
A review of the applications of
multi-agent reinforcement
learning in smart factories

Fouad Bahrpeyma* and Dirk Reichelt

Smart Production Systems, HTW Dresden, Dresden, Germany

The smart factory is at the heart of Industry 4.0 and is the new paradigm for

establishing advanced manufacturing systems and realizing modern

manufacturing objectives such as mass customization, automation,

efficiency, and self-organization all at once. Such manufacturing systems,

however, are characterized by dynamic and complex environments where a

large number of decisions should be made for smart components such as

production machines and the material handling system in a real-time and

optimal manner. AI offers key intelligent control approaches in order to

realize efficiency, agility, and automation all at once. One of the most

challenging problems faced in this regard is uncertainty, meaning that due

to the dynamic nature of the smart manufacturing environments, sudden seen

or unseen events occur that should be handled in real-time. Due to the

complexity and high-dimensionality of smart factories, it is not possible to

predict all the possible events or prepare appropriate scenarios to respond.

Reinforcement learning is an AI technique that provides the intelligent control

processes needed to deal with such uncertainties. Due to the distributed nature

of smart factories and the presence of multiple decision-making components,

multi-agent reinforcement learning (MARL) should be incorporated instead of

single-agent reinforcement learning (SARL), which, due to the complexities

involved in the development process, has attracted less attention. In this

research, we will review the literature on the applications of MARL to tasks

within a smart factory and then demonstrate a mapping connecting smart

factory attributes to the equivalent MARL features, based on which we suggest

MARL to be one of the most effective approaches for implementing the control

mechanism for smart factories.

KEYWORDS

Industry 4.0, multi-agent reinforcement learning, smart factory, smart manufacturing,
smart production systems, reinforcement learning, Artificial Intelligence

1 Introduction

As the market becomes more dynamic and complex and the global demand for small-

batch, short-life products increases, manufacturing systems are facing more dynamic and

complex environments. A smart factory, as the heart of Industry 4.0, is envisioned as a

fully automated flexible manufacturing system consisting of highly connected smart

OPEN ACCESS

EDITED BY

Kostas J. Kyriakopoulos,
National Technical University of Athens,
Greece

REVIEWED BY

Andreas Otto,
Fraunhofer Institute for Machine Tools
and Forming Technology (FHG),
Germany
Helman Stern,
Ben-Gurion University of the Negev,
Israel

*CORRESPONDENCE

Fouad Bahrpeyma,
bahrpeyma@ieee.org

SPECIALTY SECTION

This article was submitted to Robotic
Control Systems,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 24 August 2022
ACCEPTED 08 November 2022
PUBLISHED 01 December 2022

CITATION

Bahrpeyma F and Reichelt D (2022), A
review of the applications of multi-
agent reinforcement learning in
smart factories.
Front. Robot. AI 9:1027340.
doi: 10.3389/frobt.2022.1027340

COPYRIGHT

© 2022 Bahrpeyma and Reichelt. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Review
PUBLISHED 01 December 2022
DOI 10.3389/frobt.2022.1027340

https://www.frontiersin.org/articles/10.3389/frobt.2022.1027340/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.1027340/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.1027340/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.1027340&domain=pdf&date_stamp=2022-12-01
mailto:bahrpeyma@ieee.org
https://doi.org/10.3389/frobt.2022.1027340
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.1027340

components to provide mass customization and short product

life cycles in a cost-effective, agile, and self-organizing manner.

To move toward the realization of the concept of “smart factory”,

manufacturing systems have been incrementally equipped with

advanced enabling technologies such as (Industrial) Internet of

things (I-IoT), cyber-physical systems, artificial intelligence (AI),

cloud manufacturing systems, and big data technologies (Mittal

et al., 2019). Taking these technologies into account as the

backbones and building blocks of a smart factory, the key

role, however, is played by the control mechanism that is

responsible for making fine-grained and coarse-grained

decisions to guarantee the performance of the manufacturing

system. Simple examples of control mechanisms include the

formation of robots, the design of paths between stations, the

scheduling of operations, the management of inventories, the

response to demands, and every decision that needs to be made to

achieve specific goals (Jung et al., 2017). The control mechanism

for smart factories, however, when compared with that of

traditional manufacturing systems, is subject to various

challenges. For the most part, high-level flexibility (required

for smart factories) necessitates fine-grained decisions, thereby

increasing the complexity of the control mechanism as more

variables are introduced. This implies that the development of an

optimal control mechanism will require the consideration of a

larger number of contributing factors in the control equations,

resulting in a longer engineering cycle and more complex

equations. Traditional optimization approaches are often

highly time-consuming and thus cannot be effectively

incorporated to deal with the rapid and dynamic

manufacturing environment in real-time. Furthermore, as

manufacturing systems become larger in scale, the number of

possible situations that need rapid and optimal responses will

increase as well. As difficult as it is to predict all of the possible

scenarios, what is even more challenging is determining the most

effective reaction (real-time and efficient) to each case.

Considering the complexity of this system and the limited

accuracy and abilities of a human engineer, a detailed

investigation of the potential situations and corresponding

solutions is an extremely burdensome and expensive process.

A smart factory offers a self-organizing solution to these

situations through the incorporation of advanced intelligent

control mechanisms, in which smart components make

optimal decisions pseudo-independently in order to provide

rapidity and can communicate with one another in order to

act jointly toward global performance metrics such as efficiency,

tardiness, and production rate.

According to the majority of the studies in the community

such as Shi et al. (2020), Büchi et al. (2020), and Sjödin et al.

(2018), in practice, realizing the concept of the smart factory in its

full form is not possible without the use of advanced AI

techniques. “Smart” in smart factories refers primarily to the

application of artificial intelligence. AI provides powerful tools

(for analytics and decision-making) for analyzing the vast

amounts of data generated by smart components and for

making optimal decisions. A variety of AI techniques have

been used in the field to enhance automation, rapidity, and

efficiency, such as neural networks (NNs) and their

derivatives such as long short-term memory (LSTM)

(Ozdemir and Koc, 2019; Nwakanma et al., 2021). These

techniques were most commonly used to provide proactive

decisions to pre-allocate optimal resources before the requests

arrived. However, such approaches are limited when dealing with

uncertainties such as machine breakdowns or the insertion of

new jobs. A centralized control mechanism over multi-agent

systems can also result in delays, and there is always a trade-off

between global optimality and rapid response.

In this paper, via conducting a review study on the

applications of MARL to decision-making problems within a

smart factory, we suggest that one of the most effective solutions

to realize self-organization in smart factories in an efficient and

real-time manner can be found via multi-agent reinforcement

learning (MARL), which offers a decentralized solution to

dealing with uncertainty. MARL is an AI technique that

incorporates reinforcement learning (RL) into multi-agent

systems (MASs), where RL automatically finds optimal

solutions to uncertainty through interactions between

intelligent agents and the problem environment. More details

onMARL are provided in Section 3. In order to demonstrate this,

we will review the literature about MARL’s application to smart

factory tasks and then discuss a mapping from smart factory

requirements to MARL capabilities.

Several literature reviews of MARL approaches have been

conducted in recent years, including those by OroojlooyJadid and

Hajinezhad (2019), Nguyen et al. (2020), and Zhang et al. (2021),

which were also used as the basis for this study. However, to the

extent of our knowledge, this is the first study reviewing the

applications of MARL into the smart factory tasks.

The remainder of this paper is organized as follows. In

Section 1, we will describe the methodology, objectives, and

boundaries of this research. Section 2 presents an overview of

the RL andMARL systems. In Section 3, the literature is surveyed

for the application of MARL approaches to tasks within a smart

factory. Section 4 presents our conceptual analysis on the match

between MARL and smart factory attributes. Section 5 provides a

discussion on the concerns, limitations, and potentials of the

applications of MARL to smart factory tasks. Finally, Section 6

concludes this paper and states the gaps and potentials for future

research.

1.1 Research objectives, boundaries, and
methodology

This research seeks to showcase the capabilities that MARL

brings to realizing smart factories. To this end, this paper is

mainly devoted to conducting a review study on the applications

Frontiers in Robotics and AI frontiersin.org02

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

of MARL to the tasks within a smart factory. We will then draw a

mapping from the required characteristics of smart factories to

the corresponding capabilities in MARL. This paper provides

practitioners and researchers in the field with an overall idea of

how to address control problems in smart factories via the use of

MARL. The size limitations of this paper, however, prevent

attention to every detail since the ways of formulating tasks

within the smart factory into MARL problems are extremely

diverse and thus are beyond the scope of this study. In view of the

fact that MARL is relatively new in the field of smart factories,

this paper also discusses situations where RL is applied in

conjunction with multi-agent systems in the relevant field,

while focusing primarily on MARL. We mainly focus on

cooperative approaches. Consequently, for each work, we

briefly summarize the factors that indicate how MARL is

integrated with the corresponding application.

2 Overview of multi-agent
reinforcement learning approaches

This section provides a brief background on MARL. In this

paper, when we refer to MARL, without the loss of generality, we

address the case where RL is applied to or implemented via a

multi-agent system. Therefore, we will consider a broader area

than only the scope of MARL systems in theory. In essence, RL

can be viewed as the most general form of the learning problems.

Contrary to supervised machine learning, the target for an RL

algorithm is a feedback which is partial and almost a delayed

reward (or penalty). Moreover, RL differs from unsupervised

learning, since its primary objective is to maximize reward signals

rather than discover hidden structures within unlabeled data.

Based on Sutton and Barto (1998), the ultimate objective of an RL

system is the maximization of the expected value of the

cumulative sum of a reward (immediate reward) signal. RL is

generally aimed at achieving a long-term goal; therefore, the

reward is back-propagated and discounted by a discount factor,

and the goal is to maximize the discounted cumulative future

rewards at a discounted rate.

RL problems are usually formalized using Markov decision

processes (MDPs). MDPs are the mathematical representations

of RL problems that originate in dynamic systems. The Markov

property implies that all of the relevant information for a decision

is encoded in the state vector st. AnMDP problem is described by

the four-tuple M = [S; A; p; r], where S denotes the environment’s

state space and A denotes the agent’s action space at ∈ A. In st, the
agent performs at in order to move to st+1 and is immediately

rewarded with rt. Additionally, pss represents the probability that

a particular action performed at state st leads to the state st+1
being reached. The uncertainty, however, is represented by a

probability distribution function that indicates whether taking

the action at the state st results in st+1 for the agent. It emphasizes

that the agent’s state transitions are partially influenced by the

agent’s actions. Figure 1 illustrates the agent in an RL problem.

A more realistic version of MDP is the partially observable

MDP (POMDP), wherein, as opposed to MDP, the agent only

obtains a partial observation from the environment, leading to a

higher level of uncertainty. For more details, please see Zhang

et al. (2021).

The most popular RL techniques are Q-learning (QL),

SARSA, and actor–critic (AC), each having variants as a

means to enhance their performances in specific ways. Due to

the limitations of this paper, here, we only briefly describe QL as

the most popular RL technique and refer the reader to

Arulkumaran et al., (2017) for other RL methods. In QL, the

objective is to learn an action selection policy πt (a|s) toward

maximizing the reward. The policy πt (a|s) represents the

probability distribution that at = a if st = s. The Q-function Q:

S × A → R yields the discounted cumulative reward with the

discount factor γ.

Q s, a() � r + γmax
a′

Q s′, a′(). (1)

The QL algorithm is implemented to obtain the best action

value function Q*(s, a), as shown in Eq. 2:

Q* s, a() � max
π

E ∑
t

rtγ
t|st � s, at � a, π⎡⎣ ⎤⎦. (2)

Q-values are updated using Eq. 3, every time an action is

taken.

