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This article presents a novel method for measuring contact points in human–object
interaction. Research in multiple prehension-related fields, e.g., action planning,
affordance, motor function, ergonomics, and robotic grasping, benefits from accurate
and precise measurements of contact points between a subject’s hands and objects.
During interaction, the subject’s hands occlude the contact points, which poses a major
challenge for direct optical measurement methods. Our method solves the occlusion
problem by exploiting thermal energy transfer from the subject’s hand to the object surface
during interaction. After the interaction, we measure the heat emitted by the object surface
with four high-resolution infrared cameras surrounding the object. A computer-vision
algorithm detects the areas in the infrared images where the subject’s fingers have
touched the object. A structured light 3D scanner produces a point cloud of the
scene, which enables the localization of the object in relation to the infrared cameras.
We then use the localization result to project the detected contact points from the infrared
camera images to the surface of the 3D model of the object. Data collection with this
method is fast, unobtrusive, contactless, markerless, and automated. Themethod enables
accurate measurement of contact points in non-trivially complex objects. Furthermore, the
method is extendable to measuring surface contact areas, or patches, instead of contact
points. In this article, we present the method and sample grasp measurement results with
publicly available objects.
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INTRODUCTION

Our hands are excellent tools for manipulating objects, and we touch and grasp countless objects
every day. Prehension movements are divided into three components: moving the hand to the target,
setting finger posture for grasping, and aligning the hand so that grasping is possible (Fan et al.,
2006). They enable us to select contact points in the object that allow a stable grip and object
manipulation (Zatsiorsky and Latash, 2008; Kleinholdermann et al., 2013).

Prehension movements are guided the visual information about the size, shape and density of the
object (Cesari and Newell, 1999). This information is used in preliminary planning of hand
movement and grasp properties, but also changes that occur during the hand movement are
also taken into account (Bridgeman et al., 1979).

While the operations are easy and effortless for humans, they are not easy for robots. Grasping
and manipulating previously unseen objects and operating in unstructured, cluttered, and variable
environments has proven to be a very difficult task for robots (Cui and Trinkle, 2021). Although great
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efforts have been focused on the problem in recent years, it has
not been solved (Kleeberger et al., 2020).

There are several ways to approach the problem. One
approach is called analytic, in which the grasp is determined
by analyzing the shape of the object. This could be done, for
example, by analyzing the appearance of objects to determine
their grasping affordances (Song et al., 2015; Do et al., 2018).

A second approach is called data-driven, as a dataset is formed
to train the robot hand with suitable method, such as deep
learning. Examples of the data-driven approach are, for
example, a study by Gabellieri et al. (2020), which describe
human grasp data collection, where a human operator uses
the robot hand to grasp objects and resulting the grasp data is
collected with depth cameras and motion tracker. Edmonds et al.
(2019) used tactile gloves with force sensors to capture the poses
and forces that humans used when opening medicine bottles with
safety mechanisms. The data was used to teach a robotic system
do conduct the same task.

As grasp data collection is time consuming and expensive, the
data has been collected in to databases such as the Columbia
Grasp Database, which is based on the GraspIt! Toolkit, and can
be used by the research community to develop suitable training
methods (Goldfeder et al., 2009).

The critical issue with the data-driven approach is the quality
of data that is collected. Human hand trajectory and grasp can be
measured in many ways. For example, the interaction can be
video-recorded and the interactions manually coded from videos
(Cesari and Newell, 1999; Choi and Mark, 2004). However, this is
very time consuming and can lead to issues with inter-coder
reliability (Kita et al., 1998).

Instead of manual annotation, a computer vision system can
detect and track hands from RGB images (Siddharth et al., 2016;
Cai et al., 2017; Lyubanenko et al., 2017) or from depth camera
images (Oikonomidis et al., 2011). Many of these models perform
well in laboratory conditions, but have problems with
unconstrained real-life conditions, as large variations in the
scenery makes feature extraction difficult (Yang et al., 2015).
Attaching visual markers to the hand and tracking the markers
(Gentilucci et al., 1992) improves the tracking result, at the cost of
making the experimental setup more complex and less natural.
However, the most critical problem is hand occlusion, which
makes the detection of contact points difficult (Yang et al., 2015;
Sridhar et al., 2016) for both manual and computer vision-based
methods.

