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An arboreal mammal such as a squirrel can amazingly lock its head (and thus

eyes) toward a fixed spot for safe landing while its body is tumbling in air after

unexpectedly being thrown into air. Such an impressive ability of body motion

control of squirrels has been shown in a recent YouTube video, which has

amazed public with over 100 million views. In the video, a squirrel attracted to

food crawled onto an ejection device and was unknowingly ejected into air by

the device. During the resulting projectile flight, the squirrel managed to quickly

turn its head (eyes) toward and then keeps staring at the landing spot until it

safely landed on feet. Understanding the underline dynamics and how the

squirrel does this behavior can inspire robotics researchers to develop bio-

inspired control strategies for challenging robotic operations such as hopping/

jumping robots operating in an unstructured environment. To study this

problem, we implemented a 2D multibody dynamics model, which

simulated the dynamic motion behavior of the main body segments of a

squirrel in a vertical motion plane. The inevitable physical contact between

the body segments is also modeled and simulated. Then, we introduced two

motion control methods aiming at locking the body representing the head of

the squirrel toward a globally fixed spot while the other body segments of the

squirrel were undergoing a general 2D rotation and translation. One of the

control methods is a conventional proportional-derivative (PD) controller, and

the other is a reinforcement learning (RL)-based controller. Our simulation-

based experiment shows that both controllers can achieve the intended control

goal, quickly turning and then locking the head toward a globally fixed spot

under any feasible initial motion conditions. In comparison, the RL-based

method is more robust against random noise in sensor data and also more

robust under unexpected initial conditions.
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1 Introduction

The righting reflex of animals is the ability to correct their

body posture (orientation) from an abnormal posture on

emergency. A well-known example is that when a cat falls

from a high position, it can always manage to change its body

orientation and land right on its feet even if it falls from an

upside-down posture (Kane and Scher, 1969). A similar

phenomenon has also been observed on many other species,

such as lizards (Sinervo and Losos, 1991; Schlesinger et al., 1993)

and rats (Laouris et al., 1990). Such a mid-air body posture

control ability helps animals reduce the risk of body injury from a

free fall. This kind of amazing body posture control (attitude

control) behavior of cats and other animals is difficult to

understand due to the conservation of momentum, which tells

us that in a free fall, nobody (regardless a human or animal) can

change their angular momentum by moving body segments

(head, limbs, tail, etc.) because all the efforts generate internal

forces/moments only. Therefore, the well-known cat free-fall

problem has motivated many research efforts in the past, and

the findings have been well documented (Fernandes et al., 1993;

Arabyan and Tsai, 1998; Weng and Nishimura, 2000; Xu et al.,

2012).Arboreal mammals such as squirrels face higher risk of

unexpected falls than cats (Young and Chadwell, 2020) due to

their natural habitats and aggressive activities. Squirrels are

hardly injured by falls from height because of their impressive

self-control ability of their body posture. In a highly popular

YouTube video (Rober, 2020), squirrels were lured by food onto

an ejection device and they were suddenly ejected into air (as

shown in Figure 1). Obviously, the ejection caused their bodies to

tumble (general 3D rotation) and free fall in air. Amazingly, an

ejected squirrel could quickly (within 0.1 s) turn its head toward

where it would land and then lock its head (thus eyes) to that

direction for staring at the landing spot, while the rest of its body

continued tumbling in air. At the end, the squirrel always

landed at it stared landing spot with its feet touching down

first. The squirrels’ such amazing behavior of locking head

toward a fixed spot understandingly is for better situation

awareness and safe landing. However, the question of how

they can achieve that capability from dynamics and control

perspective has not been studied in the literature. Our research

is to address this problem.

Understanding how animals control their body postures in

the absence of external forces (except gravity) is not only driven

by our scientific curiosity but also highly motivated by

engineering needs, especially robotics. Understandably, the

principles of animals controlling their body postures using

their body part movements can be applied to robots for

achieving similar or even better behavior. In this regard,

research works have been conducted (Shuster et al., 1993;

Tsiotras, 1996). For example, controlling body posture

without external force is necessary in some special task

environments such as space, disaster scene (Gonzalez et al.,

2020), and hopping robots (Yim et al., 2020). Damage by falls

FIGURE 1
Squirrel is able to lock its head (and eyes) toward its landing spot while the rest of its body is tumbling after unknowingly ejected into air by the
ejection platform [snapshots from the video (Rober, 2020)].
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(Cameron and Arkin, 1992) could also be prevented to extend

servicing and lifespan of robots (Bingham et al., 2014).