Qt+1 s, a() � Qt st, at() + α rt+1 + γmax
a

Qt st+1, a() − Qt st, at()().
(3)

With the emergence of deep neural networks (DNNs), the area

of RL was able to address a wider range of applications due to

generalization over past experiences for unseen situations, as

opposed to traditional tabular RL, which was also vulnerable to

the explosion of the state space due to the tabular formulation.

DNNs are able to store values and approximate RL values for

unseen situations. The well-known deep Q-network (DQN) and

various types of ACmethods rely uponDNNs. DNNs are one of the

enabling technologies for MARL, since the extremely large state

space of MARL problems cannot be contained in the tabular form.

FIGURE 1
Agent in loop (Sutton and Barto (1998)).

Frontiers in Robotics and AI frontiersin.org03

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

In MARL, the actions taken by each agent change the

environment and consequently change the perception of the

other agents from the environment (the previous state before

action a was taken is no longer valid, and the state has changed).

This problem is known as non-stationarity.

MARL (Figure 2) incorporates multiple agents that interact

with one another and with the environment. In accordance with

the objectives of the application, this interaction may be

cooperative, competitive, or mixed. This research focuses

primarily on cooperative MARL, where the agents cooperate

to maximize a common global reward while trying to maximize

their own local rewards.

In the multi-agent setting, the generalization of MDP is the

stochastic game. Based on Buşoniu et al. (2010), a stochastic

game is described via a tuple (X,U1, . . .,Un, f, ρ1, . . ., ρn), where n

denotes the number of agents; X is the environment state space;

and Ui, i = 1, . . ., n represents the agents’ action space, leading to

a joint action set U = U1 ×···× Un. The state transition probability

function is defined as f: X ×U × X → [0, 1], and the rewards for

the agents are ρi: X ×U × X → R, i = 1, . . ., n.

The state transitions in the multi-agent case result from the

joint actions of the agents at step k, uk �
[uT1,k, . . . , uTn,k]T, uk ∈ U , ui,k ∈ Ui.

The transpose of a vector is indicated by T. The joint policy

hi: X × Ui → [0, 1] represents all the policies. The joint action

leads to the reward ri,k+1, and thus, the returns also depend on the

joint policy.

Rh
i x() � E ∑∞

k�0
γkri,k+1|x0 � x, h

⎧⎨⎩ ⎫⎬⎭. (4)

MARL is mainly formalized via multi-agent (PO)MDP or

decentralized (PO)MDP, which are referred to as M(PO)MDP

and Dec-(PO)MDP, respectively. Depending on the application,

the problem formulation may vary significantly, and thus, we

refer the reader to Buşoniu et al. (2010) and Zhang et al. (2021)

for more details and for the formal definition of MARL.

A variety of cooperative MARL approaches have been

presented in the literature. The most famous methods are

independent action learners (IALs), joint action learners

(JALs), team-Q, distributed Q, distributed AC,

communication-based, and network-based methods such as

QMIX. Please see Zhang et al. (2021) for more details. We

briefly describe some of the most popular MARL methods here.

IAL: Such as independent Q-learning (IQL), wherein agents

take actions independently and only interact with each other

through the environment. IAL methods incorporate RL

individually and assume the other agents are part of the

environment. These approaches, if not containing the impact

of agents on each other, are subject to the problem of non-

stationarity.

JAL (Figure 3): Agents take (and learn the value of) joint

actions to avoid non-stationarity. The most concerning challenge

is, however, the credit assignment problem (identifying the

agents’ individual share of the reward). In many cases,

however, some agents become lazy in the team play because

FIGURE 2
Agents in a multi-agent reinforcement learning (MARL)
environment

FIGURE 3
JAL (Nowé et al. (2012)).

FIGURE 4
QMIX (Rashid et al. (2018)).

Frontiers in Robotics and AI frontiersin.org04

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

they do not identify their contribution to the global reward. In

addition, the exploration strategy is difficult to design for JAL

approaches since the joint action space for JAL is much larger

than that of IAL.

QMIX (Figure 4): QMIX serves as a representative value

decomposition technique and works based on the principles of

centralized training decentralized execution (CTDE). QMIX is

primarily dependent on the mixing network to deal with the

credit assignment problem. The mixing network receives the

outputs of the individual agents’Q-networksQa (Ta, ua) to assign

the individuals the credits and approximate the global Q-value

Qtot (T, u, s; θ). QMIX guarantees the individual-global

maximum (IGM) principle, meaning that optimal local

decisions jointly lead to the optimal joint decision for Qtot.

argmax
u

Qtot τ, u, s() �
argmax

u1
Q1 τ1, u1()
.
.

argmax
un

Qn τn, un()

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

This enables the agents to take optimal local actions based on

their local policies, while the joint action is also optimal for the

entire system.

MADDPG (Figure 5): Multi-agent DDPG suggests the

association of each agent with a separate pair of actors and

critics, training the critics centrally, and only using the actors

during execution. Actors are trained by local state–action data,

while critics receive training through the global state–action

context.

3 Applications

There are various tasks within a smart factory that can be

formulated as MARL problems, among which scheduling and

transportation are of the highest popularity, while the literature

has also paid attention to maintenance, energy management, and

human–robot collaboration. In this paper, the emphasis is

primarily placed on scheduling and transportation due to the

large number of existing publications; other applications, due to

limited attention in the literature, are discussed selectively to

complete the study.

3.1 Scheduling

In the relevant literature, the job-shop scheduling problem

(JSSP) and its variants have been extensively incorporated as

abstractions of the manufacturing environment and smart

manufacturing systems. Due to the JSSP’s NP-hard nature,

only local optimal solutions can be obtained, which makes it

difficult to address under multi-agent settings. Due to the

complexity associated with developing such scheduling

systems in dynamic environments such as smart factories, the

use of self-adaptive and self-learning approaches in this regard

has recently gained a great deal of attention from practitioners.

MARL approaches offer varieties of advantages for developing

such systems due to their effectiveness in dealing with

uncertainties such as breakdowns and new job insertions.

We can categorize the related works concerning scheduling

into centralized and decentralized classes.

3.1.1 Centralized approaches
Centralized approaches consider a central controller that

manages collaborations between agents, and as a result, this

might lead to delayed decisions and an increase in

computational complexity.

Gabel and Riedmiller (2008) proposed a tabular multi-agent

QL approach for addressing dynamic scheduling problems in

which unexpected events may occur, such as the arrival of new

tasks or the breakdown of equipment, which would require

frequent re-planning. Machine agents perform scheduling

decisions based on local observations. A simple joint action

selection method is used with tabular QL to provide reactive

scheduling policies for dynamic scheduling environments.

Wang and Yan (2016) proposed a tabular multi-agent QL

approach with joint action learners for adaptive assembly

scheduling in an aero-engine manufacturing system. The

authors use clustering to reduce the size of state space and

assign fuzzy memberships to observations to link them to the

states.

Sultana et al. (2020) proposed amulti-agent A2C approach to

supply and chain management for multi-inventory systems in

smart factories. The main goal of this work is to minimize under-

stocking and over-stocking, where both impose negative impacts

on the whole system. The warehouse is responsible for supplying

multiple stores, which face requests for different types of

products. This case is also linked to the smart factory concept,

where, due to the mass customization feature of smart factories,

FIGURE 5
MA-DDPG (Lowe et al. (2017)).

Frontiers in Robotics and AI frontiersin.org05

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

demands can be submitted to any sub-factories, and thus, the

product parts are collected from the corresponding store (that is

placed inside or near the intended sub-factory). This work

considers two types of agents: the warehouse and store agents.

They both contribute to the accumulative reward and are trained

via an A2C algorithm. The state vectors for both the warehouse

and store agents consist of the demand forecast to further

enhance the performance. The process of training is initiated

by training the store agents independently with the full

availability of stocks in the warehouse and then by training

the warehouse agent based on the model obtained for the

store agents. At the final step, the data are used to further

train all the agents together for performance improvement.

However, this work is more on the side of hierarchical

reinforcement learning (HRL), and concerns such as non-

stationarity have not been discussed and studied.

Luo et al. (2021a) presented a hierarchical RL (HRL)

approach with two hierarchies for production scheduling in

order to minimize the total tardiness and the average machine

utilization rate. The paper uses a high-level DDQN agent to

determine the global optimization goal, and a low-level DDQN is

responsible for selecting appropriate dispatching rules. However,

the use of a high-level controller agent in HRL approaches

increases the depth of the RL problem and thus reduces the

chance of convergence of the learning process.

Luo et al. (2021b) developed a hierarchical multi-agent

proximal policy optimization (HMAPPO) approach as a

means of dealing with the dynamic multi-objective flexible

job-shop scheduling problem, where some operations are

subject to the no-wait constraint. The method incorporates

three types of agents, including the objective agent (as the

controller), the job agent, and the machine agent (as the local

actuators). The object agent periodically specifies temporary

optimization objectives, the job agent chooses the job selection

rule, and the machine agent chooses the machine assignment

rules for the corresponding temporary objectives. With HRL, this

method conducts learning at different levels of abstraction,

whereby the high-level controller (the objective agent) learns

policies over high-level objectives at a slow pace, while the lower-

level actuators (job and machine agents) learn policies over low-

level actions that meet the real-time constraints and goals. This

means that some jobs should be continuously processed without

interruption. However, with HRL, the architecture is not fully

decentralized, as there should be a high-level controller at the

top. It is also important to note that HRL approaches cannot

guarantee the optimality of the overall aggregate policy of

multiple agents.

3.1.2 Decentralized approaches
As opposed to centralized approaches, decentralized

methods are not characterized by a central control mechanism

to manage agents toward their tasks. Decentralized approaches

allow for agile decisions and a reduction in the overall

computational complexities resulting from the elimination of

the need for a central controller.

Qu et al. (2016) developed a two-agent Markov game

approach based on QL to realize real-time cooperation

between machines (scheduling) and the workforce (human

resource management agents). This work aims to obtain an

appropriate performance both for the scheduling agent and

the human resource management agent for handling multi-

process operations associated with different products in the

dynamically changing environment of manufacturing systems.

Bouazza et al. (2017) presented a distributed QL approach for

production scheduling that considers products as intelligent

agents (which perform independently without a centralized

control) and that intends to highlight the significant impact of

considering the contribution of setup time (which is mainly

neglected) in decision-making on the overall performance.

Intelligent product agents can decompose decision-making

into the choice of the machine selection rule and the selection

of the dispatching rule. However, although agents each has

impacts on the environment, this work fails to indicate the

common impact of the decisions made by the agents toward

the environment and toward each other.

Wang et al. (2017) developed a tabular multi-agent QL

approach for dynamic flow-shop scheduling in manufacturing

systems. Machine agents learn to make independent dispatching

decisions simultaneously, regarding the expectations from other

agents to deal with the changing environment. The proposed

method showed superiority over first-in-first-out (FIFO), earliest

due date (EDD), and shortest processing time (SPT) with respect

to the mean flow time, mean lateness, and percentage of late jobs.

In Hong and Lee (2018), the authors used an asynchronous

advantage actor–critic (A3C) to schedule some robotic arms for

cluster cleaning in the semiconductor factory. The learning

occurs in a two-stage process. In the first stage, the learning is

carried out for the robot agent’s action selection policy πarm (aR|

st = s; θarm), and in the second stage, the policy πi,j (ai,j|st = s,

aarm = aR; θi,j) is learned for deciding the start time of the cleaning

operation in the jth chamber at the ith processing step. In order to

perform MARL without dealing with non-stationarity, they used

A3C, which enables learning in multiple parallel environments in

an asynchronous manner.