Another category of methods relies on sensors attached to the
hand. The sensors in these systems can be electromagnetic
(trakSTAR, Ascension Technology Corp., Shelburne, VT,
United States; e.g., Chen and Saunders (2018), FASTRAK,
Polhemus Corp., Colchester, VT, United States; e.g., Bock and
Jüngling (1999), resistive (CyberGlove, Virtual Technologies,
Palo Alto, CA, United States; e.g., Ansuini et al., 2007), or
infrared (Optotrak, Northern Digital Inc., Waterloo, Ontario,
Canada; e.g., Kleinholdermann et al. (2013) and Cressman et al.
(2007). Sensors provide accurate hand and joint motion data, but
they make the experimental setup less natural and might disrupt
hand-object interactions, as both sensors and the related wires
may limit movements and change grasping strategies.

As all the current methods have limitations, we introduce a
contact point measuring method to overcome these limitations.
The criteria during the development work were that the method
1) allows for fast data collection without manual annotation; 2)
can measure everyday objects with high ecological validity,
i.e., without altering their visual appearance or interfering with
interaction; and 3) produces accurate data.

Our method is based on thermal imaging, which has been
widely used in medicine (Gizińska et al., 2021; Martinez-
Jimenez et al., 2021), surveillance (Ivašić-Kos et al., 2019;
Duan et al., 2021), and quality control (ElMasry et al., 2020;
Khera et al., 2020). The starting point of our application is the
temperature of fingers, which is 29.1 ± 0.6°C at the
environmental temperature of 25.4 ± 0.4°C, (Shilco et al.,
2019), and which transfers to objects that have been touched.
In other words, when a participant touches an object and takes
their hand away, there is a short-term heat signature
corresponding to the area touched. This heat signature can
be used to deduce the grasp type used during the human-object
interaction. Furthermore, the heat signature can be used to
differentiate between grasp types that look visually similar when
the hand is viewed from above, but are actually different as the
details of the grip are occluded by the hand.

In the following article we will outline the technical details of
the method as well as presenting preliminary data recorded with
the system while grasping the YCB object set (Calli et al., 2015).

METHODS

The measuring station (Figure 1) consists of four FLIR A65
infrared cameras (FLIR Systems, Wilsonville, OR, United States),
one PhoXi 3D Scanner M structured light scanner (Photoneo
s.r.o., Bratislava, Slovakia), a control computer, and a frame
structure with a flat surface in the middle for placing the
target object. For future development, we also included four

FIGURE 1 | The measuring station with a target object.
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Xbox One Kinect Sensors (Microsoft Corporation, Redmond,
WA, United States) in the configuration.

Calibration of the camera system requires a target where the
pattern features are detectable in images recorded with all the
cameras in the system. The system consists of four types of
cameras that record different bands of the spectrum. The infrared
cameras record wavelengths 7.5–13.0 µm (Flir systems, 2016).
The 3D scanner utilizes a 638 nm laser for the structured light
projection (Photoneo, 2018). We also record the interaction with
a Kinect RGB-D camera that uses laser diodes with peak intensity
at 850 nm for time-of-flight measurement (Naeemabadi et al.,
2018) and separate sensors for the visible part of the spectrum and
for near-infrared. To calibrate all cameras internally and
externally, we developed a calibration target (Figure 2). The
pattern is a 4 by 11 asymmetric circle grid with 20.0 mm spacing
and 15.0 mm circle diameter. The pattern was cut by laser from a
70 μm thick matte black PVC film and attached to a 4.0 mm thick
unpolished aluminum alloy sheet. We warmed the calibration
target with a heating element so that the temperature difference
with room temperature was approximately 10°C. The uncoated
aluminum circles reflect the surrounding environment in the
wavelengths recorded by the devices, whereas the PVC-coated
surface is less reflective. The calibration target enables us to utilize
the camera calibration implementation in OpenCV (https://
opencv.org/). We calibrated the camera internal parameters
and the camera system externally, so that we obtained a
rotation and translation relative to the 3D scanner for each
camera.

Data acquisition takes place during and after the interaction.
We record the scene with the infrared cameras and one RGB-D
camera during the interaction and a short period after the
interaction has ended. At the end of the interaction, the
subject places the object on the table covered by the cameras
and pulls their hand out of the line of sight between the object and

the cameras. Then, the recording ends and we scan the scene with
the 3D scanner. Figure 3 illustrates the process flow. Here, we
describe the process for a single object, but the method allows for
efficient data gathering from multiple objects consecutively. The
experiment supervisor needs to take care to place each object in
the desired starting location without altering its surface
temperature, for example, by wearing insulating gloves or
using room-temperature tongs.