The research inspired by animal motions to control body

postures can be divided into the following three aspects:

1) Using tails to control their body orientation: This kind of

research particularly focuses on imitating lizards (Jusufi et al.,

2010; Libby et al., 2012; Clark et al., 2021) and geckos (Jusufi

et al., 2008; Siddall et al., 2021). These kinds of arboreal

animals often have a tail with large moment of inertia and a

body without obvious internal motions. Therefore, the

lizards/geckos can reorient or stabilize the body by moving

the tail (Wenger et al., 2016) and they can be simply modeled

as two linked rigid bodies. The tail is known to take a role in

controlling the pitch angle of the lizards/geckos in the air for

landing (Libby et al., 2012; Siddall et al., 2021), air-righting

like a cat (Jusufi et al., 2010, 2008). For gliding lizards, tails

also help adjusting the angle of attack to improve both glide

distance and stability (Clark et al., 2021). Similar work on

squirrels (Fukushima et al., 2021) also explained the stability

using the motion of tails in unexpected falls. Special tails were

added to help robot jumping (Zhao et al., 2013), insect-sized

robot achieving more rapid orientation (Singh et al., 2019),

and more complicated tails (e.g., a three-segment prototype

(Liu and Ben-Tzvi, 2020)) and soft tails (Butt et al., 2021) were

designed to perform as real tails, which is not rigid in reality.

2) Using the whole body to reorient body posture (or attitude)

(Kane and Scher, 1969; Sadati and Meghdari, 2017; Liu et al.,

2020; Yim et al., 2020): In this kind of research, models do not

need a special part that absorbs extra angular momentum,

instead, the control strategy is to redistribute the angular

momentum to different parts of the body to achieve different

goals. For example, cats do not necessarily need their tails to

change their body orientation in air (Fredrickson, 1989).

Hence, the control of a cat-like robot needs to consider all

the joints of its body (Arabyan and Tsai, 1998). Flying snakes

slide with aerial undulation to increase performance and

could be another inspiration for dynamic flying robots

(Yeaton et al., 2020).

3) Using the aerodynamic effect on the special structure of the

body (Li et al., 2016; Norby et al., 2021): Since the motion is in

air, robots can imitate the gliding principle of animals, such as

flying squirrels. Using the aerodynamic effect wisely can

control body attitude and reduce the energy consumption.

The squirrel behavior shown in the study proposed by

Rober (2020) inspired this work. We focus on the control of

turning and locking the head of a squirrel toward the landing

spot when it is initially thrown into air and remains tumbling

in air. We study the possibility of using joint motion control

(like a robot) to regulate the head orientation. For easy

understanding of the dynamics, we use planar multibody

dynamics (in the pitch plane) to model a squirrel. Such a

2D modeling approach has been widely applied by other

researchers for other bio-inspired robotics problems, such

as unmanned aerial vehicle (Bouabdallah and Siegwart,

2007; Yilmaz et al., 2019; Zamora et al., 2020), and other

tasks, such as trajectory tracking (Castillo-Zamora et al.,

2019), grasping objects (Kobilarov, 2014; Zhao et al., 2018),

and sports (table tennis) (Shi et al., 2019).

In the squirrel problem, there are three features in the motion

of sudden ejection of the squirrel:

1) The ejection occurs suddenly so that there is no

preparation time

2) The initial posture (initial motion conditions) is random

3) The flight duration is short, and thus, a timely response is

required

These factors contribute to the challenge of the investigated

motion control. In our study, we apply reinforcement learning

(RL) technology to train a neural network-based control

algorithm to deal with the non-linear dynamics and control

problem just as those having been tried in different bio-inspired

robots (Dooraki and Lee, 2019; Li et al., 2019; Kamali et al., 2020).

At the same time, we also apply a traditional PD controller along

with an optimal trajectory planning approach as an alternative

and baseline for comparison.

We believe that aerodynamics also plays a role in a real

squirrel’s flight behavior because its furry tail can cause enough

air drag (external force) to change its body momentum.

However, in this study we are investigating the dynamics and

control only in the case of conservation of momentum without

external force. We know that animals can achieve their desired

motion behavior by only controlling the relative motions of their

body segments and limbs without air drag on tails. For example,

even a tailless cat can land on its four feet after it is dropped from

an upside-down configuration (Fredrickson, 1989). We leave the

investigation of the complex aerodynamic modeling and analysis

of the furry tails to future research.

The rest of this article is organized as follows: In Section 2, the

dynamics formulation of the model is introduced. Section 3

describes the RL-based method and PD controller. The

simulation environment and results are in Section 4. Finally,

the article is concluded with a discussion in Section 5.