In Waschneck et al. (2018a) (and also the extended

experiments in Waschneck et al. (2018b)), the authors

presented a multi-agent DQN approach for production

scheduling in the semiconductor industry in an attempt to

address re-entrant production flows and sequence-dependent

setups. This work assigns agents to production stages and assigns

jobs to a single machine in each stage. In an attempt to enhance

stability, while all agents are trained independently, they use the

DQNs of the other agents for the remainder of the work centers.

While the environment is controlled under the influence of all the

DQN agents associated with the agents, in order to deal with

non-stationarity, only one agent trains its DQN actively at a time.

Frontiers in Robotics and AI frontiersin.org06

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

The active agent considers the actions of the other agents during

its training process. Due to the fact that all the agents strive

toward maximizing a single global reward, the entire process can

be described as cooperative reinforcement learning. The training

process, in this work, comprises two phases. During the first

phase, only one DQN agent is trained (separately repeated for

each agent), while the rest are controlled using heuristics. The

second phase consists of all work centers being controlled by

DQN agents, while agents are trained in turn for a limited

amount of time. The experiments indicate that the proposed

method outperforms some dispatching heuristics. This work,

however, appears to be incapable of handling changes in

production requirements and the number of machines since

the network must be retrained each time such changes are made.

Wang et al. (2018) proposed the concept of shared cognition

via the use of a tabular multiple-agent QL to deal with

disturbances in manufacturing cells. When disturbances occur,

the corresponding agent distributes the information, and the

agents share their cognition to raise the occurrence of a

disturbance (a solution for that). Agents each incorporate a

tabular QL model to learn the appropriate dynamic

scheduling strategy without causing conflicts. The use of

shared cognition provides the manufacturing cells with the

ability to communicate and to distribute disturbed jobs to the

appropriate cells in order to avoid conflicting with the quality of

the service.

Motivated by the approach presented by Waschneck et al.

(2018a), another multi-agent DQN-based approach was

presented in Park et al. (2019) for production scheduling in

semiconductor manufacturing systems. Regarding Waschneck

et al. (2018a), the main objective in this work was to resolve issues

with training the DQN agents in dealing with the scheduling

problem under variable production requirements, such as a

variable number of machines and a variable initial setup

status. This work incorporates a shared DQN (presented in

Foerster et al. (2016)) to improve the scheduling performance

when dealing with variable production settings, especially the

number of machines and the initial setup status. This approach,

similar to Waschneck et al. (2018a), has two main phases. In the

training phase, the production scheduling problem is practiced in

an episodic manner via simulation. A double QL setting is

incorporated, where a target DQN is used and updated

periodically to resolve the stability issues encountered in the

traditional DQN approach. Additionally, experience replay is

considered to improve sample efficiency. In the second phase, the

trained DQNs make appropriate scheduling decisions, even in

unseen cases where some production parameters such as the

number of machines and the initial setup times were not faced in

the training phase.

Qu et al. (2019) developed a multi-agent AC approach for

production scheduling that incorporates experts to guide the

exploration of agents in order to improve the convergence of the

distributed dynamic scheduling process in manufacturing

systems. By following expert advice rather than randomly

exploring the environment, the agents will be able to make

more informed decisions at the start, leading to an increase in

the speed of convergence. Agents select experts who perform

better in the scheduling environment, observe their actions, and

learn a scheduling policy from their demonstrations.

In Kim et al. (2020), the authors presented a multi-agent

DQN-based approach that can learn from the dynamic

environment and make better decisions regarding the

allocation of jobs and the prioritization of tasks for mass

customization. The DQN-based agents corresponding to

different manufacturing components evaluate job priorities

and schedule them via negotiation while continuously

learning to improve their decision-making performance.

The framework consists of three layers (enterprise, cloud,

and machine layers). There is one enterprise agent (EA)

associated with the enterprise layer and two agents associated

with the cloud layer, namely, the database agent (DA) and the

simulation agent (SA). The machine layer accommodates six

types of intelligent agents, including job agents (JAs), negotiation

agents (NAs), job weight learning agents (WLAs), job dropout

learning agents (DRLAs), job dismiss learning agents (DMLAs),

and execution agents (EXAs). These agents interact and

cooperate to realize the following five types of functionalities:

information sharing (via EA, DA, and SA), job index calculation

(via JA), negotiation (via NA), learning (via WLA, SRLA, and

DMLA), and execution (via EXA). This work is primarily

centered on the use of RL for negotiation learning to realize

communications between the agents in order to save the setup

process. In this process, if the sum of the setup and performance

times of incorporating more machines causes a longer job

completion time than those of doing the job using fewer

machines, negotiations will lead the scheduling process to use

fewer machines. Figure 6 illustrates the architecture of the smart

factory.

Liu et al. (2020) presented a parallel training mechanism

under multi-agent settings by using a deep deterministic policy

gradient (DDPG) approach and asynchronous updates in an

effort to address the potential sources of uncertainty, such as

machine breakdowns and unexpected incoming orders. In this

work, machines are agents, and the state space includes a

processing time matrix, a binary matrix of the jobs assigned

to agents, and a binary matrix of completed jobs. These matrices

are then used as inputs to a convolutional neural network (CNN),

which is similar to the use of CNNs for RGB image processing

tasks. The action space is limited to a choice among a set of

dispatching rules, such as SPT and FIFO. Additionally, the

reward is defined as a function of the process time of the

selected job, the remaining process time of the job, and the

comparison of the smallest makespan. Figure 7 represents the

MARL approach presented in this work.

This work incorporates a global network that updates

parameters based on the aggregate gradient of the exploring

Frontiers in Robotics and AI frontiersin.org07

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

agents, and the exploring agents copy weights asynchronously

from the global network. To deal with non-stationarity, agents are

deployed in separate and parallel environments, each exploring a

different part of the problem space, so that they cannot affect each

other. Therefore, cooperation between agents under the MARL

settings is established through the global network.

FIGURE 6
Smart factory presented in Kim et al. (2020).

FIGURE 7
MARL method presented in Liu et al. (2020).

Frontiers in Robotics and AI frontiersin.org08

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

Wang (2020) developed a multi-agent weighted QL approach

for adaptive job-shop scheduling. The work incorporates several

agents, including machine, job, state, and buffer agents. These

agents interact with each other to optimize earliness and

tardiness in a dynamic manufacturing environment. This

work uses the tabular QL form and works based on clustered

system states and the degree of difference between the actual state

and the cluster’s representative in order to avoid explosion of the

state space. Actions are taken based on a search algorithm to

obtain the maximum Q at the corresponding state (the cluster’s

representative state). However, a negotiation protocol is used

between the agents upon the receipt of a new job. A number of

shortcomings of this approach can be identified, such as the need

for a long initial exploration phase and the need to select

appropriate parameters (for example, the number of clusters).

Baer et al. (2020) presented a multi-agent DQN that uses

independent action learners through parameter sharing and an

experience replay memory. Agents learn in turn, while the rest

are fixed. Agents each incorporate a DQN with an input size

equal to the state vector. Each agent consists of one DQN (in the

parameter sharing approach) with an input layer for the length of

the state vector. All scenarios have a fixed job specification and

share an equal local optimization objective.

Dittrich and Fohlmeister (2020) proposed a DQN-based

approach for order scheduling in manufacturing systems for

minimizing the mean cycle time that implements MARL via the

use of both local and global rewards (for achieving cooperation

between agents). The machine agents only collect data, while the

order agents use DQNs to make scheduling decisions. The agents

communicate to exchange information and report statuses. This

work incorporates the principles of CTDE. Local immediate

rewards are given to order agents during the processing of

orders, and global rewards redefine Q-values for a global

DQN when the orders are complete and new orders are to be

initiated. In other words, local DQNs are replaced by the global

DQN when a new order is initiated.

In Denkena et al. (2021), the authors improved the work

presented in Dittrich and Fohlmeister (2020) by incorporating

the agent’s field of view and formulating the problem as a Dec-

POMDP.

Zhou et al. (2021) proposed a smart factory comprising

varieties of components and developed a multi-agent

actor–critic approach for decentralized job scheduling. The

machines each correspond with an actor–critic agent

(enhanced also with target policy and target critic networks),

which can all observe all the states of the other agents (via

communication) in order to deal with the dynamic environment

and also deal with non-stationarity. The architecture of the

MARL approach for this work is illustrated in Figure 8. The

schedulers or the actors in this paper are called the scheduling

policy network, and they each schedule their next operation

based on the states of the other machine. Thus, they make fully

informed decisions.

Pol et al. (2021) addressed the challenge of achieving

collaboration between multiple agents in MARL for

scheduling purposes in manufacturing systems when dealing

with objectives such as makespan minimization. The authors

developed a handcrafted empirical logic to quickly estimate a

reference makespan that works based on the sum of all operation

times per job. They proposed a dense local reward augmented by

global reward factors and a sparse global reward to realize

cooperation between agents. Their work is based on DQN and

simply includes other agents’ information in the state space of

each agent to let them make more informed decisions when

dealing with the dynamically changing environment of multiple

agents. Communication is realized implicitly due to the fixed

topology of the manufacturing system, and the DQN is shared

among the agents to simplify the training process. To deal with

the credit assignment problem, training is performed in two

phases, that is, first with local rewards and then retaining with the

local rewards augmented by a global reward factor. In addition,

they proposed the use of sparse rewards given to each agent at the

end of episodes, in place of the global reward, in an effort to

simplify the process of learning to cooperate (by combining

eligibility traces in place of replay memories).

Gankin et al. (2021) presented a multi-agent DQN approach

for minimizing production costs in modular manufacturing

systems. The environment comprises a grid of 5 ×

5 production modules, and AGV units are used to carry

products between the modules. AGV units are modeled as

agents that use a shared DQN (with an experience buffer for

training) to decide where to route jobs, considering the source

module. Agents identify themselves based on their location, which

is used in the state vector. Action filtering is considered via setting

too low Q-values to invalidate actions. This work considers

scheduling and routing simultaneously.

Wang et al. (2022b) incorporated the QMIX algorithm to

develop a MARL approach for scheduling in resource

preemption environments. QMIX works on CTDE, which

provides agents with local and global objectives. QMIX has a

mechanism that encourages the agents to achieve higher global

rewards rather than only focusing on local rewards.

Johnson et al. (2022) proposed a multi-agent DQN approach

for scheduling the assembly jobs that arrive dynamically in a

robotic assembly cell. Their work is based on CTDE, with local

independent agents and limited communications between agents

to reduce communication costs. Agents each correspond to a robot

that distributes jobs over a conveyor belt with a limited window

size to workbenches. This work uses a shared DQN enriched by a

target network to avoid the overestimation problem encountered

with the standard multi-agent DQN architecture. The shared

DQN is fed by properly encoded observation vectors to

distinguish between the agents and equipped with a filter layer

to filter out invalid actions in order to reduce the convergence time.

Gerpott et al. (2022) presented a distributed advantage

actor–critic (A2C) method for production scheduling in two-

Frontiers in Robotics and AI frontiersin.org09

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

stage hybrid flow-shop (THFS) manufacturing systems as an

attempt to minimize the total tardiness and the makespan. This

work uses completely identical scheduling agents that explore

different parts of the problem space and share their gradients

with the critic. This study uses global parameters that are shared

by several agents who explore the environment concurrently. As

a synchronous and deterministic method, A2C waits for each

agent to complete the corresponding portion of experiments and

then performs a global update by taking the average of all

gradients received from the actors. A coordinator is used that

manages the collection of local gradients and passes them to the

global network.Table 1 summarizes the salient attributes of the

reviewed applications of MARL to scheduling tasks within smart

factories. In the table, the terms “Comm”, “Env”, “Col”, and

“Dec” are the shortened forms for “communication quality”,

“environment”, “collaboration method”, and “decentralized

versus centralized management”, respectively. Collaboration

quality represents the way in which collaboration is

established between the agent, which can be through

environment (Env), communication (Comm), parameter

sharing (Param), state sharing (SS), a high-level controller

(HLC), and asynchronous updates (ASUs).

