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This article presents perspective on the research challenge of understanding

and synthesizing anthropomorphic whole-body contact motions through a

platform called “interactive cyber-physical human (iCPH)” for data collection

and augmentation. The iCPH platform combines humanoid robots as “physical

twins” of human and “digital twins” that simulates humans and robots in cyber-

space. Several critical research topics are introduced to address this challenge

by leveraging the advanced model-based analysis together with data-driven

learning to exploit collected data from the integrated platform of iCPH.

Definition of general description is identified as the first topic as a common

basis of contact motions compatible to both humans and humanoids. Then, we

set continual learning of a feasible contact motion network as the second

challenge by benefiting from model-based approach and machine learning

bridged by the efficient analytical gradient computation developed by the

author and his collaborators. The final target is to establish a high-level

symbolic system allowing automatic understanding and generation of

contact motions in unexperienced environments. The proposed approaches

are still under investigation, and the author expects that this article triggers

discussions and further collaborations from different research communities,

including robotics, artificial intelligence, neuroscience, and biomechanics.
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1 Introduction: iCPH—Interactive cyber-physical
human platform

Humanoid robots are expected to help humans in various scenarios owing to their

versatility and anthropomorphic shape making it easy to adapt to environments designed

for humans. While they still need improvements in reliability and safety, we believe that

they are steadily making progress to be integrated into our society in the future. On the

other hand, it can have another scientific role as a “physical twin” of human in research
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areas that include modeling and understanding human motions,

more widely behaviors. One example is to evaluate wearable

devices in place of human subjects (Yoshida et al., 2018) by a

humanoid robot reproducing measured human motions. Indeed,

human motions involving more complex contacts including

surface contacts have still a lot to be investigated: what

humans optimize while they are moving, how human motions

can be predicted, and what can be the optimal robot motions

when interacting with humans.

In this aspect, human motion analysis has recently made

remarkable progress based on model-based technologies such as

motion optimization, musculo-skeletal (MS) analysis, and

dynamic simulation. Nevertheless, interactions with objects

and environments through complex contacts need further

investigation. We actually still have a long way to achieve

automatic understanding and generation of anthropomorphic

whole-body (WB) motion sequences involving multiple contacts.

Humanoid robots as physical twins are exploited for real-

world validation, while digital twins can serve for the

improvement of analysis and simulation quality, benefiting

from advanced machine learning techniques that can deal

with increasing available datasets of human motions.

Humanoid robots and digital actors therefore can be leveraged

together in a complementary manner as “interactive cyber-

physical human (iCPH)” for this purpose, since it is still

difficult to measure the internal control signal of humans,

whereas such biomechanical approaches like musculo-skeletal

systems have been developed (Figure 1). Placing human

measurement and model-based robotic approaches as an

important basis, our challenge is to overcome this difficulty

also by exploiting a powerful machine learning framework to

benefit from a large dataset of human motions.

Consequently, we can take advantage of humanoids’ ability

to interact with the physical world to refine and validate the

model of the motion strategy and controller, as well as digital

actors’ flexibility to change many parameters to simulate and

learn motions with various shapes, dimensions, and physical

models in different environments. Then, we hope to come up

with a system that predicts and synthesizes human motions,

notably motions involving complex contacts, in a variety of

environments. As the cyber-physical human evolves, we

expect it can be utilized to design ergonomic products, create

robots that can support human comfortably by estimating

human intention, and devise a humanoid robot that can

coexist with humans naturally and safely in their proximity.

Table 1 summarizes the state of the art related to contact-rich

whole-body motions in different anthropomorphic systems.

Concerning human motions, we can see that datasets with

measured whole-body contact forces, in addition to

measurements of ground reaction force, are missing. The

human motion network rarely deals with motions involving

contacts. While digital human models are advanced in terms of

surface contacts, their main purpose is to analyze the measured

human motions, and motion synthesis needs to be further

investigated through an understanding of human motion

principles. Whole-body contacts have been intensively

addressed in humanoid motion planning and control in view of

the increasing variation of humanoids’ tasks. However, whole-

body motion with multiple surface contacts has hardly been

studied for humanoid robots, limiting the variety of their motions.