2 Dynamics of the 2D multilink model

2.1 Dynamics

In general, we can model the squirrel with N rigid bodies

connected with each other. Oi, OC, and OW are the origins of the

coordinate frames attached to the ith body, the center of mass

(CoM) of the multibody system, and the inertial frame,

respectively. These symbols are also used to represent their
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associated coordinate frames. Let θ1 be the angle between the

major axis (defined as the y axis) of the first body and the y axis of

frame OC. Then, θi (i = 2, . . . , N) is defined as the angle between

the major axis of the ith and i − 1th body. The configuration of

the system can be determined by θ � [θ1, θ2, . . . , θN]T ∈ RN. A

multibody rigid model of a squirrel with N = 4 is shown in

Figure 2. Next, we can derive the dynamics of the multibody

system (Featherstone, 1984) in frame OC, following Lagrange’s

equations of the second kind. The dynamic equation of the

system is

M θ( )€θ + C θ, _θ( ) _θ � 0, τ + τc[ ]T, (1)

where M(θ) is the positive-definite inertia matrix, which is

determined by the configuration θ, C(θ, _θ) is the Coriolis

matrix, which is determined by the configuration θ and its

derivative _θ. We omit the gravity force term in the left-hand

side since Eq. 1 is derived in the frameOC. In fact, gravity only has

influence on the position, velocity of CoM, and thus the duration

of the flight, but when we focus on the configuration θ only, the

gravity does not have influence. In simulation, we can calcuate θ

and the position of CoM, respectively and separately, as shown in

Section 4.1.

Since we could only control the extra inner wrench on each

joint, the first element of the right-hand side of Eq. 1 should be

zero and the rest of the elements τ ∈ RN−1 are the torques applied
to theN − 1 joints, i.e., the joint control torques. τc is the vector of

the generalized torques caused by collision between body

segments and it is non-zero only if such a collision occurs.

Since we assume that body segment collisions are

intermittent, in our simulation we calculate the velocities right

before and after a collision rather than the specific τc, which we

discuss in detail in Section 2.2. Considering that the CoM of the

system moves only under the action of gravity, the motion of the

system can also be determined in the frame OW.

The configuration θ(t) is determined by three different

factors: 1) the joint control torques; 2) the coupling effect

caused by the joint motion; and 3) the initial motion

conditions. The second term is the main source of non-

linearity. The third term determines the total linear and

angular momentums of the system, which cannot be changed

during the entire flight phase. In this study, we set _θ1(0) � π/2

rad/s and _θi(0) � 0 for i = 2, . . . , N (meaning that the squirrel

rotates at π/2 rad/s at the beginning with respect to where it

stands/sits). In 2D simulation, _θ1(0) cannot be too large,

otherwise, factor 3 mentioned previously determines the

whole flight and make it very difficult to control. In this

study, we particularly focus on joint control of the system to

achieve the goal that the head (body 1) must be quickly turned to

facing the landing spot after ejection and then lock toward the

landing spot throughout the rest of the projectile flight.

2.2 Intermittent contact between the
bodies

When a squirrel (or another animal) is unintentionally

thrown into air leading to tumbling in flight, some of its body

segments will intermittently contact with each other causing

impact and bouncing of the contacting bodies during the flight.

This physical phenomenon should be captured in the modeling

for realistic simulation. To simulate this body segment contact

behavior, we add a contact modeling constraint. In general, we

consider the contact model between bodies i − 1 and i and show

an example with i = 3 in Figure 2. The orange lines are the two

FIGURE 2
Kinematic notation of the multibody system and contact envelope between body i−1 and i with i = 3.
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physical boundaries of body i − 1 with angles αi and βi,

respectively. In this way, body i is restricted between the two

boundaries, i.e., θi ∈ [ − βi, αi], i = 2, . . . , N.

To calculate the new motion state immediately after contact,

we assume two contact points Bi1 and Bi2 on the two boundaries

to determine the contact location. Let |Bi1| � δi1, |Bi2| � δi2, and

θi = αi when the impact occurs. The relative angular velocity of

body i relative to i − 1 is _θi and the relative velocity of Bi1 on body

i relative to i − 1 right before impact is

ΔvBi1 � − _θiδi1 sin θi( ), _θiδi1 cos θi( )[ ]T. (2)

Then, the projected relative velocity of Bi1 on body i relative

to i − 1 in the impact direction is

ΔvPBi1 � R ∑i
j�1

θj⎛⎝ ⎞⎠ΔvBi1 � 0, _θiδi1[ ]T, (3)

where R (·) represents the 2D rotation matrix. Right after the

impact, the relative angular velocity changes to _θi′, and the

separation velocity at Bi1 is

ΔvPBi1 ′ � 0, _θi′δi1[ ]T. (4)

Assuming the coefficient of restitution of the impact is k,

−k _θiδi1 � _θi′δi1. (5)