3.2 Transportation and monitoring
(moving agents)

Among the characteristics of smart factories is the large

amount of work performed by autonomous moving devices

serving a variety of functions, including material handling,

monitoring, providing support, and delivering products.

Moving robots such as drones, autonomous guided vehicles

(AGVs), and overhead hoist transporters (OHTs) are able to

move or transport material from one location to another, while

the multi-agent setting imposes issues such as uncertainty.

MARL has also been incorporated to address moving robots

for various functions in smart factories.

3.2.1 Multi-agent pathfinding
Pham et al. (2018) presented a multi-agent QL approach to

UAV coordination for the optimal sensing coverage problem. In

this work, UAVs are used as mobile sensors to provide visual

coverage over a field. Thus, the aim is to coordinate UAVs in such

a way that coverage is maximized and overlaps are minimized. The

UAVs must then cooperate in order to accomplish the stated

objective. A game-theoretical correlated equilibrium mechanism

FIGURE 8
Smart factory presented in Zhou et al. (2021).

Frontiers in Robotics and AI frontiersin.org10

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

and a function approximation are used to address the challenges of

joint-action selection and the high dimensions of the problem. The

problem is simulated in a 3D environment of identical cubic cells

and formulated as a general locational optimization problem. The

joint-action selection problem requires that the agents reach a

consensus, and thus the correlated equilibrium (which can be

solved using linear programming) was used to evaluate the

agreement regarding the selection of the joint-action set. This

paper uses fixed sparse representation (FSR) and the radial basis

function (RBF) as an attempt to map the original Q to a parameter

vector θ by using state- and action-dependent basis functions ϕ.

In order to address the multi-agent path finding (MAPF)

problem, Sartoretti et al. (2019) incorporated A3C to introduce a

MARL approach called PRIMAL (pathfinding via reinforcement

and imitation multi-agent learning). PRIMAL integrates RL with

imitation learning (IL) to enable agents to learn the

homogeneous path planning policy needed for online

coordination in a POMDP environment. IL serves as a

centralized planner and learns the impact of actions on the

agents and the team as a whole in order to train the agents

for coordination (behavioral cloning) in order to eliminate the

need for explicit communication. PRIMALwas implemented in a

partially observable discrete grid world with a limited field of

view (FOV), meaning that the agents have local observations.

Agents are modeled via a CNN of seven convolutional layers,

followed by an LSTM, to approximate the individual agent’s

TABLE 1 Comparison between the MARL approaches incorporated for scheduling in smart factories.

Reference RL
method

Comm Agent Env Metrics Col Dec/
Cen

Gabel and Riedmiller
(2008)

QL None Scheduling agents MMDP Makespan Env Cen

Wang and Yan (2016) QL Explicit Manufacturing cells MDP Run-through time and costs Env Cen

Sultana et al. (2020) A2C None Warehouse and store MDP Replenishment cost HLC Cen

Luo et al. (2021a) THDQN None Work-centers MDP Tardiness and utilization HLC Cen

Luo et al. (2021b) HRL Implicit Objective, job, and machine agents MDP Tardiness, utilization rate, and
workload variance

HLC Cen

Qu et al. (2016) QL None Machines MDP Total production costs Env Dec

Bouazza et al. (2017) IQL Limited Products MDP Waiting time Enc Dec

Wang et al. (2017) Tabular
MAQL

None Machines MDP (Mean) lateness, flow time, and late
job rate

Env Dec

Hong and Lee (2018) A3C None Chamber and robots MDP Productivity AsU Dec

Waschneck et al.
(2018a)

DQN None Work-centers MDP Run-through time and cycle times Param Dec

Waschneck et al.
(2018b)

DQN None Work-centers MDP Capacity utilization Env Dec

Wang et al. (2018) SMGWQL Explicit Manufacturing cell MDP Cost Comm Dec

Park et al. (2019) DQN Explicit EA, DA, SA, NA, JA, WLA, DRLA,
DMLA, and EXA

MDP Makespan Comm Dec

Qu et al. (2019) DQN None Scheduling agents Semi-MDP Work in progress and revenue Param Dec

Kim et al. (2020) DQN Explicit Machines MDP Productivity and delay Comm Dec

Liu et al. (2020) DDPG None Scheduling agents MMDP Makespan AsU Dec

Wang (2020) WQ Explicit Job, state, machines, and buffers MDP Tardiness and run-time Comm Dec

Baer et al. (2020) DQN None Independent schedulers MDP Makespan Env Dec

Dittrich and
Fohlmeister (2020)

DQN Explicit Orders and machines MDP Mean cycle times Param Dec

Denkena et al. (2021) DQN Limited Orders and machines Dec-
POMDP

Mean tardiness Param Dec

Zhou et al. (2021) MAAC Explicit Machines MDP Makespan Comm Dec

Pol et al. (2021) DQN Implicit Products DEC-
POMDP

Makespan SS Dec

Gankin et al. (2021) MA-DQN None Workstations MDP Production rate Param Dec

Wang X. et al. (2022) QMix None Jobs DEC-
POMDP

Makespan QMix Dec

Johnson et al. (2022) DQN Limited Assembly cells MDP Makespan Param Dec

Gerpott et al. (2022) A2C Parallel scheduling agents MDP Tardiness and makespan Param Dec

Frontiers in Robotics and AI frontiersin.org11

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

policy. Collision results in a penalty, and a large positive reward is

obtained upon the achievement of the goal. A3C trains the agents

via local states, which might result in selfishness (locally

optimized decisions), and thus, randomized environments

were used to avoid selfishness. PRIMAL does not allow agents

to follow the others. Thus, this leads to a reduced collision

chance. More details on A3C can be found in Mnih et al. (2016).

Qie et al. (2019) proposed a multi-agent DDPG (MADDPG)

approach for the multi-UAV task assignment and path planning

problem. While the two tasks are optimization problems that are

commonly addressed separately in dynamic environments, a

large number of recalculations are required to be performed

in real-time. In spite of the fact that all of the UAVs are identical,

the formation of the UAVs over the distributed locations of the

targets should be optimized to reach the total flight distance,

taking into consideration the presence of risky areas in the field

and the likelihood of collisions. During the training phase, all

agents have access to the observations and actions of other agents

through a distributed actor–critic architecture (DDPG uses

actor–critic at its core). Actors see local observations, whereas

critics have access to the entire observation space (each agent has

an actor and a critic). During the execution phase, only actors are

active in the field, which means that the execution process is

decentralized.

Zhiyao and Sartoretti (2020) proposed PRIMALc, which

extended the PRIMAL’s search space from two dimensions to

three dimensions. PRIMALc suggested the use of the capacity of

agent modeling to enhance the performance of path planning via

the prediction of the actions of other agents in a decoupled

manner. However, learning others’ behaviors introduces the

problem of prediction inaccuracies and would appear to be

ineffective in practice.

Zhang et al. (2020b) proposed a decentralized multi-agent

actor–critic-based framework that leverages the multi-step-

ahead tree search (MATS) strategy to address the AGV

pathfinding problem. To address scalability for a large

number of agents while maintaining the response time within

a predetermined range, experiments were conducted in a real-

world warehouse. Different from PRIMAL (which avoids letting

agents follow the others), this work allowed agents to follow the

others to improve the job completion rate while avoiding

collisions via the incorporation of MATS and post processing

the actions. MATS assists in finding the possible actions from

other agents so that possible collisions could be predicted and

avoided by reducing the probability of taking actions that result

in collisions. This work was able to outperform PRIMAL when

applied to a real-world warehouse case.

Malus et al. (2020) incorporated the twin-delayed deep

deterministic (TD3) policy gradient algorithm for autonomous

mobile robots (AMRs) scheduling to address the complexities

encountered due to rapid changes in the production environment

and the tight relationships between dispatching and routing

(planning and execution) problems. AMRs are distinguished

from AGVs by their navigational capabilities. AMRs are

equipped with sensory devices that detect the surrounding

static and dynamic objects, allowing them to navigate and

localize autonomously. Controlling a group of mobile robots

is called a fleet management system (FMS), which performs tasks

such as transportation, order dispatching, routing, and the

scheduling of job executions. The problem with AMRs is that

they are often tightly coupled, resulting in a system of immense

computational complexity. Consequently, centralized

approaches to managing fleets of AMRs often fail to provide

real-time routing and dispatching at the same time. TD3 is an

extension of the DDPG algorithm (both work on the basis of the

actor–critic algorithm) used for continuous action-space

problems wherein neural networks are incorporated to

concurrently approximate two Q-networks and a policy

network. In this work, with TD3, agents see local and partial

observations, and each has a dedicated policy for mapping local

states to actions. An agent’s action involves a bidding value

between 0 and 1, where the highest value between the two

currently assigned orders is taken (one for execution and one

for the next processing step for real-time constraints). The

reward design considers the cooperative nature of the agents,

and all the agents receive the same reward/penalty. The order,

once received by the agent, is added to the agent’s queue of

orders, and the corresponding AMR vehicle performs it

autonomously in a first-in-first-out manner. In the event that

an order is completed within the time constraint, all agents

receive a positive constant reward. Otherwise, they will be

subjected to a penalty that increases quadratically with respect

to tardiness.

Damani et al. (2021) later proposed PRIMAL2 to address

lifelong multi-agent pathfinding (LMAPF) for applications such

as smart warehousing in smart factories. LMAPF is a variant of

MAPF, in which agents are assigned a new goal as soon as their

current objective is reached in a dense and structured

environment such as industrial warehouses.

PRIMAL2 suggests the use of convention learning to enable

the agents to learn a generalizable policy. Identifying certain

conventions and forcing agents to learn them can enhance

performance. They also incorporate environment

randomization (sampling from a variety of environments

during training) to enable the agents to learn to deal with

different environments. Nevertheless, they assume that the

tasks are sparsely distributed across random locations, thereby

eliminating local congestion. PRIMAL2, like previous versions of

PRIMAL, has a long training time.

Shen et al. (2021) combined the multi-agent asynchronous

advantage actor–critic (MA-A3C) with an additional attention

mechanism for the multi-AGV pick and place problem in smart

warehousing systems. This attention mechanism allows attention

to be focused on the beneficial information that arises from the

interaction between AGV units in order to increase learning

efficiency andminimize the corresponding complexity. They also

Frontiers in Robotics and AI frontiersin.org12

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

used CTDE to address the dynamic Markov environment and

non-stationarity. By incorporating the attention mechanism, this

work is able to select AGV units dynamically during the training

and thus improve the collaboration between AGV agents. The

experiments were conducted on the Amazon Kiva system,

consisting of a picking table, shelf, and AGV. Five possible

choices are available in this system: up, down, right, left, and

stay. The experiments reported that this method outperformed

MAAC, MADDPG, MADDPG + SAC, and COMA + SAC.

Choi et al. (2022) incorporated QMIX for the cooperative

control of AGVs in smart factories’ warehouses. An agent can

choose an action in a grid-like environment (move forward,

backward, to the left, to the right, and to stop) and receive an

individual reward for its action. The reward is positive if the

Manhattan distance to the target is reduced as a result of the

action taken. CTDE was incorporated to address both the

scalability issue of centralized learning and the non-

stationarity of a fully decentralized learning process at the

same time. The method is able to evaluate individual agents’

contributions due to the receipt of both the individual reward Qa

and the global reward Qtot from the environment in QMIX. This

method was able to outperform IQL.