To detect the contact points in the infrared images recorded
after the interaction, we used the simple blob detection algorithm
implemented in OpenCV. The algorithm detects the regions that
differ in temperature from the ambient temperature, and outputs
the center point coordinates u and v, and radius r of each region.
The camera parameters used and the scene configuration
determine the required parameters for the algorithm.

For localization, we used the proprietary Photoneo
Localization SDK (Photoneo s.r.o., Bratislava, Slovakia). The
localization algorithm uses a set of features calculated from a
predefined 3D model of the object and searches for matching
features in the recorded point cloud. As a result of the
localization, we obtain the object rotation and transformation
matrices, R and T, relative to the 3D scanner.

To map the contact points on the object surface, we project the
contact points from the image coordinates back to the 3D scene,
where the rays projected from the camera intersect with the
surface of the object 3Dmodel. To solve the visibility of the points
and self-occlusions within the object, we use OpenGL (Khronos
Group, Beaverton, OR, United States) to obtain the Z-buffer of
the object model from each infrared camera location. We
transform the object model from the 3D scanner reference
frame to the IR camera reference frame and render it. Thus,
the resulting Z-buffer provides the Z-depth of the key points in
the infrared image. Points outside the object boundary are
discarded. The key point coordinates are then transformed to
the object reference frame.

As the same contact point may be visible in multiple camera
images, we filter the set of contact points. As a measure of point
reliability, we use the angle between the camera optical axis and
the surface normal at the contact point, because the imperfections
in key point detection, calibration, and localization cause an error
in projection that increases with the incident angle. Out of the key
points from different cameras that are within a 9 mm distance of
each other, we retain the point with the smallest incident angle.
Finally, we store the remaining key point coordinates X, Y and Z,
and radii r’, in millimeters in object coordinates, within the
database.

We followed the guidelines given by the Finnish Advisory
Board on Research Integrity and the University of Helsinki
Ethical Review Board in the Humanities and Social and
Behavioural Sciences.

RESULTS

We recorded one grasping event for each of the 77 objects in the
YCB object set (Calli et al., 2015; Calli et al., 2017) for which there
was a matching 3D model available. Author JHH grasped each

FIGURE 2 | The calibration pattern detected in the infrared image. The
warm PVC coated area appears white in the image, whereas the uncoated
metal circles reflect the colder surrounding environment.
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object with his right hand using a natural grasp suitable for lifting
the object (Figure 4), lifted the object from the table to 10–20 cm
height, and set it back down. The grasp type or duration was not
restricted; contact duration was often less than 2 s. To limit the
skin–object contact areas to the distal phalanx of each finger, the
grasper wore an insulating fingerless glove.

Localization succeeded for 67 out of the 77 objects.
Localization was unsuccessful possibly due to partially
deformed objects (004_sugar_box and 061_foam_brick), non-
rigidity of the object (059_chain and 063-a_marbles), and highly
reflective surfaces (038_padlock). The localization result of
019_pitcher_base was 180° rotated and thus classified as a failure.

Determining the ground truth for measuring the performance
of the method proved challenging, as there is no automated
method that could provide the ground truth. We determined the

success of the contact point detection by visually comparing the
detected contact points to the IR and RGB camera frames from
the grasping event. Thus, our “ground truth” is prone to human
error, but we provide the grasping event recordings along with
our code1, so others may confirm our results. Detection of some
contact points succeeded in 66 out of the 67 localized objects.
Figures 5, 6 show examples of the detections. Only the highly
reflective object 042_adjustable_wrench did not yield any true
positive detections. For 62 objects, the method detected all
contact points successfully. False positive detections occurred
in 16 objects, mainly due to reflections in high-reflectance objects
such as 028_skillet_lid, as evident in Figure 7. The insulating

FIGURE 3 | The stages of measuring contact points. After human-object interaction, we record infrared images of the scene and a 3D point cloud. We use the point
cloud to localize the object in the scene accurately and a computer-vision algorithm detects the contact points in the infrared images. Next, we project the contact points
to the surface of the localized object model, filter, and store the point coordinates and radii.