It is easy to figure out that δi1 (i.e., the position of each contact

point) has no influence on the angular velocity after impact, i.e.,

−k _θi � _θi′. (6)

In addition to Eq. 6, the conservation law of angular

momentum in the frame OC also needs to be satisfied. In

frame OC, the angular momentum of the system is

H � ∑N
i�1

Ji _θi + ycimi _zci − zcimi _yci, (7)

where mi, Ji, yci, and zci are the mass, momentum of inertia,

and y- and z-axis coordinates of the CoM of the ith body,

respectively. Since the coordinates of each CoM are

determined by the configuration θ, H can be rewritten as a

function of θ and _θ and the function is linear with respect to _θ,

namely, H � ~J(θ)T _θ, where ~J can be regarded as an

“equivalent” inertia tensor corresponding to _θ. The

conservation law of angular momentum on the impact

between bodies i − 1 and i is

∑i+1
j�i−1

~Jj ∑j
k�i−1

_θk � ∑i+1
j�i−1

~Jj ∑j
k�i−1

_θk′. (8)

Additionally, the relative angular velocity of body i + 1 with

respect to that of body i should be the same right before and after

the impact, namely,

∑i+1
j�i−1

_θj � ∑i+1
j�i−1

_θj′. (9)

To summarize, Eqs 6, 8, 9 form the equations relating the

angular velocities right before and after the impact. If more than

two bodies simultaneously collide, we can use similar equations

to calculate. For example, if bodies i − 1, i, and i + 1 collide at the

same time, then the equations

∑i+2
j�i−1

~Jj ∑j
k�i−1

_θk � ∑i+2
j�i−1

~Jj ∑j
k�i−1

_θk′

∑i+2
j�i−1

_θj � ∑i+2
j�i−1

_θj′

−k _θi � _θi′
−k _θi+1 � _θi+1′

(10)

can be used to determine the motion state right after the impact.

3 Control method

In this section, we develop the control methodology of

locking the first body of the multibody system (i.e., the head

of the squirrel) toward the landing point during the flight phase

by applying joint control efforts. We apply two different control

methods to achieve the control goal: 1) trajectory planning in

addition to a PD feedback control law and 2) an RL-based control

policy. The first method is a traditional control approach while

the second is a machine learning-based approach.

3.1 Trajectory planning for a PD controller

A PD controller needs a pre-planned motion trajectory as a

reference to determine the position and velocity errors as the

input to the PD control law. Therefore, we need to calculate a

reference trajectory that represents the squirrel’s motion

behavior. It is clear that the CoM of the squirrel follows the

projectile motion trajectory determined by the gravitation and

squirrel’s initial conditions. However, the relative motion of the

individual bodies or joints of the squirrel will be governed by the

multibody dynamics and conservation of angular momentum. As

shown in Section 2, the dynamics of the system is non-linear,

which makes it difficult to derive an analytic solution of the

dynamic system. Hence, we choose to solve a set of optimization

problems for the trajectory planning.Assume D is the fixed

landing point on the ground, R is the moving looking point,

H is the head point, Hp is on the ground, and HHp is parallel to

the z axis of the frame OW, as shown in Figure 3. To ensure the

head (Body 1) to look toward the landing point D at (yl, 0) in

frame OW, θ1 should be equal to γ in Figure 3, which is the angle

between HD (the line between the head point and landing point)

Frontiers in Robotics and AI frontiersin.org05

Ma et al. 10.3389/frobt.2022.1030601

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030601


and the y axis of the frame OW. Then, the optimization

objective is

min
θ

1
2

tan γ − tan θ1( )2. (11)

To avoid singularity when θ1 = π/2 and |DHp| = 0, we use the

following optimization objective instead:

min
θ

1
2
|HHp| cos θ1 − |DHp| sin θ1( )2. (12)

During the flight, the total angular momentum of the system

in the frame OC in Eq. 7 should be constant. Assuming that the

initial angular momentum is H0 and the configuration of the

system at time = t is θ(t), then from time = s to time = s + δs,

where δs is a short time period

∫s+δs

s

~J θ t( )( )T _θ t( ) dt � H0δs. (13)

If ~J(θ(t)) remains almost constant, i.e., ~J(θ(s)), during δs,

then

~J θ s( )( )T θ s + δs( ) − θ s( )( ) ≈ H0δs. (14)

However, during simulation, we find that if we set D as the

landing point from the beginning, the configuration solution of

the system at time = 0 will be quite different from the initial

configuration, and Eq. 14 is no longer satisfied. To solve this

problem, we introduce a moving point Df on the ground as a

pseudo landing point at (ypl(t), 0), whose y position is defined as

ypl t( ) � max yl, yml t( )( ), (15)
where

yml t( ) � yR0 − g yR0 − yl( )
0.2 × _yCoM +

�������������
_yCoM

2 + 2gzCoM
√( ) t, (16)

where yR0 is the initial y coordinate of R in Figure 3 and g =

9.81m/s2 is the gravity acceleration. In this way, Df moves from

the initial position of R to the target point D in the process, and

thus, we have Algorithm 1 for calculating the reference trajectory.