Yun et al. (2022) incorporated an actor–critic method called

CommNet for the deployment of CCTV-equipped multi-UAVs

with a focus on autonomous network recovery to ensure reliable

industry surveillance. As mobile CCTV UAVs can continuously

move over a wide area, they provide a robust solution for

surveillance in dynamic manufacturing environments. In

order to enhance the surveillance performance, the study aims

to improve the energy consumption of surveillance drones. In

this case, surveillance drones are deployed in heavily populated

areas. This work involves a single UAV serving as the

communication leader, some UAVs serving as agents, and

some targets serving as surveillance targets. Communication

between UAV agents is handled by the leader UAV agent.

The agents observe the local surroundings, take joint actions,

and are rewarded individually and jointly for their cooperative

efforts.

3.2.2 Pathfinding + scheduling
Mukhutdinov et al. (2019) developed a multi-agent IQL

approach for material handling in smart factories, inspired by

the packet routing problem in computer networks. In this work,

routing hubs are considered intelligent agents, which are

equivalent to routers in computer networks. The formulation

of this routing system is considered a graph, where nodes are

router agents and edges are the paths between the agents. Each

agent only observes its neighbor agents, and actions are defined

as choosing between the outgoing edges. Each router agent has a

DQN component for the approximating function Qv (Sv, u),

which is the estimation of the minimal cost of the path from the

routing agent v to the destination of the current node d via a

neighbor u. A reward for action is the negated cost of the edge

over which the packet has been sent: r = −Cost (e, Se). By

modeling each router using a DQN, each router is able to

account for heterogeneous data about its environment, which

allows for the optimization of more complicated cost functions,

such as the simultaneous optimization of bag delivery time and

energy consumption in a baggage handling system.

Zhang et al. (2020a) proposed a centralizedmulti-agent DQN

approach for the open-pit mining operational planning

(OPMOP) problem (an NP-hard problem that seeks to

balance the tradeoffs between mine productivity and

operational costs), which works based on learning the

memories from heterogeneous agents. Open-pit mine dispatch

decisions coordinate the route planning of trucks to shovels and

dumps for the loading and delivery of ore. The queuing of trucks

as a result of a high truck arrival rate and the starvation of shovels

as a result of a low truck arrival rate can both negatively impact

productivity. Instead of being restricted to fixed routes, trucks

can be dispatched to any shovel/dump in a dynamic allocation

system. An appropriate dispatch policy should minimize both

shovel starvation and truck queuing. This work presents an

experience sharing DQN in order to provide a shared learning

process for heterogeneous agents and also to deal with unplanned

truck failures and the introduction of new trucks (without

retraining). A post-processing step and a memory tailoring

process were used to enable the DQNs to be trained by the

samples obtained from trucks of diverse properties

(heterogeneity).

Li et al. (2021) proposed MADDPG-IPF (information

potential field) as a means of enhancing the adaptability of

AGV coordination to different scenarios in smart factories for

material handling. Typically, raw materials used in

manufacturing workshops are stored at various locations

throughout a warehouse. Thus, AGVs have to visit a number

of locations in order to coordinate transportation tasks. To reach

different targets, all AGVsmust avoid collisions and self-organize

as quickly as possible. The authors address the problem of reward

sparsity via the incorporation of the information potential field

(IPF) in the reward-shaping strategy, which brings stepwise

rewards and implicitly leads AGVs toward material handling

targets.

3.2.3 Mobile operator
Karapantelakis and Fersman (2021) developed a multi-agent

deep IQL-based approach to provide connectivity coverage

services via distributed mobile network operators. To

respond to the dynamic demands on mobile networks,

mobile operators collaborate as individual agents. Agents

have full observability of their environment and train their

deep recurrent Q-network (DRQN) independently with respect

to a common joint reward function. In order to mitigate the

non-stationarity imposed by IQL, a cyclic replay memory

(replacing old memories with recent ones) and a global

target network are used.

Frontiers in Robotics and AI frontiersin.org13

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

3.2.4 Overhead hoist transporters
Ahn and Park (2019) incorporated a graph neural network

(GNN)-based factorized policy gradient (GNN-FPG) method

based on the factorized actor-factorized critic (fAfC) method for

the cooperative rebalancing of overhead hoist transporters

(OHTs) as an attempt to enhance the productivity (reduce the

lead, delivery, and retrieving times) of the material handling

process in the semiconductor fabrication (Fab) system. OHTs are

used to transport semiconductor wafers between machines and

are considered to be an essential component of an automated

material handling system (AMHS). Generally speaking, OHT

refers to an automated transport system that travels on an

overhead track via a belt-driven hoisting mechanism that

facilitates direct access to the load port of the stocker. This

work proposes a MARL algorithm for dispatching, routing,

and rebalancing these OHTs. The problem of OHT

rebalancing is quite similar to the problem of empty vehicle

redistribution (EVR) in a traffic system. In this work, the Fab is

discretized into a number of zones, and decentralized rebalancing

strategies are developed for the idle OHTs of each zone (idle

OHTs are assigned to new zones) in order to minimize the lead

(retrieval) time and congestion. This work uses a collective

decentralized partially observable Markov decision process

(CDec-POMDP) for which the objective is to obtain a

decentralized policy with respect to local observations in order

to achieve the system-level goal. The proposed cooperative

rebalancing strategy accepts the distributions of idle OHTs,

working OHTs, and the loads (delivering tasks) over

discretized zones in the Fab as an input and outputs

decentralized rebalancing strategies for each zone.

Ahn and Park (2021) proposed a factorized actor–critic

(FAC) method for establishing cooperative zone-based

rebalancing (CZR) for OHTs in the semiconductor industry.

The objective of this work is to reduce the average retrieval time

and the OHT utilization ratio by incorporating graph neural

networks. Using joint state and joint action information, a central

model learns the interactions between the agents and the

corresponding future accumulated shared return. Using only

local observations and communication information, the

learned policy is executed independently by the agent. The

rebalancing problem is formulated as a partially observable

Markov game (POMG), in which the Nash equilibrium policy

of the game is to be determined. The agents in a stochastic game

strive to obtain the policy that maximizes the expected

accumulated reward. Decentralized optimal control was

reformulated as a general stochastic game by the authors.

3.2.5 Pick and place
Zong et al. (2022) proposed a multi-agent A2C approach for

the cooperative pickup and delivery problem (as a variant of the

vehicle routing problem) for warehousing in smart factories. The

work also provides paired delivery, which implies that a vehicle

might take more than one product part to deliver to more than

one destination. In order to deal with the structural dependencies

imposed between deliveries, this work incorporates a paired

context embedding architecture based on the transformer

model (Vaswani et al., 2017). A2C (with a joint critic and

individual actors) and communication were used to build a

centralized architecture. While different agents generate their

individual policies (actors), they share the paired context

embedding and context encoding within the centralized

architecture of A2C.

Lau and Sengupta (2022) developed a shared experience

actor–critic (SEAC) approach for the lifelong MAPF problem.

The work was formulated as a partially observable Markov

decision process, with the MARL’s aim being to determine the

optimal joint policy of the agents. By sharing experiences, agents

can learn from one another’s experiences without receiving the

same rewards. In SEAC, the trajectories collected from other

agents are incorporated for off-policy training, while importance

sampling with a behavioral policy was used to correct the off-

policy data.

Table 2 compares the literature in relation to the applications

of MARL to transportation within smart factories in terms of its

salient characteristics. In the table, the terms “Comm”, “Env”,

“Col”, and “Dec” are the shortened forms for “communication

quality”, “environment”, “collaboration method”, and

“decentralized versus centralized management”, respectively.

Collaboration quality represents the way in which

collaboration is established between the agent, which can be

through environment (Env), communication (Comm),

parameter sharing (Param), state sharing (SS), a high-level

controller (HLC), and asynchronous updates (ASUs).

3.3 Maintenance

Considering various reasons such as machine breakdowns

and deadlocks, smart factories also need automated and efficient

maintenance strategies. MARL has been applied to maintenance

problems in the relevant literature to provide a more automated

solution to the uncertainty faced in the maintenance process.

Wang et al. (2016) presented a tabular multi-agent QL approach

for making maintenance decisions in a two-machine system. The

presented method aims tomake the agents learn the control-limit

maintenance policy for each machine associated with the

observed state represented by the yield level and buffer level.

Due to the non-synchronicity of the state transitions between

both machines, an asynchronous updating rule is also

incorporated in the learning process. Zinn et al. (2021)

presented a MARL system based on DQN and actor–critic to

learn the distributed fault-tolerant control policies for automated

production systems during fault recovery to increase availability.

Liu et al. (2022) proposed a multi-agent DQN approach to make

maintenance scheduling decisions for personnel and also

production control during maintenance. This work

Frontiers in Robotics and AI frontiersin.org14

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

incorporates a CNN-LSTM-based architecture for the DQN,

while the impacts of agents are neglected. Su et al. (2022)

presented a MARL approach using value decomposition

actor–critic (VDAC) to enable physical machines (in a serial

production line that requires multiple levels of machine

decisions) to learn local maintenance policies in a distributed

and cooperative manner. The proposed solution is formulated as

a DEC-POMDP problem, and CTDE was used to provide the

solution. Action masking is also incorporated to filter invalid

actions. In VDAC, distributed actors make decisions for

designated machines, while a central critic estimates the global

state value.

3.4 Energy

The dependence of smart components in smart factories on

electrical energy, together with the need for cost-effective,

reliable, and efficient energy supplies, has led to the use of

smart grids that are adaptive and can distribute energy in an

on-demand manner. MARL has also been applied to smart grids.

Smart grids and smart manufacturing systems share common

properties/objectives, such as communication, integration, and

automation, which define the commonalities of their

applications. Samadi et al. (2020) presented a tabular MA-IQL

approach for decentralized energy management in smart grids

and proposed a system including high-level energy management

agents, low-level heterogeneous resource agents, and consumer

agents. The agents adapt themselves to maximize their profits

without communication in the grid environment. Wang et al.

(2022c) presented an MA-DDQN approach, named

P-MADDQN, for resilience-driven routing and the scheduling

of mobile energy storage systems (MESSs). This work formulates

the problem of POMG and MESS agents interacting with the

environment and making independent decisions for

simultaneous routing and scheduling based on local

information. Charbonnier et al. (2022) presented a tabular

MA-QL approach for energy coordination management.

TABLE 2 Comparison between the applications of MARL to transportation tasks in smart factories.

Reference RL method Comm Agent Env Metrics Col Dec/
Cen

Multi-agent pathfinding

Pham et al. (2018) MAQL Implicit-
limited

UAVs Markov
game

Coverage Param Cen

Sartoretti et al. (2019) A3C Implicit Moving robots POMDP Travel distance and success rate AsU Dec

Qie et al. (2019) MADDPG None MDP Travel costs and collision Param Dec

Zhiyao and Sartoretti (2020) A2C Explicit Moving robots POMDP Travel distance and success rate AsU Dec

Zhang Y. et al. (2020) AC None AGV units MDP Collision rate and job completion rate Param Dec

Malus et al. (2020) TD3 None AMR agents POMDP Completion time Param Dec

Damani et al. (2021) A3C Implicit Moving robots POMDP Travel distance and success rate Param Dec

Shen et al. (2021) MAA3C None AGV units MDP Collision rate and travel distance Comm AsU

Choi et al. (2022) QMix Explicit AGV units Dec-
POMDP

Path length and success rate QMix Dec

Yun et al. (2022) AC Explicit UAVs MMDP Coverage Comm Dec

Multi-agent pathfinding +scheduling

Mukhutdinov et al. (2019) IQL None Routing units POMDP Delivery time and energy Env Dec

Zhang C. et al. (2020) EM-DQN None Trucks POMDP Production rate, cycle period, and
matching factor

Param Dec

Li et al. (2021) MADDPG-IPF Explicit AGV units POMDP Task response time Param Dec

Mobile operator

Karapantelakis and Fersman
(2021)

IQL and DRQN Explicit Operator
agents

Dec-
POMPD

Service fulfillment Env Dec

OHTs

Ahn and Park (2019) fAfC None OHT zones CDec-
POMDP

Lead time and congestion Param Dec

Ahn and Park (2021) Factorized AC Explicit Zone agents POMG Retrieval time and utilization ratio Param Dec

Pick and place

Zong et al. (2022) A2C (central
critic)

Share info AGV units MDP Travel distance Param Dec

Lau and Sengupta (2022) SEAC None Vehicles POMDP Flow time, makespan, and delivery rate Param Dec

Frontiers in Robotics and AI frontiersin.org15

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

Agents are proactive consumers, and local observations are

modeled in a Dec-POMDP environment; they make

individual decisions to find a trade-off between local, grid,

and social objectives. Bollinger and Evins (2016) presented a

MADQN and anotherMARL approach known as the continuous

actor–critic learning automaton (CACLA) for optimizing

technology deployment in distributed multi-energy systems.