FIGURE 4 | Twelve sample infrared image pairs recorded during the grasping act and after the interaction.

1https://github.com/jussihh/graspsense

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 8 | Article 8001314

Hakala and Häkkinen Method for Measuring Contact Points

https://github.com/jussihh/graspsense
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


glove covered the second phalanx of the grasper’s fingers only
partially, which resulted in two contact points from the same
finger in three cases. Some contact points went undetected
because the surface was not covered by the cameras, such as
the underside of the object 029_plate. We computed precision
and recall for all finger contacts and used visual inspection of the
recordings as the ground truth. For the 67 localized objects, the
precision of the system was 0.90 whereas recall was 0.95.

DISCUSSION

In this article, we have described a novel method for measuring
contact points in human–object interaction and presented the
first test measurement results. We measured grasping with the
YCB object set, which includes everyday objects with different
sizes and materials. For most of the objects, we were able to

measure contact points successfully. For the 22 plastic toy
objects in groups 065, 072, and 073 precision was 0.97 and
recall 1.00, which indicates that in applications, where the
experimenter can control the object material, the method
meets demanding requirements. Highly reflective objects
proved difficult for both the 3D scanner and the infrared
cameras to measure.

The spatial accuracy of the process is challenging to measure,
because the error depends on the properties of the environment,
the object, the grasping hand, and grasp type. We could measure
the error using an ideal object with a known geometry and
temperature difference as a target, such as our calibration
target. However, such a measure, likely in fractions of a
millimeter, would be highly misleading as it discounts the
major sources of error. Thermal conduction over time within
the object should be taken into account when considering the
spatial accuracy. We are developing a method to measure the
spatial accuracy of the entire process; from our experience, we
expect the root mean square error to be within a few millimeters
with our hardware and software configuration.

The method is efficient and accurate for measuring contact
points. For some applications, a more realistic model of the contact
areamight bemore desirable than only the contact area centers and
radii that our method currently measures. For example, in robotics,
a patch contact model improves grasping compared with a point
model (Charusta et al., 2012). Our method is also extendable to
measuring the contact areas, by detecting the contact areas in the
infrared camera images and mapping them to the model surface.
For contact area measurement, the temperature gradient caused by
thermal conduction within the object must included in the model,
as the contact areas cool down over time after the contact. This
could be achieved by tracking the object and recording the contact
duration and surface area temperature over time. However, as the
fingers of the grasper occlude the contact area, the exact duration of
contact is challenging to measure from unaltered objects. Including

FIGURE 5 | Detected key points illustrated as white circles in the infrared
image of the object 033_spatula.

FIGURE 6 | Result contact points visualized as red dots over the
wireframe model of the object 033_spatula.

FIGURE 7 | Highly reflective surfaces, such as the glass dome in
028_skillet_lid depicted here, caused the majority of false positive detections.
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the object surface’s material properties and three-dimensional
object structure in the model would be useful.

Another improvement we are developing is including a hand
and finger tracking method. Tracking would allow us to identify
fingers, collect motion trajectory data, and determine the grasp
type, which is valuable in some applications (such as grasp
planning, e.g., in GraspIt! (Miller and Allen, 2004). To increase
the usefulness and improve the performance of the method, prior
knowledge about the grasp type and the number of contact points
used should be included in data processing, as different grasp types
produce different skin-object contact areas. In addition to the
contact points and patches, some applications may require
additional data. Using, e.g., finite element models for the
deformation of fingers might provide useful. Furthermore,
measuring the force distribution and friction between the
contact surfaces would be very useful in robotics applications.
Combining the models for thermal conduction and finger
deformation would allow us to approximate the grasp forces.
The weights and dimensions of the objects, which might also be
useful, are listed in the YCB dataset description (Calli et al., 2015).

In automation and robotics, the method enables the recording
of grasping demonstrations with known objects in applications
such as warehouse or assembly line automation, if the number of
target objects makes this feasible. The method also enables the
collection of the vast datasets required for training machine-
learning models and the subsequent development of robots that
are able to operate in unstructured environments such as
households. For example, action-specific contact point and
point cloud data recorded from a large number of objects
enables the training of a deep neural network to predict
contact points in novel objects, a task where manually
annotated images are still used (Chu et al., 2018).
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