Algorithm 1. Calculation of the reference trajectory.

Suppose a reference trajectory θr(t) is obtained from

Algorithm 1, then we propose a PD controller to allow the

system to track the reference trajectory in the way, as shown

in Figure 4. Suppose ~θ � [θ2, . . . , θN]T and ~θr � [θ2r, . . . , θNr]T,
the tracking error is calculated as

ε � 2 ~θr − ~θ( )/π. (17)

We choose the control gains of the PD controller on each

joint separately. Let joint i be the joint between body i − 1 and i

and Kpi, Kdi be the corresponding control gains, then the output

of the PD control law is defined as

τ � Kpε + Kd
dε
dt

≈ Kpε + Kd
ε − εlast
Δt , (18)

where Kp = diag (Kp2, Kp3, . . . , KpN) and Kd = diag (Kd2, Kd3, . . . ,

KdN). Physically, τ is a vector whose components are the required

joint control torques.

3.2 Reinforcement learning-based
method

Conventional control methods, as the one described in

Section 3.1, usually require trajectory planning, which is a

difficult problem if one does not fully understand how a

FIGURE 3
Parameters to optimize during the flight phase.
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squirrel controls its body segments (i.e., joint motions) for a

target motion behavior. In fact, trajectory planning can be

avoided by applying reinforcement learning technology in the

control solution for the squirrel to achieve an expected

behavior. In this section, we apply the proximal policy

optimization (PPO) algorithm (Schulman et al., 2017) as

the RL method to train a control policy for the squirrel to

achieve the desired behavior.

PPO has an actor-critic architecture and works for both

discrete and continuous action domains. It trains a policy to

obtain the maximum expectation of total reward which we set

before a training. Therefore, if we set the reward properly, the

policy trained by PPO will implement specific functions. To

access the desired policy πΘ using the PPO2 algorithm

(Schulman et al., 2017), the optimization objective L to

maximize is defined as

LΘ′ θ( ) � E st ,at( )~πΘ′ min
pΘ at|st( )
pΘ′ at|st( )A

Θ′ st, at( ),[
clip

pΘ at|st( )
pΘ′ at|st( ), 1 − ϵ, 1 + ϵ( )AΘ′ st, at( )] ,

(19)
where (st, at) represent the state and action of the agent at time =

t; πΘ′ represents another policy with parameter Θ′ (usually

similar to πΘ by applying minimization and clip function);

pΘ/pΘ′ represents corresponding probability; and AΘ(st, at)

represents the advantage function under state st and action at
of policy πΘ. Usually, for an RL trajectory τwith length T (defined

as a series of state-action pair (s0, a1, s1, . . . , aT, sT)), we set

AΘ st, at( ) � ∑T
t′�t

γt′−trt′ − E R τ( )[ ], (20)

where rt′ denotes the one-step reward at t′ in an RL trajectory

τ; γ ∈ [0, 1) denotes the discount factor; and E [R(τ)]

(approximated by a neural network) is the expectation of

trajectory reward R(τ).The control method is based on the

PPO2 algorithm, as shown in Figure 5. The vector st describes

the current status of the system and it consists of the head

coordinate in the frame OW, θ, _θ, and the velocity of the CoM

in the frame OW. The vector τ is the control torque applied on

each joint and is sampled from a trainable normal

distribution. For one-step reward, since a desired policy

should 1) minimize the distance between point R and the

landing point (or the pseudo landing point); 2) avoid high

angular velocities; and 3) avoid high joint torques. The first

objective is to lock the head (body 1) toward the landing point,

while the other two are to reduce the kinetic energy. Thus,

there are three different settings.

r1 � 0.1exp − yR − yl

∣∣∣∣ ∣∣∣∣( ) + 0.01exp −0.1 _θ
���� ����( ) + 0.001exp − τ‖ ‖( )

r2 � 0.1exp − yR − yl

∣∣∣∣ ∣∣∣∣( ) − 0.001 _θ
���� ���� − 0.001 τ‖ ‖

r3 � 0.1exp − yR − ypl

∣∣∣∣ ∣∣∣∣( ) − 0.001 _θ
���� ���� − 0.001 τ‖ ‖

.