FIGURE 1
Platform of interactive cyber-physical human (iCPH) for investigation of contact-rich whole-body motion of anthropomorphic systems.
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As can be seen, motions of anthropomorphic systems with

complex contacts, especially surface contacts, need deeper

research combining all the aspects in the table. It is important

to unify complementarily the insights from data collection with

contact-rich human motions, modeling of a strategy for human

motion synthesis with a digital twin, and planning and control

methods for humanoid whole-body contact motions. This is the

motivation of the proposed cross-platform research using a

cyber-physical human framework in Figure 1, and as there are

still a lot to carry out in this research perspective,

interdisciplinary synergy from different communities is highly

expected. This table will be revisited later in the next section.

One critical question that arises when creating such a cyber-

physical human framework is how to deal with the physical

difference between humans and humanoids. While they are

indeed very different in many aspects like physical properties,

link and actuator mechanisms, and contacts, they have a

common anthropomorphic structure, which we identified as

TABLE 1 Related works on contact-rich whole-body motions by cyber-physical humans. The mark “NA” means the item is not applicable to the
category.

Category Reference WB motion WB contacts: detect (D) and force (F)

Analysis/input Synthesis Point Surface

Human motion Measured data CMU ✓MoCap NA ✓D Estimated ✓ D Estimated

AMASS ✓Integrated NA

BEHAVE ✓RBGD camera NA

RICH ✓RGBD camera NA

HuMoD ✓MoCap NA ✓F Foot force plates

MMM ✓MoCap NA ✓F Measured some

Network Motion Graph ✓ ✓Replay ✓D Classified

Motion Net ✓Feedforward
Loco-manip ✓Classified
Taxonomy

HO-GCN ✓MoCap ✓F Estimated

Crystal Ball ✓Symbol learned

Digital human 3D mesh Dhaiba ✓ ✓Inverse Dyn ✓F Estimated ✓F Estimated

THUMS ✓
Mass-Spring ✓ ✓F Estimated

MS model SIMM ✓ ✓F Estimated

AnyBody ✓ ✓F Estimated

Realtime MS ✓ ✓F Estimated

Humanoid motion Planning/ trajectory HRP-4 NA ✓Retargeting ✓F Retargeting

HRP-2 NA ✓Best-first ✓F Predefined

HRP-5P NA ✓Feasible region ✓F Predefined

TORO NA ✓Constrained ✓F Predefined

Two-stage NA ✓Constrained ✓F Automatic
simplified

Control HRP-2 NA ✓Min. torque ✓F Minimization ✓F Interactive upper-body

HRP-5P NA ✓QP static ✓F Minimization

TORO NA ✓QP dynamic ✓F Minimization

Soft Robot (Honda) NA ✓Retargeting

REEM-C
(TUM)

NA ✓Torque resolving ✓F Interactive upper-body
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the starting point. The general descriptor presented later is meant

as one of the elements connecting humanoids and humans. The

main reason why humanoids have difficulty in generating

smooth multi-contact motions like humans is that humanoids

are not as flexible and agile as humans. However, we believe that

the humanoids can learn the general motion strategy for whole-

body planning and control from humans. We are furthermore

motivated to provide humanoids with humans’ intelligence to

naturally select contact points in an unexperienced situation and

move by appropriately managing the contact forces and balance.

We also need to be aware of differences in the physical

property of contacts. Point contacts are mainly considered in

most of the cases for humanoids, whereas humans take advantage

of surface and soft contacts. Therefore, we plan to measure

surface contact forces for humans with distributed tactile skin

sensors (Cheng et al., 2019), which can also be equipped on the

surface of humanoid robots with a flexible covering material.

Since neither human data acquisition nor human whole-body

motion with surface contacts has been addressed, we would like

to fill the gap using this experimental study. Once this basic

underlying human motion mechanism is investigated, we expect

that it can be adapted to humanoids by taking into account the

physical differences. Even though the findings from human

motion analysis unfortunately revealed minor contributions to

humanoid motions as a result, it will be a step forward to

understand the human motion strategy, which is useful for

behavior prediction.

This cyber-physical human framework can be explained by

an analogy with the cyber-physical system for automatic driving.