The work is based on technology agents, building agents, a

grid agent, and a market agent. Alqahtani et al. (2022)

presented a multi-agent AC approach for the energy

scheduling and routing of a large fleet of electric vehicles

(EVs) in a smart grid to address the power delivery problem.

It is possible to use a fleet of EV batteries as a source of

sustainable energy since they are capable of storing solar

energy and discharging it to the power grids later on, which

can result in lower energy costs. It is important to note that the

use of a fleet of electric vehicles for power generation is only

effective if they are dispersed appropriately across the area of

need. The MARL approach is incorporated to address the joint

problem of vehicle routing (VR) and energy dispatching (ED),

with a special focus on enhancing the scalability and addressing

the complexities involved. The problem is formulated as a DEC-

MDP problem, while the vehicle’s position, the vehicle’s state of

charge, solar irradiance, and power load are used as state

variables. In addition, the action set includes mobility actions

(up, down, left, right, or stay still) in the grid and energy dispatch

decisions (charging, discharging, and idle). This paper uses

actor–critic, where the actors are local and the critic is shared

among the agents.

3.5 Human–robot collaboration

Humans play an important role in manufacturing systems,

and their impact on the manufacturing environment is

significant when designing smart factories. As a result, due to

the unpredictable and dynamic behavior of human workers, their

role should not be considered as a stationary part of the

environment, while this fact has mainly been neglected in the

relevant literature. HRC is a broad field, and the application of RL

to HRC should be formulated in multi-agent settings. In this

study, due to the limitations, we only bring some representative

examples and leave the comprehensive study for future work.

Yu et al. (2021) presented a MA-DQN approach for

scheduling human and robot collaborative tasks to optimize

the completion time in an assembly chess board simulation of

the manufacturing environment. The agent learns the optimal

scheduling policy without the need for human intervention or

expert knowledge, using a Markov game model. Wang et al.

(2022a) incorporated a multi-agent extension of generative

adversarial imitation learning (GAIL) to generate a diverse

array of human behaviors from an example set. The behavior

is then used in a MARL approach to account for the human

during the human–robot handover and for the multi-step

collaborative manipulation tasks. An approach presented by

Zhang et al. (2022) generates the appropriate action sequence

for humans and robots in collaborative assembly tasks using a

MADDPG approach. A real-time display of the agent–human’s

behavior is shown to the operator. In this scenario, the operator

would be able to carry out the assembly task in accordance with

the planned assembly behavior under the globally optimal

strategy for the expected performance.

3.6 Other applications

Chen et al. (2021) presented a multi-agent DDPG approach

for the coordinated welding of multiple robots with a continuous

action space and local observations. Lan et al. (2021) studied the

application of MARL to multi-robot pick and place problems in

Dec-POMDP environments and suggested the use of the variants

of MADQN and DRQN in combination with CTDE. Ji and Jin

(2022) proposed a MARL system based on independent DQN

agents in an attempt to capture self-organizing knowledge for

developing multi-robot self-assembly systems. They obtained

superior results for decentralized teamwork rather than a

centralized approach.

3.7 Discussion and potentials

In this section, we review the applications that used MARL

to address control problems in smart factories, with a main

focus on scheduling and transportation and a brief review of

maintenance, energy, and human–robot collaboration. Upon

close examination, we can observe patterns for how MARL,

which was a significantly difficult approach to implement, was

able to be used for different tasks in smart factories. In this

section, we identify a number of concerns and analyze them

based on a review of the works provided earlier. The main

concerns are the choice of the MARL method, scalability,

problem formulation, scalability, convergence, a cooperation

strategy, and information exchange. For the most part, MARL

problems are significantly prone to non-stationarity, and

different approaches showed certain ways to deal with this

problem. Joint actions are one of the main approaches used to

deal with non-stationarity, but this has drawbacks such as the

difficulty of designing the exploration strategy due to the large

joint action space. The other approach used was a profound

support of agents, with all the necessary information about the

states and actions of the other agents. However, the

corresponding information sharing costs reduce the

scalability and efficiency of this approach. A close look at

the most comprehensive approaches that incorporate a larger

number of agents, such as Kim et al. (2020) and Zhou et al.

(2021), demonstrates the fact that scalable approaches tend to

Frontiers in Robotics and AI frontiersin.org16

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

use more sparse communication strategies where agents are

selectively chosen to exchange information to save time and

cost. A more advanced approach, however, is the use of

negotiation-based strategies incorporated in Wang (2020)

and Kim et al. (2020), which can even be enhanced by

taking advantage of negotiation learning. Furthermore, even

those applications that used independent learners incorporated

some techniques to deal with non-stationarity, such as

asynchronous updates, CTDE, exploring separate parts of the

environments in parallel with the aggregate gradient, and

behavior forecasting. However, as the dynamicity of the

environment grows, adequate information should be

exchanged between agents for making informed decisions;

otherwise, impacts from other agents on the environment

cannot always be avoided or predicted. Therefore, we

conclude that establishing spare communications is the

recommended solution for both efficiency and rapidity.

Collaboration is another important concern in MARL

applications, which is mainly realized via the definition of a

global reward. However, the credit assignment problem is

challenging in this regard, since decomposing the reward to

determine the share of each agent is not always possible.

Without consideration of the credit assignment problem, it

is possible that some of the agents become lazy and have a

negative impact on the global performance of the system.

Nonetheless, approaches such as QMIX suggest a dedicated

approach to considering both global and local rewards in the

process of learning. However, in real-time environments,

QMIX might not show a good performance since an agent’s

action might become dependent on the actions taken by other

agents. The choice of the MARL method is also another

concern, as it has an impact on the convergence and also on

other performance factors. DQN, as the most popular

approach, has certain limitations, such as the dimensionality

and continuity of the state–action space. Altogether, AC-based

methods such as MADDPG have other limitations such as slow

convergence due to a larger number of parameters included in

the learning process. As the last point to discuss in this section,

the choice of state variables and the corresponding concept

behind the definition of an agent have a significant impact on

the performance of MARL systems. Considering the fact that

the most successful applications of MARL incorporate

supervised learning techniques such as NNs (and DNNs) for

function approximation, the complexity of the problem grows

significantly in the event of the choice of ineffective state

variables. A correlation between these variables, randomness,

anomalies, duplicates, low content, the irrelevance of a variable,

and the number and usage of the variables, all influence the

performance of the MARL system. As an example, the one hot

encoding technique is one of the main approaches that should

FIGURE 9
Matching between smart factory features and MARL features.

Frontiers in Robotics and AI frontiersin.org17

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

be incorporated when dealing with categorical state variables to

be used as an input to a DNN.

4 Mapping from smart factory
features to multi-agent
reinforcement learning features

In the previous section, we reviewed the literature on the

applications of MARL to tasks within a smart factory and noticed

that there are various ways to convert these tasks into a MARL

problem. As an early conclusion, considering the presence of

uncertainty from various sources in the dynamic environment of

smart factories, MARL has natural potential for dealing with

uncertainty in smart factories in an automated manner. Many of

the works reviewed in the previous section offer their solutions

through POMDP problem environments that explicitly consider

partial observability in their problem formulation, meaning that

uncertainty is naturally considered with such applications.

Furthermore, it is promising that MARL has a natural

counterpart for almost all of the features required for

establishing optimal management in smart factories, with all

being provided at the same time and focusing on self-

organization. Mittal et al. (2019) identified 22 main

characteristics for smart factories, including digital presence,

modularity, heterogeneity, scalability, context awareness,

autonomy, adaptability, robustness, flexibility, fully automated,

asset self-awareness, interoperability, networkability,

information, appropriateness, integrability, sustainability,

compositionality, composability, proactivity, reliability, agility,

responsiveness, accuracy, reusability, decentralized, and

distributed resilience. Regarding these features, focusing on

FIGURE 10
Mapping from smart factory features and MARL features.

Frontiers in Robotics and AI frontiersin.org18

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

the features that are explicitly important in the control

mechanism for smart factories, we provide a match between

the features required for a smart factory and the equivalent

enabling features offered by MARL approaches, as shown in

Figure 9.

Above all these characteristics, borrowed from Mittal et al.

(2019), there are three leading factors in smart factories that are

directly provided through the control mechanism, including

automation, agility, and efficiency. Based on the review that

we provided earlier in Section 3, we propose a mapping from

the requirements of a smart factory initiated by these leading

factors to the equivalent MARL features, shown in Figure 10.

As shown in Figure 10, the smart factory is mainly used to

provide automation, efficiency, and agility. Agility is realized via

decentralized decision-making by individual units, since the

centralized form imposes delay as a result of the need for

multi-objective optimization on a large number of factors and

massive communications (regardless of the possibility of

information loss) between the components. A decentralized

architecture and individual decision-making units will both

reduce the complexity of a manufacturing system. The

equivalent concept with regard to these features of a smart

factory is the multi-agent setting and the intelligent agents in

a MARL framework. Automation at the highest level is provided

via self-organization, where intelligence, self-centered

assessment, optimization, learning, and adaptation are

incorporated to deal with the dynamicity encountered in the

manufacturing environment. These features, when established,

can provide the manufacturing environment with the abilities of

self-configuration, self-recovery, and robustness. The equivalent

concepts in MARL for establishing these features are the global

policy that controls the harmony of the entire system by defining

the high-level long-term and short-term control directions for

the low-level agents and the exploration–exploitation strategy

that determines how and how often the system tries to explore

novel behavior. Efficiency, as the main factor around which the

entire solution is built, is highly dependent on the objectives

defined by the application. Efficiency in practice is a multi-

objective optimization concept, meaning that multiple factors

contribute to the efficiency of the solution. The important

characteristics that have a direct relationship with efficiency in

smart factories are scalability, generalizability, flexibility,

accuracy, and rapidity, while reliability and reusability can be

considered as constraints when developing a control mechanism

for a high-level or low-level task within a smart factory.

Additionally, the equivalent concepts in a MARL framework,

with regard to the mentioned objectives, are the return, which is

the discounted cumulative future reward, and the loss function

that appears in the training of deep neural networks used for

complex MARL problems.

As shown in Figure 10, we have also identified the features

that should be considered when each two of the three main

factors are concerned. In order to not step beyond the scope of

the study and also due to space limitations, we postpone the

detailed analysis of these features to a future study.