(21)

FIGURE 4
Diagram of the joint PD control process.

FIGURE 5
Diagram of the RL-based process.
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These three reward settings aim at minimizing the

distance between point D (or Df) and R, the l2-norm of _θ

and τ, respectively. The difference among the reward settings

also focuses on a smoother configuration trajectory from two

aspects: 1) training with Df instead of D and 2) different ways

of penalty on _θ and τ.

We train control policies with the three rewards for

1,000 epochs with 2,048 timesteps in each epoch. The values

of the reward function over the training process are shown in

Figure 6, where the rewards all tended to saturate near end and

little gain can be obtained from further training.

4 Simulation results and discussion

4.1 Simulation environment

The simulation environment was established on the

Ubuntu 20.04 system with a 16 GB RAM and an Intel Core

i9-9900kf CPU. We simulated the motion behavior by

calculating and recording the motion for each time step

using Python. The process is described in Algorithm 2. It

used the Newmark-beta method (Newmark, 1959), as the

method of numerical integration to solve Eq. 1 with time

step Δt = 0.001 s.

Algorithm 2. The process of the simulation.

In the simulation, we set N = 4 and the four bodies are the

head, upper body (chest portion of the body trunk), lower body

(abdomen portion of the body trunk), and tail. The model

parameters and the selected PD control gains are shown in

Table 1.The platform ejecting the squirrel has an initial

angular velocity of 4π rad/s, and thus the velocity of the CoM

is determined by where the squirrel is initially located on the

platform. However, once the squirrel detects the sudden

movement of the platform, it will quickly move its body to

adjust its body posture and thus its initial angular velocity can be

different from that of the platform. In the simulation, we set the

joint motion for the squirrel model as π/2 rad/s, as shown in

Table 1. The reference trajectory generated based on Algorithm 1

is shown in Figure 7.

In the following results, the simulation has been repeated

100 times with or without random noise in the feedback

information. The noise is defined as a Gaussian distribution

of 0 mean and 0.05A standard deviation, where A is the maximal

measuring range of an input variable (e.g., θ4 ∈ [ − 0.75π, 0.75π]

then A = 0.75π). Therefore, both the nominal motion and noised

motion (with the standard deviation of the error distribution) of

the squirrel are shown in the following sections.

4.2 Control of the configuration

In this section, we discuss the simulation results obtained

from different controlling methods. First, θ1 is a key parameter of

the behavior since it is the squirrel’s head direction and also

directly connected with the distance of DR in the control

algorithm.

Simulated squirrel’s head orientation (θ1 values) using

different control methods are shown in Figure 8. The

reference value of θ1 (black line) has the following features.

The head motion θ1 can be divided into three parts: 1)

quickly turns the head to the orientation to be able to see the

landing point (0 s—0.2 s in Figure 7). In this part, the squirrel

adjusts its configuration from its initial configuration to the one

such that it faces and can observe the landing point. 2) A slow

increase in time (0.2 s—0.7 s in Figure 7), and this is the main

part of the flight in which the squirrel locks its head toward the

landing spot to maintain its visibility. The slow rotation of the

head is due to its motion along the projectile trajectory. 3) Rapid

decrease in time near landing (0.7 s—0.8375 s in Figure 7). In this

part, the squirrel needs to quickly adjust its head orientation near

the landing point to maintain its head locking toward the landing

point near the end of the projectile trajectory.

The PD controller provides almost the same motion

trajectory of θ1 as the pre-planned reference, but θ1 from PPO

with r1 and r2 has a shorter part 1 (namely, reaching the locking

posture much faster) and a longer part 2, that is because at part 2,

the distance of DR is close to zero, and thus the agent gets a

higher reward. However, a shorter part 1 may result in a more

FIGURE 6
Values of the reward function over the training process.
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rapid change of the configuration, for example, a higher angular

acceleration in each joint, which may exceed the system’s power

limit. The reward r3 is set to extend part 1, but as shown in

Figure 8, θ1 does not follow the reference at the beginning,

instead, it decreases quickly as in PPO with reward r1 and r2
and increases to target θ1 soon. Therefore, r3 did not limit the

sudden decrease at the beginning. On the contrary, extra motion

is introduced. It should be emphasized that the PD controller

tracked the reference trajectory better because it is designed to

track the reference, while the RL control does not have any

knowledge of the reference. From overall behavior perspective,

both controllers achieved the control goal, namely, to quickly

turn the head (eyes) toward the landing point after ejected into

air and then remained looking at the landing point during the

flight until landing.The motion histories of the other joints

during the flight are shown in Figure 9. The figure

demonstrates that all the joint motions from RL methods are

very different from each other and from those of the reference

trajectory. For example, in the reference trajectory, the angle

between bodies 1 and 2 (i.e., θ2) move slowly to 60° (i.e., α1) at

about 0.6 s, whereas in RL methods, θ2 reaches 60° quickly and

maintain at the angle for all the time. However, θ1 values from all

methods including the reference trajectory are the same. This

phenomenon emphasizes that the reference trajectory may not be

a naturally optimal solution although it was calculated from an

optimization problem.