Experimental data from human drivers are important to model

the driving behavior, but that cannot cover all the cases. Then,

simulations in cyber-space with different parameters or

situations help the design of automatic driving controller to

complement the missing domain of experiments in physical

space. The accuracy of human behavior model can be

improved by comparing the resultant behavior of human and

simulation, in the same way as humanoid robots contribute to

improvements of the simulation model. Once the simulated

driver becomes accurate enough, a lot of control methods can

be tested only in cyber-space. In the case of cyber-physical

human, one of the challenges is to establish the general

motion strategy that allows synthesizing whole-body contact

motions in unexperienced environments. Similarly, an

automatic driving controller may have to cope with many

unexpected situations while driving among full of pedestrians

or close to an ambulance. The necessity of learning to obtain such

a higher-level strategy in the cyber-physical system can be

understood in this analogical discussion.

This article is to introduce challenges and stimulate

discussion leading to collaborations rather than reporting

obtained results. After overviewing the challenges to be

tackled using the iCPH platform in Section 2, they are

addressed in detail as scientific problems related to contact-

rich motion understanding and synthesis in Section 3: Generic

descriptor of contact motion (3.1), Continual learning of the

contact motion network (3.2), and Optimization, prediction, and

synthesis through symbolization (3.3). Possible applications and

summary are provided in Section 4.

2 Challenges for contact-rich
motions through iCPH

The basic question comes from lack of a generic methodology

for the analysis or prediction of anthropomorphic motion

involving complex contacts. Since an anthropomorphic system

is not fixed, it moves itself and other objects through contacts

with its environments. In our daily life, we naturally do such

motions as “setting on a chair by placing hands on the table,”

“pushing a cart carrying heavy object,” or “going through a

narrow space by supporting contacts between body parts and

handrail or walls.” Recently, humanoid robots have achieved

multi-contact motions in complex environments with robots

HRP-2 (Lengagne et al., 2013), TORO (Henze et al., 2016),

and HRP-5P (Kumagai et al., 2021). While they propose

sophisticated planning methods and control strategies,

multiple surface contacts are out of their scope. Recently,

humanoid robots covered with tactile skins to recognize

surface contacts (Cheng et al., 2019; Kaplish and Yamane,

2019) have been developed and demonstrated their high

interactivity with humans, with possible future developments

towards whole-body (see Table 1).

Human motion analysis has also made progress, leading to

musculo-skeletal analysis allowing to estimate activities of

hundreds of muscles (Nakamura et al., 2005; Ayusawa and

Nakamura, 2012), as well as some commercial products such

as SIMM and AnyBody (Nunes et al., 2015). Simulation tools

with digital human models like Dhaiba (Endo et al., 2014) and

THUMS (Iwamoto et al., 2002) integrate contact models to

simulate products with the dynamic reaction of the human

body. They can simulate passive behaviors of humans in case

of surface contacts (Yoshiyasu et al., 2015) using a mass-spring

model. However, the contact sequence is planned or annotated

usually manually based on experiences. On the other hand,

especially in the computer vision and graphics field, many

datasets incorporating contacts are available, for example,

BEHAVE (Bhatnagar et al., 2022), RICH (Huang et al., 2022),

HuMoD (Wojtusch and von Stryk, 2015), and MMM (Mandery

et al., 2016). While they are very useful to broaden the range of

motion creation for animation or digital human, data with

contact forces need to be reinforced, and their physical

plausibility is to be improved for robotic motion generation yet.

The motion with a known contact sequence can be predicted

using a model-based approach. In contrast, we need to solve an
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inverse problem for a humanoid robot or digital actor in order to

generate whole-body motions involving multiple contacts to

achieve a given task in a complex environment, which is very

difficult to solve. The main difficulty comes from the fact that

discrete changes in contact constraints are applied to dynamic

continuous motions, making the possibility of combinedmotions

increase exponentially. In order to generate motions that do not

fail, we should carefully design the contact sequence and force

distribution from these practically infinite possibilities, by

considering the feasibility by a whole-body dynamic

controller. Due to this high complexity, this problem remains

open even with the advanced machine learning technology.

We believe an important key to this challenge of the inverse

problem is a data-driven approach that makes use of human

motions that are known to be feasible. Consequently, the motion

capacity of robots to cope with complex environments can be

drastically extended to execute various tasks. Nevertheless, the

data on anthropomorphic contact-rich motions are still

unavailable as the methodology for collection of such data has

not been well established yet. We therefore need to build up this

integrated iCPH platform for data acquisition, together with a

new comprehensive data-driven theoretical framework for

understanding and synthesizing anthropomorphic contact-rich

motions, to go beyond the conventional methods by unifying

both model-based and machine learning methodologies.

