orientation with
the GyroNet, and the yellow line indicates estimated orientation
from the raw IMU data. All orientations here are got only through
the integration of the angular velocity. As shown in the figure,
when using the raw IMU data to perform orientation estimation,
the errors will be accumulated and the integrated orientation will
drift in a short time due to inaccurate calibration. Our Calib-Net
(red line) is most close to the ground truth and achieves the best
performance among these methods.

4.2 Calibration Performance Evaluation
Using VIO Methods
In order to further prove the effectiveness of our proposed
framework, we also introduce the calibrated angular velocity
from our Calib-Net into a well-known VIO system (Open-
VINS) which achieves state-of-the-art performance recently.
The new VIO system combined with our Calib-Net is called
OpenVINS*. We present the quantitative orientation estimation
results in Table 2. As shown in the table, OpenVINS* performs
better than OpenVINS in most cases, and achieves the best mean
results in terms of orientation and yaw estimation.We also plot the
trajectories with these methods in Figure 5. The OpenVINS* with
carefully calibrated angular velocity achieves better performance in
trajectory estimation. This proves that our proposed Calib-Net can
accurately correct the angular velocity measurements and the
calibrated angular velocity is fruitful for VIO systems.

When comparing the estimated orientation of Calib-Net
(shown in table I) with that of VIO methods (shown in table
II), we can find that our Calib-Net can even compete with VIO
methods in terms of orientation estimation. What is more, the
average yaw error of our Calib-Net is 0.87°, and it performs better
than all VIO methods which include Open-VINS* with 1.11°,
Open-VINS with 1.37°, VINS-Mono with 2.14°. This further
indicates that a carefully calibrated low-cost IMU can achieve
similar (even better in some aspects) performance when
comparing with visual-inertial methods.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a light-weight deep convolutional neural
network for low-cost IMU calibration which is called Calib-Net.
A mathematical calibration model is introduced to design the
training and calibration framework. Dilation convolution is
adopted for spatio-temporal feature extraction of IMU
measurements. Driven by a carefully designed loss function,
the Calib-Net can be optimized to output the compensation
for raw gyroscope measurements. Corresponding experimental
evaluations are performed to prove the effectiveness of our
proposed Calib-Net. The results show that our framework
achieves quite good calibration performance and the
orientation estimation performance of our Calib-Net can even
compete with state-of-the-art VIO methods. However, the
generalization ability of the proposed network to different
types of IMU is still challenging, and we would like to try
more datasets and study more about it. What is more, we plan
to use the deep neural network to perform odometry to dead-
reckon both translation and rotation. We also consider
introducing deep learning technology for visual-inertial
odometry.
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