TABLE 1 Parameters of the model, kinematics, and PD controller.

Data item Value Data item Value Data item Value Data item Value

m1 0.05 kg l4 0.2 m k 0 Kp(Joint 1) 0.66

m2 0.35 kg b1 0.05 m α2 60° Kp(Joint 2) 0.55

m3 0.4 kg b2 0.07 m α3 90° Kp(Joint 3) 0.19

m4 0.2 kg b3 0.1 m α4 135° Kd (Joint 1) 0.009

l1 0.06 m b4 0.02 m β2 90° Kd (Joint 2) 0.011

l2 0.1 m θ(0) [61°, 0°, 0°, 0°] β3 120° Kd (Joint 3) 0.009

l3 0.14 m _θ(0) [90,0,0,0] deg/s β4 135°

FIGURE 7
Reference trajectory calculated by Algorithm 1.

FIGURE 8
Statistical results of θ1 simulated using different control methods. (A)Without noise and (B)with noise. The colored lines show the average with
the same colored area as a standard deviation. We sample the standard deviation on some points shown as the vertical bars. The same change applies
to all Figures 8–12.
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4.3 Control of the distance of DR

The distance between D and R is an important and

straightforward index to evaluate a control strategy of locking

the head toward the landing point. Considering that the distance

values of DR ranges from 0 to infinity, any distance values over

10 m were recorded as 10 m in our simulation. The value of the

DR distance for different control strategies is shown in Figure 11.

We divide the flight period into three phases as defined in Section

4.2. The first phase lasts about 0.2 s, and the DR distance

decreases quickly to near zero, while the second phase lasts

about 0.5 s, and the main purpose of the strategy transforms

to maintaining the DR distance near zero. The third phase lasts

about 0.13 s, and the main purpose is the same as the second

phase but requiring a more rapid rotation of head. In Figure 10,

we use red, green, and yellow background to distinguish the three

phases.

Figures 10A, B demonstrate some results about the accuracy

of the different strategies. First, the PD controller performs better

than the RL method under ideal situation (i.e., without noise) but

becomes difficult after introducing noise. When random noise is

applied as in the reality, the convergence speed of theDR distance

using the PD controller obviously decreases, while the standard

deviation increases, suggesting that the pose at the same time in

different ejections varies from each other due to the random

noise. However, if the standard deviation of the Gaussian

distribution of the noise decreases from 0.05A to 0.02A, where

A is the maximal measuring range of an input variable, the PD

controller could still maintain the performance better than the

RL method, as shown in Figure 10C, suggesting that the PD

FIGURE 9
Statistical results of motion behavior of joint 2, 3, and 4 for different control methods. (A) Angle between bodies 1 and 2 (θ2) without noise. (B)
Angle between bodies 1 and 2 (θ2) with noise. (C) Angle between bodies 2 and 3 (θ3) without noise. (D) Angle between bodies 2 and 3 (θ3) with noise.
(E) Angle between bodies 3 and 4 (θ4) without noise. (F) Angle between bodies 3 and 4 (θ4) without noise.
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controller also has certain robustness to noise, but not as robust

as the RL method.

Second, all the three RL methods are not so sensitive to the

noise as the PD controller, but their variation (with respect to

random noise) is more obvious near the landing time. We

infer the reason would be that, as the system moves near the

landing time, the motion is in the part 3 region, as we have

discussed in Section 4.2. However, as the vast majority of the

flight is in part 2, the RL method may have learned the strategy

that weighs part 2 performance much more than the part

FIGURE 10
Statistical results of DR distance values simulated with different control methods. (A) Without noise, (B) with noise (0.05A), and (C) with noise
(0.02A) (A is the maximal measuring range of an input variable).
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3 performance and is more sensitive when the system changes

more frequently.

Third, among the three one-step reward designs, the PPO

method with r2 is the most robust one. There are two aspects for

the reason. The first is that the l2-norm provides more penalty

than the exponent of the l2-norm when _θ and τ become too large.

The second is that as the set of Df in the reward cannot smooth

the motion, as shown in Figures 7, 8, the direct reward of the DR

distance can lead to a longer part 2, which may contribute to the

less joint motion variations.

FIGURE 11
Statistical results of DR distance values simulated with different control methods and random initial poses (without noise).