We have identified mainly three challenges, as illustrated in

Figure 2. The first important element we recognized for this

unified theoretical framework is a common generic description of

contact motions for anthropomorphic systems. We will first

discuss how this descriptor should be devised so that it can

express contact motions both in a compact and generic manner

with minimum parameters and constraints. Combining this

descriptor with a dynamic equation, different contact motions

can be written in a standardized way.

On this basis, we tackle the second challenge of learning a

network of feasible contact motions. Instead of trying to learn the

behavior of the entire system, including the dynamic model, the

control strategy of measured human motions is abstracted by

applying inverse optimal control (Mombaur et al., 2010;

Carreno-Medrano et al., 2019; Ishida et al., 2021) and

analytical gradient computation (Ayusawa and Yoshida, 2018).

The resultant estimated cost function is used in combination with

the descriptor to characterize contact motions. This pair of cost

function and descriptor corresponds to a feasible transition from

one contact state to another as shown in Figure 2. Recently,

research studies have been very actively made on learning robotic

manipulation by deep learning (Gu et al., 2017; Yang et al., 2017).

Its application to whole-body contact motions by

anthropomorphic systems, however, is still a difficult problem

due to its high dimensionality and complexity. In contrast, in our

proposed framework, the merit of machine learning can be

effectively exploited to learn the network of feasible contact

motions since the descriptor already has a compact form with

a reduced dimension. In the computer graphics area, usage of the

large-scale human motion database mentioned previously has

been addressed for the synthesis of natural human-like motions

FIGURE 2
Three main challenges addressed in this article based on the iCPH platform: (1) general dynamics description of contact motions, (2) learning
the contact motion network, and (3) building motion symbols.
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as a motion network (Holden et al., 2016), Motion Graphs

(Kovar et al., 2008), and for classification of contact motions

toward taxonomy of loco-manipulation (Borras and Asfour,

2015) and prediction of object manipulation by HO-GCN

(Wan et al., 2022). They provide an advanced insight into

natural human motions but concerning whole-body motions

of humans or humanoid robots involving complex contacts, they

are out of scope of those studies and the related datasets

themselves are not widely available yet.

Finally, toward prediction and automatic synthesis of contact

motions, we aim at higher abstraction by symbolizing them

through vector quantization (VQ) learning. Symbolic

understanding has been addressed based on probabilistic

methods like the hidden Markov model (HMM) in their

Crystal Ball system (Takano and Nakamura, 2015), but the

high-level expression of contact motions is still challenging

due to its complexity. At the end of this article, some possible

applications that can arise from the outcome of this research are

also discussed.

3 Data-driven whole-body contact
motion synthesis

Figure 3 depicts how the proposed framework is related to

existing research including ours and also expected outcomes.

Based on a general description of contact motions, a model-based

approach such as inverse optimal control is used to estimate cost

function. As presented later, analytical gradient computation

(Ayusawa and Yoshida, 2018) serves as a bridging block

unifying model-based and learning methods in a

complementary manner to enable continual learning of

contact motions without embedding the model itself in

learning. VQ learning further pushes the abstract

understanding forward to create high-level symbols toward

automatic annotation or synthesis of contact motions in

unexperienced situations.

3.1 Generic descriptor of contact motion

The main objective of defining the descriptor is to represent

discrete changes of contact constraints for continuous motions in

a generic manner, without excessive simplification losing

essential properties (Figure 4).

We are still investigating this general description, but we have

derived the following specifications based on our experience. The

descriptor shall first include attribute parameters that express the

shape and structure with respect to the body coordinate

(Yoshiyasu et al., 2014; Yoshiyasu et al., 2019) accompanied

with various contacts on points or surfaces. Then, a contact

sequence can be formulated together with the temporal

transition, including additions and removals of inequality

constraints, corresponding to force distribution to multiple

contacts. The resultant motion of the contact-rich

anthropomorphic system can be described in a compact

standard form as a combination of a dynamic differential

equation and the contact transition.