5 Conclusion

In this study, we reviewed a wide range of applications that

incorporatedMARL into the tasks within a smart factory from a

technical and analytical perspective. Specifically, MARL

applications were studied for tasks including scheduling,

transportation, maintenance, energy management, and

human–robot collaboration, while the main focus was

devoted to the first two categories. For the scheduling and

transportation applications, we provided a comparative

analysis representing how different MARL characteristics are

chosen to implement the corresponding MARL solution. We

also demonstrated how different aspects of smart factories

match the objectives and capabilities of MARL and

suggested a mapping from smart factory features to the

equivalent concepts in MARL, indicating how MARL

provides an appropriate solution to provide almost all the

required features in the smart factory at once. Our

investigations in this paper suggest that MARL is one of the

most appropriate AI techniques for implementing tasks in

smart factories, for the most part due to its natural ability to

deal with uncertainty in multi-agent and decentralized systems,

in a self-organized manner.

Author contributions

FB was the main author, and DR provided support and

feedback as the director of the Smart Production Systems group,

at HTW Dresden, Saxony, Germany.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Robotics and AI frontiersin.org19

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

References

Ahn, K., and Park, J. (2019). “Idle vehicle rebalancing in semiconductor
fabrication using factorized graph neural network reinforcement learning,” in
2019 IEEE 58th Conference on Decision and Control (CDC) (Nice, France:
IEEE), 132–138.

Ahn, K., and Park, J. (2021). Cooperative zone-based rebalancing of idle overhead
hoist transportations using multi-agent reinforcement learning with graph
representation learning. IISE Trans. 53, 1140–1156.

Alqahtani, M., Scott, M. J., and Hu, M. (2022). Dynamic energy scheduling and
routing of a large fleet of electric vehicles using multi-agent reinforcement learning.
Comput. Ind. Eng. 169, 108180. doi:10.1016/j.cie.2022.108180

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).
Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 34, 26–38.
doi:10.1109/msp.2017.2743240

Baer, S., Turner, D., Mohanty, P., Samsonov, V., Bakakeu, R., and Meisen, T.
(2020). “Multi agent deep q-network approach for online job shop scheduling in
flexible manufacturing,” in International conference on manufacturing system and
multiple machines, Tokyo, Japan.5

Bollinger, L. A., and Evins, R. (2016). “Multi-agent reinforcement learning for
optimizing technology deployment in distributed multi-energy systems,” in 23rd
International Workshop of the European Group for Intelligent Computing in
Engineering, Krakow, Poland.

Bouazza, W., Sallez, Y., and Beldjilali, B. (2017). A distributed approach solving
partially flexible job-shop scheduling problem with a q-learning effect. IFAC-
PapersOnLine 50, 15890–15895. doi:10.1016/j.ifacol.2017.08.2354

Büchi, G., Cugno, M., and Castagnoli, R. (2020). Smart factory performance and
industry 4.0. Technol. Forecast. Soc. Change 150, 119790. doi:10.1016/j.techfore.
2019.119790

Buşoniu, L., Babuška, R., and Schutter, B.D. (2010). “Multi-agent reinforcement learning:
An overview,” in Innovations in multi-agent systems and applications-1, 183–221.

Charbonnier, F., Morstyn, T., and McCulloch, M. D. (2022). Scalable multi-agent
reinforcement learning for distributed control of residential energy flexibility. Appl.
Energy 314, 118825. doi:10.1016/j.apenergy.2022.118825

Chen, W., Hua, L., Xu, L., Zhang, B., Li, M., Ma, T., et al. (2021). “Maddpg
algorithm for coordinated welding of multiple robots,” in 2021 6th International
Conference on Automation, Control and Robotics Engineering (CACRE), Dalian,
China, 1–5.

Choi, H.-B., Kim, J.-B., Ji, C.-H., Ihsan, U., Han, Y.-H., Oh, S.-W., et al. (2022).
“Marl-based optimal route control in multi-agv warehouses,” in 2022 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC)
(Jeju Island, Korea: IEEE), 333–338.

Damani, M., Luo, Z., Wenzel, E., and Sartoretti, G. (2021). PRIMAL$_2$:
Pathfinding via reinforcement and imitation multi-agent learning - lifelong.
IEEE Robot. Autom. Lett. 6, 2666–2673. doi:10.1109/lra.2021.3062803

Denkena, B., Dittrich, M.-A., Fohlmeister, S., Kemp, D., and Palmer, G. (2021).
“Scalable cooperative multi-agent-reinforcement-learning for order-controlled on
schedule manufacturing in flexible manufacturing systems,” in Simulation in
Produktion und Logistik 2021, 15.-17, 305.Erlangen

Dittrich, M.-A., and Fohlmeister, S. (2020). Cooperative multi-agent system for
production control using reinforcement learning. CIRP Ann. 69, 389–392. doi:10.
1016/j.cirp.2020.04.005

Foerster, J., Assael, I. A., De Freitas, N., and Whiteson, S. (2016). Learning to
communicate with deep multi-agent reinforcement learning. Adv. Neural Inf.
Process. Syst. 29. doi:10.48550/arXiv.1605.06676

Gabel, T., and Riedmiller, M. (2008). Adaptive reactive job-shop scheduling with
reinforcement learning agents. Int. J. Inf. Technol. Intelligent Comput. 24, 14–18.

Gankin, D., Mayer, S., Zinn, J., Vogel-Heuser, B., and Endisch, C. (2021).
“Modular production control with multi-agent deep q-learning,” in 2021 26th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA) (Västerås, Sweden: IEEE), 1–8.

Gerpott, F. T., Lang, S., Reggelin, T., Zadek, H., Chaopaisarn, P., and
Ramingwong, S. (2022). Integration of the a2c algorithm for production
scheduling in a two-stage hybrid flow shop environment. Procedia Comput. Sci.
200, 585–594. doi:10.1016/j.procs.2022.01.256

Hong, C., and Lee, T.-E. (2018). “Multi-agent reinforcement learning approach
for scheduling cluster tools with condition based chamber cleaning operations,” in
2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA) (Orlando, Florida: IEEE), 885–890.

Ji, H., and Jin, Y. (2022). “Designing self-assembly systems with deep multiagent
reinforcement learning,” in Design computing and Cognition’20 (Springer), 667–679.

Johnson, D., Chen, G., and Lu, Y. (2022). Multi-agent reinforcement learning for
real-time dynamic production scheduling in a robot assembly cell. IEEE Robot.
Autom. Lett. 7, 7684–7691. doi:10.1109/lra.2022.3184795

Jung, K., Choi, S., Kulvatunyou, B., Cho, H., and Morris, K. C. (2017). A reference
activity model for smart factory design and improvement. Prod. Plan. control 28,
108–122. doi:10.1080/09537287.2016.1237686

Karapantelakis, A., and Fersman, E. (2021). Mobile operator collaboration using
cooperative multi-agent deep reinforcement learning. IEEE Internet Things J.

Kim, Y. G., Lee, S., Son, J., Bae, H., and Do Chung, B. (2020). Multi-agent system
and reinforcement learning approach for distributed intelligence in a flexible smart
manufacturing system. J. Manuf. Syst. 57, 440–450. Elsevier doi:10.1016/j.jmsy.
2020.11.004

Lan, X., Qiao, Y., and Lee, B. (2021). “Towards pick and place multi robot
coordination using multi-agent deep reinforcement learning,” in 2021 7th
International Conference on Automation, Robotics and Applications (ICARA)
(IEEE), 85–89.

Lau, T. T.-K., and Sengupta, B. (2022). The multi-agent pickup and delivery
problem: Mapf, marl and its warehouse applications. arXiv preprint arXiv:
2203.07092.

Li, M., Guo, B., Zhang, J., Liu, J., Liu, S., Yu, Z., et al. (2021). “Decentralized multi-
agv task allocation based on multi-agent reinforcement learning with information
potential field rewards,” in 2021 IEEE 18th International Conference on Mobile Ad
Hoc and Smart Systems (MASS) (Denver, Colorado: IEEE), 482–489.

Liu, C.-L., Chang, C.-C., and Tseng, C.-J. (2020). Actor-critic deep reinforcement
learning for solving job shop scheduling problems. Ieee Access 8, 71752–71762.
doi:10.1109/access.2020.2987820

Liu, C., Zhu, H., Tang, D., Nie, Q., Zhou, T., Wang, L., et al. (2022). Probing an
intelligent predictive maintenance approach with deep learning and augmented
reality for machine tools in iot-enabled manufacturing. Rob. Comput.-Integr.
Manuf. 77, 102357. doi:10.1016/j.rcim.2022.102357

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I.
(2017). “Multi-agent actor-critic for mixed cooperative-competitive environments,”
in Advances in neural information processing systems, 30.

Luo, S., Zhang, L., and Fan, Y. (2021a). Dynamic multi-objective scheduling for
flexible job shop by deep reinforcement learning. Comput. Industrial Eng. 159,
107489. doi:10.1016/j.cie.2021.107489

Luo, S., Zhang, L., and Fan, Y. (2021b). Real-time scheduling for dynamic partial-
no-wait multiobjective flexible job shop by deep reinforcement learning. IEEE
Trans. Autom. Sci. Eng. 19, 3020–3038. doi:10.1109/tase.2021.3104716

Malus, A., Kozjek, D., and Vrabic, R. (2020). Real-time order dispatching for a
fleet of autonomous mobile robots using multi-agent reinforcement learning. CIRP
Ann. 69, 397–400. doi:10.1016/j.cirp.2020.04.001

Mittal, S., Khan, M. A., Romero, D., and Wuest, T. (2019). Smart manufacturing:
Characteristics, technologies and enabling factors. Proc. Institution Mech. Eng. Part
B J. Eng. Manuf. 233, 1342–1361. doi:10.1177/0954405417736547

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).
“Asynchronous methods for deep reinforcement learning,” in International
conference on machine learning (New York, NY: PMLR), 1928–1937.

Mukhutdinov, D., Filchenkov, A., Shalyto, A., and Vyatkin, V. (2019). Multi-
agent deep learning for simultaneous optimization for time and energy in
distributed routing system. Future Gener. Comput. Syst. 94, 587–600. doi:10.
1016/j.future.2018.12.037

Nguyen, T. T., Nguyen, N. D., and Nahavandi, S. (2020). Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and applications.
IEEE Trans. Cybern. 50, 3826–3839. doi:10.1109/tcyb.2020.2977374

Nowé, A., Vrancx, P., and Hauwere, Y.-M. D. (2012). “Game theory and multi-
agent reinforcement learning,” in Reinforcement learning (Springer), 441–470.

Nwakanma, C. I., Islam, F. B., Maharani, M. P., Lee, J.-M., and Kim, D.-S. (2021).
Detection and classification of human activity for emergency response in smart
factory shop floor. Appl. Sci. 11, 3662. doi:10.3390/app11083662

OroojlooyJadid, A., and Hajinezhad, D. (2019). A review of cooperative multi-
agent deep reinforcement learning. arXiv preprint arXiv:1908.03963.

Ozdemir, R., and Koc, M. (2019). “A quality control application on a smart
factory prototype using deep learning methods,” in 2019 IEEE 14th international
conference on computer sciences and information technologies (CSIT) (Lviv,
Ukraine: IEEE) 1, 46–49.