FIGURE 12
Statistical results ofDR distance values simulatedwith different controlmethods andmodel errors of 5%–20% (without noise). (A) PD controller,
(B) PPO method with r1, (C) PPO method with r2, and (D) PPO method with r3.
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4.4 Control performance with random
initial poses

For unexpectedly ejected squirrels, the initial pose is

unpredictable, thus the motion should be random in joint space.

In this section, we also test the performance of different methods

with random initial poses which satisfy: 1) θ1 = 61°; 2) − βi ≤ θi ≤ αi
for i = 2, 3, 4; and 3) all bodies should stay above the platform. Since

the joint initial motions are random, we only record theDR distance

to evaluate the performances. Figure 11 illustrates the results.

Compared with Figure 10A, we find that the PD controller

cannot deal with the random initial conditions well, and that is

because the ejection is unexpected and it is impossible to calculate a

reference trajectory for each random initial pose, thus we can only

use the same reference trajectory, which influences the calculation of

error ε for the PD controller. On the other hand, the PPO method

keeps almost the same performance with random initial poses,

which suggests the robustness of the reinforcement learning-based

control strategy.

4.5 Control performance with slightly
changed models

In reality, the physical properties of a squirrel (i.e., mass and

size parameters) are changing over time, but the squirrel can

always lock its head/eyes toward the landing point while body

tumbling in air. Therefore, it is also important to test the

robustness of the strategy provided by the PD controller/RL

method. In this section, we randomly changed the parameters of

our multilink model, i.e., mass/length/width of each body, by ±

5%/10%/15%/20% without tuning the PD control law or re-

training the RL control policy and then observed the

corresponding performance of the controllers.

The results are shown in Figure 12A. For the PD controller,

Figures 12A illustrates that the PD controller is robust to model

errors by 15%. When the model errors reach 20%, the standard

deviation of DR distance grows significantly, which means that the

motion varies in each simulation. For the RLmethod, similar results

are shown in Figures 12B–D; 10%ofmodel errors does not influence

the DR distance, but 15% and 20% of model errors can cause

uncertainty in different stage of motions. However, in the sense of

average, both the PD controller and RL method are robust to the

model error even by 20% (except for the PPOmethod with r1, but it

can still maintain the average under 15% errors).

5 Conclusion and future work

In this work, we studied the dynamics and control of a

squirrel’s amazing capability of maintaining its head facing

the landing spot, while its other body segments tumbling in

air after it is unexpectedly ejected into air from any initial

pose. To understand the dynamics and explain the observed

real squirrel’s behavior, we developed a simplified 2D

multibody dynamics model with body segment collision

constraints of a squirrel and applied two very different

control methods to reproduce the observed squirrel

behavior. The first control method is to plan a reference

motion trajectory first, representing the squirrel motion

behavior and then apply a PD feedback controller to track

the planned reference trajectory. The second control method

is to use a reinforcement learning process to train a deep

neuron-network-based control policy to achieve the squirrel

motion behavior. In both control methods, random noise

(white noise) is added to the sensed feedback motion data to

make the simulated situation closer to the reality. Simulation

results demonstrated that both methods successfully achieved

the expected control goal of quickly turning the head toward

the landing point and then locking the head toward the

landing spot during the flight phase. Comparing the two

control methods, the RL method performs better in terms

of closer to expected behavior and robustness against sensor

errors. However, the RL method shows more variant joint

motions with respect to noisy input data near the landing

time, but these variations are all acceptable because they all

achieved the targeted head motion behavior. Another main

advantage of the RL method is that we do not need to plan a

reference trajectory first, and thus the method would suit

more to the natural environment and lead to more natural

outcome.

The future work especially focuses on the following

aspects: 1) further development of the one-step reward

setting for the RL process. Current reward settings still

converge to local optimal and cannot stretch the body

enough. 2) Expand the dynamics model to the 3D space.

To achieve this expansion, the segmentation of the motion

and multi-layer control are necessary. Another future research

direction of 3D motion is gait analysis, which is to reveal

repetitive motion pattern of body segments including legs and

tail. The research about locomotion and gait analysis has been

explored and studied in legged or snake-like animals or robots

(Ostrowski and Burdick, 1998; Guo et al., 2018). Specific body

relative motion gaits may exist in squirrel locomotion while in

the air, especially the tail motion (Fukushima et al., 2021), but

we need to further explore the locomotion in real squirrels and

apply the gaits in a more rapid duration. 3) We should try

establishing a larger dataset of real squirrel motion behavior.

This will support us to obtain more scientific understanding of

the observed squirrel behavior and develop better control

design for squirrel-like challenging operations of bio-

inspired robots or other autonomous systems.
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