FIGURE 3
Current technologies (noted in italics) to tackle the challenges and expected outcomes of this research. The analytical gradient bridges the
model-based approach and machine learning to obtain the contact motion network. Symbolic representation is obtained based on vector
quantization (VQ) learning for high-level automatic understanding and synthesis of contact motions instead of manual annotation and planning.
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3.2 Continual learning of the contact
motion network

The schematic view of contact network learning is illustrated

in Figure 5. Dimension reduction of the problem can be achieved

by describing the contact motions by the dynamic differential

equation where the joint trajectory is expressed with a small

number of parameters like B-spline, together with the transition

of contacts described by representative points and forces with

certain approximation precision. When optimal control is

applied with a given cost function, the anthropomorphic

system generates a motion to transit to the desired status of

its body and contacts. During this process, the gradient of the cost

function and constraints should be computed. The

aforementioned analytical gradient computation (Ayusawa

and Yoshida, 2018) allows efficiently computing the derivative

of a cost function composed of various physical quantities with

respect to the variance of the trajectory in motion optimization,

which was difficult with conventional numerical differentiation.

The generic description introduced previously helps to formulate

the dynamic motion in a standardized form.

We are interested in identifying the cost function of human

motions and then utilizing it for humanoid motion synthesis.

Inverse optimal control (Mombaur et al., 2010; Ishida et al., 2021)

has been applied to estimate the cost function under the

hypothesis of humans make their motions by optimizing some

criteria. The usual approach is to derive the weights of some

known physical quantities such as energy, sum of joint torques,

change rate of motion, velocity, or acceleration (Carreno-

Medrano et al., 2019), as well as additional criteria related to

contact forces. By applying inverse optimal control integrated

with this analytical gradient to the measured contact motions, the

basis of cost functions and their weights in optimization is

estimated. These are considered to be highly abstract feature

values characterizing the motion.

To this end, the cost functions have been extracted that

generate motions from one contact status to another. We next

intend to know how those motions are interrelated. For example,

when moving in a narrow space using hands and back to support

the body, what kind of cost function is needed to move the body

smoothly to the next contact without losing balance? A machine

learning scheme is considered to be a suitable solution as it learns

categories based on differential relationships and has high affinity

with the analytical gradient. It is expected to learn feasible contact

motions efficiently without embedding with the known dynamic

equation in the learning system itself. In this way, the network of

a pair of constraints and cost functions generating contact

motions without failure can be extracted from huge data

through unsupervised learning. Moreover, with continual

learning, such a network is expected to evolve in a sustainable

way to cover wider contact motions with increasing data.

The resultant network represents how to transit from one

contact state to another successfully and can be utilized as a

database that is not just a set of independent motion data but also

includes interrelation between them. It can be further enriched as

a variable database according to different body parameters

FIGURE 5
Continual learning of the contact motion network unifying
model-based and machine learning approaches. Cost function of
contact motion is first identified based on efficient inverse
optimization benefiting from analytical gradient
computation. By the abstract expression of contact motion with
the combination of generic dynamics description and cost
function, interrelation of the contact sequence can be learned
without embedding known dynamic models.

FIGURE 4
Generic descriptor of anthropomorphic contact motions,
including body and environment models, motion parameters,
contact constraints, and their sequences. This compact expression
allows the standard expression for the upcoming learning.
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through data augmentation using motion retargeting (Di Fava

et al., 2016; Ayusawa and Yoshida, 2017) between different

bodies and also dynamic simulations under different

conditions. This network will be exploited for symbolization

presented in the following section.

3.3Optimization, prediction, and synthesis
through symbolization

This stage applies modified “vector quantization (VQ)”

learning to the obtained network to get symbols as higher-level

feature values. The expected benefit here is composing a kind

of a language system of interrelated various contact motions to

be able to generate optimal motions in unexperienced

environments. Among several methods, VQ-VAE (Vector-

Quantized Variational AutoEncoder) (van den Oord et al.,

2017; Razavi et al., 2019) is one of the methods that possess

high abstraction ability. The network learned previously

expresses the transition of contact motions as the temporal

sequence of the pair of constrained dynamics and estimated

cost functions. Application of model-predictive control

provides guidelines of a control strategy to reach the target

state by utilizing the relationship between them in this

network. The VQ-VAE is adapted in such a way that it can

automatically identify discrete labels that consist of a variety

of contact motions corresponding to those abstract control

strategies. In our preliminary experiments (Sakai et al., 2021),

we applied the VQ-VAE framework to Japanese “kendo”

practice motion with a bamboo sword. As a result, this

combined movement can be encoded with only two states

to reproduce closely learned motion by decoding. Then, we

can attribute to those states some symbols like “swing

practice.”