Park, I.-B., Huh, J., Kim, J., and Park, J. (2019). A reinforcement learning
approach to robust scheduling of semiconductor manufacturing facilities. IEEE
Trans. Autom. Sci. Eng. 17, 1–12. doi:10.1109/tase.2019.2956762

Frontiers in Robotics and AI frontiersin.org20

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://doi.org/10.1016/j.cie.2022.108180
https://doi.org/10.1109/msp.2017.2743240
https://doi.org/10.1016/j.ifacol.2017.08.2354
https://doi.org/10.1016/j.techfore.2019.119790
https://doi.org/10.1016/j.techfore.2019.119790
https://doi.org/10.1016/j.apenergy.2022.118825
https://doi.org/10.1109/lra.2021.3062803
https://doi.org/10.1016/j.cirp.2020.04.005
https://doi.org/10.1016/j.cirp.2020.04.005
https://doi.org/10.48550/arXiv.1605.06676
https://doi.org/10.1016/j.procs.2022.01.256
https://doi.org/10.1109/lra.2022.3184795
https://doi.org/10.1080/09537287.2016.1237686
https://doi.org/10.1016/j.jmsy.2020.11.004
https://doi.org/10.1016/j.jmsy.2020.11.004
https://doi.org/10.1109/access.2020.2987820
https://doi.org/10.1016/j.rcim.2022.102357
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1109/tase.2021.3104716
https://doi.org/10.1016/j.cirp.2020.04.001
https://doi.org/10.1177/0954405417736547
https://doi.org/10.1016/j.future.2018.12.037
https://doi.org/10.1016/j.future.2018.12.037
https://doi.org/10.1109/tcyb.2020.2977374
https://doi.org/10.3390/app11083662
https://doi.org/10.1109/tase.2019.2956762
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

Pham, H. X., La, H. M., Feil-Seifer, D., and Nefian, A. (2018). Cooperative and
distributed reinforcement learning of drones for field coverage. arXiv preprint arXiv:
1803.07250.

Pol, S., Baer, S., Turner, D., Samsonov, V., and Meisen, T. (2021). “Global reward
design for cooperative agents to achieve flexible production control under real-time
constraints,” in Proceedings of the 23rd International Conference on Enterprise
Information Systems (ICEIS 2021), Setúbal, Portugal, 515–526.

Qie, H., Shi, D., Shen, T., Xu, X., Li, Y., andWang, L. (2019). Joint optimization of
multi-uav target assignment and path planning based on multi-agent reinforcement
learning. IEEE access 7, 146264–146272. doi:10.1109/access.2019.2943253

Qu, S., Wang, J., Govil, S., and Leckie, J. O. (2016). Optimized adaptive scheduling
of a manufacturing process system withmulti-skill workforce and multiple machine
types: An ontology-based, multi-agent reinforcement learning approach. Procedia
Cirp 57, 55–60. doi:10.1016/j.procir.2016.11.011

Qu, S., Wang, J., and Jasperneite, J. (2019). “Dynamic scheduling in modern
processing systems using expert-guided distributed reinforcement learning,” in
2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA) (Zaragoza, Spain: IEEE), 459–466.

Samadi, E., Badri, A., and Ebrahimpour, R. (2020). Decentralized multi-agent
based energy management of microgrid using reinforcement learning. Int. J. Electr.
Power & Energy Syst. 122, 106211. doi:10.1016/j.ijepes.2020.106211

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. S., Koenig, S., et al. (2019).
Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE
Robot. Autom. Lett. 4, 2378–2385. doi:10.1109/lra.2019.2903261

Shen, G., Ma, R., Tang, Z., and Chang, L. (2021). “A deep reinforcement learning
algorithm for warehousing multi-agv path planning,” in 2021 International
Conference on Networking, Communications and Information Technology
(NetCIT) (Manchester, United Kingdom: IEEE), 421–429.

Shi, Z., Xie, Y., Xue, W., Chen, Y., Fu, L., and Xu, X. (2020). Smart factory in
industry 4.0. Syst. Res. Behav. Sci. 37, 607–617. doi:10.1002/sres.2704

Sjödin, D. R., Parida, V., Leksell, M., and Petrovic, A. (2018). Smart factory
implementation and process innovation: A preliminary maturity model for
leveraging digitalization in manufacturing moving to smart factories presents
specific challenges that can be addressed through a structured approach focused
on people, processes, and technologies. Research-Technol. Manag. 61, 22–31. doi:10.
1080/08956308.2018.1471277

Su, J., Huang, J., Adams, S., Chang, Q., and Beling, P. A. (2022). Deep multi-agent
reinforcement learning for multi-level preventive maintenance in manufacturing
systems. Expert Syst. Appl. 192, 116323. doi:10.1016/j.eswa.2021.116323

Sultana, N. N., Meisheri, H., Baniwal, V., Nath, S., Ravindran, B., and Khadilkar,
H. (2020). Reinforcement learning for multi-product multi-node inventory
management in supply chains. arXiv preprint arXiv:2006.04037.

Sutton, R. S., and Barto, A. G. (1998). Introduction to reinforcement learning.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al. (2017).
“Attention is all you need,” in Advances in neural information processing systems, 30.

Wang, H.-X., and Yan, H.-S. (2016). An interoperable adaptive scheduling
strategy for knowledgeable manufacturing based on smgwq-learning. J. Intell.
Manuf. 27, 1085–1095. doi:10.1007/s10845-014-0936-1

Wang, X., Wang, H., and Qi, C. (2016). Multi-agent reinforcement learning based
maintenance policy for a resource constrained flow line system. J. Intell. Manuf. 27,
325–333. doi:10.1007/s10845-013-0864-5

Wang, J., Qu, S., Wang, J., Leckie, J. O., and Xu, R. (2017). “Real-time decision
support with reinforcement learning for dynamic flowshop scheduling,” in Smart
SysTech 2017; European Conference on Smart Objects, Systems and Technologies
(Munich, Germany: VDE), 1–9.

Wang, M., Chen, X., Zhou, J., Jiang, T., and Cai, W. (2018). “Shared cognition
based integration dynamic scheduling method,” in 2018 2nd IEEE Advanced

Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC) (Shaanxi, China: IEEE), 1438–1442.

Wang, C., Pérez-D’Arpino, C., Xu, D., Fei-Fei, L., Liu, K., and Savarese, S. (2022a).
“Co-gail: Learning diverse strategies for human-robot collaboration,” in Conference
on Robot Learning (London, United Kingdom: PMLR), 1279–1290.

Wang, X., Zhang, L., Lin, T., Zhao, C., Wang, K., and Chen, Z. (2022b). Solving
job scheduling problems in a resource preemption environment with multi-agent
reinforcement learning. Rob. Comput. Integr. Manuf. 77, 102324. doi:10.1016/j.
rcim.2022.102324

Wang, Y., Qiu, D., and Strbac, G. (2022c). Multi-agent deep reinforcement
learning for resilience-driven routing and scheduling of mobile energy storage
systems. Appl. Energy 310, 118575. doi:10.1016/j.apenergy.2022.118575

Wang, Y.-F. (2020). Adaptive job shop scheduling strategy based on weighted
q-learning algorithm. J. Intell. Manuf. 31, 417–432. doi:10.1007/s10845-018-1454-3

Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T.,
Knapp, A., et al. (2018a). “Deep reinforcement learning for semiconductor
production scheduling,” in 2018 29th annual SEMI advanced semiconductor
manufacturing conference (ASMC) (IEEE), 301–306.

Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T.,
Knapp, A., et al. (2018b). Optimization of global production scheduling with deep
reinforcement learning. Procedia Cirp 72, 1264–1269. doi:10.1016/j.procir.2018.
03.212

Yu, T., Huang, J., and Chang, Q. (2021). Optimizing task scheduling in human-
robot collaboration with deep multi-agent reinforcement learning. J. Manuf. Syst.
60, 487–499. doi:10.1016/j.jmsy.2021.07.015

Yun, W. J., Park, S., Kim, J., Shin, M., Jung, S., Mohaisen, A., et al. (2022).
Cooperative multi-agent deep reinforcement learning for reliable surveillance via
autonomousmulti-uav control. IEEE Trans. Ind. Inf. 18, 7086–7096. doi:10.1109/tii.
2022.3143175

Zhang, C., Odonkor, P., Zheng, S., Khorasgani, H., Serita, S., Gupta, C., et al.
(2020a). “Dynamic dispatching for large-scale heterogeneous fleet via multi-agent
deep reinforcement learning,” in 2020 IEEE International Conference on Big Data
(Big Data) (Atlanta, Georgia: IEEE), 1436–1441.

Zhang, Y., Qian, Y., Yao, Y., Hu, H., and Xu, Y. (2020b). “Learning to cooperate:
Application of deep reinforcement learning for online agv path finding,” in
Proceedings of the 19th International Conference on autonomous agents and
multiagent systems, Auckland, New Zealand, 2077–2079.

Zhang, K., Yang, Z., and Başar, T. (2021). “Multi-agent reinforcement learning: A
selective overview of theories and algorithms,” in Handbook of reinforcement
learning and control, 321–384. doi:10.1007/978-3-030-60990-0_12

Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., and Liu, S. (2022). A reinforcement
learning method for human-robot collaboration in assembly tasks. Rob. Comput.-
Integr. Manuf. 73, 102227. doi:10.1016/j.rcim.2021.102227

Zhao, J., Zhang, Y., Hu, X., Wang, W., Zhou, W., Hao, J., et al. (2022). Revisiting
qmix: Discriminative credit assignment by gradient entropy regularization. arXiv
preprint arXiv:2202.04427.

Zhiyao, L., and Sartoretti, G. (2020). Deep reinforcement learning based
multiagent pathfinding. Tech. rep., Technical Report

Zhou, T., Tang, D., Zhu, H., and Zhang, Z. (2021). Multi-agent reinforcement
learning for online scheduling in smart factories. Robotics Computer-Integrated
Manuf. 72, 102202. doi:10.1016/j.rcim.2021.102202

Zinn, J., Vogel-Heuser, B., and Gruber, M. (2021). Fault-tolerant control of
programmable logic controller-based production systems with deep reinforcement
learning. J. Mech. Des. 143. doi:10.1115/1.4050624

Zong, Z., Zheng, M., Li, Y., and Jin, D. (2022). Mapdp: Cooperative multi-agent
reinforcement learning to solve pickup and delivery problems. Proc. AAAI Conf.
Artif. Intell. 36, 9980–9988. doi:10.1609/aaai.v36i9.21236

Frontiers in Robotics and AI frontiersin.org21

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

https://doi.org/10.1109/access.2019.2943253
https://doi.org/10.1016/j.procir.2016.11.011
https://doi.org/10.1016/j.ijepes.2020.106211
https://doi.org/10.1109/lra.2019.2903261
https://doi.org/10.1002/sres.2704
https://doi.org/10.1080/08956308.2018.1471277
https://doi.org/10.1080/08956308.2018.1471277
https://doi.org/10.1016/j.eswa.2021.116323
https://doi.org/10.1007/s10845-014-0936-1
https://doi.org/10.1007/s10845-013-0864-5
https://doi.org/10.1016/j.rcim.2022.102324
https://doi.org/10.1016/j.rcim.2022.102324
https://doi.org/10.1016/j.apenergy.2022.118575
https://doi.org/10.1007/s10845-018-1454-3
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1016/j.jmsy.2021.07.015
https://doi.org/10.1109/tii.2022.3143175
https://doi.org/10.1109/tii.2022.3143175
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1016/j.rcim.2021.102227
https://doi.org/10.1016/j.rcim.2021.102202
https://doi.org/10.1115/1.4050624
https://doi.org/10.1609/aaai.v36i9.21236
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340

	A review of the applications of multi-agent reinforcement learning in smart factories
	1 Introduction
	1.1 Research objectives, boundaries, and methodology

	2 Overview of multi-agent reinforcement learning approaches
	3 Applications
	3.1 Scheduling
	3.1.1 Centralized approaches
	3.1.2 Decentralized approaches

	3.2 Transportation and monitoring (moving agents)
	3.2.1 Multi-agent pathfinding
	3.2.2 Pathfinding + scheduling
	3.2.3 Mobile operator
	3.2.4 Overhead hoist transporters
	3.2.5 Pick and place

	3.3 Maintenance
	3.4 Energy
	3.5 Human–robot collaboration
	3.6 Other applications
	3.7 Discussion and potentials

	4 Mapping from smart factory features to multi-agent reinforcement learning features
	5 Conclusion
	Author contributions
	Conflict of interest
	Publisher’s note
	References