We can benefit from our recent promising results of

classification and labeling of human motions. Those discrete

labels can be organized as “symbol” forming a language system

that allows a high-level representation of various contact

motions. In previous research (Takano et al., 2015; Takano

and Nakamura, 2015), the HMM-based model learned

motions such as “walking,” “nodding,” or “jumping,” but

adding contacts made the problem intractable due to

complexity as this method is already computationally

intensive. By applying the vector quantization method to a

subset of sequences in the learned network, also by taking

advantage of analytical computation in 3.2, we expect to

encode it with a small number of states to describe the

motion sequence, like “sit on or stand up from a chair,” “pull

a drawer,” or “climb a ladder.” The related study of taxonomy

(Borras and Asfour, 2015) can also be utilized to organize those

symbols.

Thanks to its flexibility of combining elementary labels, this

symbol system has a potential to synthesize a wide variety of

optimal contact motions ranging from simple walking to

complex ones such as multi-contact motions in confined

spaces, pushing a cart with heavy objects or whole-

body object holding and dual-arm tool usage as shown in

Figure 6.

This symbolic system facilitates planning of contact

motions by using high-level commands by decoding

symbols into optimal anthropomorphic whole-body

motions in given environments, independent of body

property parameters that are embedded in the general

descriptor. The contact motion network and symbolized

system together enable prediction of future motion

outcomes in the range of several hundreds of milliseconds

up to seconds, so as to deal with unexperienced environments.

We expect to apply this basic technique to contact motion

planning and online adaptation, as well as automatic

annotation of complex contact motions.

4 Possible applications and article
summary

The established framework of data-driven synthesis of whole-

body anthropomorphic contact motions is planned to be applied

to various application areas, especially to automate manual tasks

dependent on experienced experts, such as planning of contact

transition and force distribution or contact annotation of

measured human motions. Feedback from real-world tasks

allows finding unaddressed conditions and issues to fill the gap

between physical and cyber-space and thus make the proposed

FIGURE 6
Symbolization of contact motions through VQ learning.
Control strategies that are obtained from the network by model
predictive control are encoded into high-level symbols. The
optimal contact sequence for a given goal state is
automatically synthesized using the symbols and decoded back to
a whole-body contact motion.
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framework even more robust. The possible applications include

the following, as shown in Figure 7.

(a) Online planning whole-body motion of a humanoid robot

allowing to manipulate a heavy object (Murooka et al., 2021)

or to execute tasks requiring uncomfortable posture in

confined spaces, often can be seen in large-scale assembly

in construction of airplanes (Kheddar et al., 2019), ships, or

buildings.

(b) A monitoring system visualizing and anticipating physical

workload of workers to prevent work-related diseases

through musculo-skeletal analysis based on sensor

information collected from embedded devices in clothes,

for heavy-duty tasks in factories or in other industries.

(c) Assistive robots in a factory or caregiving scenario that can

offer anticipatory physical support to operators and workers

in charge of assembly tasks or patient transfer, by

symbolically recognizing and predicting those whole-body

contact-rich motions.

(d) Human–robot collaborative task execution such as large

equipment installation or object transporting with an

avatar robot whose contact sensing is shared with remote

operators in telepresence virtual space.

This article on the research perspective discussed the

challenges of data-driven understanding and synthesis of

whole-body anthropomorphic motions involving frequent

contacts. After introducing a general descriptor of contact

motions, model-based analysis and machine learning are

jointly utilized for continual learning of a network of feasible

contact motions, thanks to the analytical gradient computation

method. A symbolic language-like system is then derived by

vector quantization learning that is capable of automatic

synthesis and understanding of optimal contact motions.

The challenges are still under investigation in the project the

author is leading, expecting to trigger interdisciplinary

collaboration and report the upcoming results in future

publications.
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