
A data-driven approach for motion
planning of industrial robots
controlled by high-level motion
commands

Shuxiao Hou*, Mohamad Bdiwi, Aquib Rashid, Sebastian Krusche
and Steffen Ihlenfeldt

Fraunhofer Institute for Machine Tools and Forming Technology (Fraunhofer IWU), Chemnitz, Germany

Most motion planners generate trajectories as low-level control inputs, such as joint
torque or interpolation of joint angles, which cannot be deployed directly in most
industrial robot control systems. Some industrial robot systems provide interfaces to
execute planned trajectories by an additional control loop with low-level control
inputs. However, there is a geometric and temporal deviation between the executed
and the planned motions due to the inaccurate estimation of the inaccessible robot
dynamic behavior and controller parameters in the planning phase. This deviation
can lead to collisions or dangerous situations, especially in heavy-duty industrial
robot applications where high-speed and long-distance motions are widely used.
When deploying the planned robot motion, the actual robot motion needs to be
iteratively checked and adjusted to avoid collisions caused by the deviation between
the planned and the executed motions. This process takes a lot of time and
engineering effort. Therefore, the state-of-the-art methods no longer meet the
needs of today’s agile manufacturing for robotic systems that should rapidly plan and
deploy new robot motions for different tasks. We present a data-driven motion
planning approach using a neural network structure to simultaneously learn high-
level motion commands and robot dynamics from acquired realistic collision-free
trajectories. The trained neural network can generate trajectory in the form of high-
level commands, such as Point-to-Point and Linear motion commands, which can
be executed directly by the robot control system. The result carried out in various
experimental scenarios has shown that the geometric and temporal deviation
between the executed and the planned motions by the proposed approach has
been significantly reduced, even if without access to the “black box” parameters of
the robot. Furthermore, the proposed approach can generate new collision-free
trajectories up to 10 times faster than benchmark motion planners.

KEYWORDS

robot motion planning, data driven robot learning, neural network, industrial robot, robot
simulation

1 Introduction

Motion Planning is one of the fundamental problems in robotics fields. For decades
numerous methods have been proposed for this task by leveraging two common techniques:
Optimization-based and heuristic search-based techniques. The trajectories generated by both
motion planning paradigms usually include a large number of via points (Figure 1A) and
require post-processing to deploy to industrial robots.

OPEN ACCESS

EDITED BY

Jose Luis Sanchez-Lopez,
University of Luxembourg, Luxembourg

REVIEWED BY

Omid Elhaki,
Islamic Azad University of Najafabad, Iran
Hongchao Ji,
North China University of Science and
Technology, China

*CORRESPONDENCE

Shuxiao Hou,
shuxiao.hou@iwu.fraunhofer.de

SPECIALTY SECTION

This article was submitted to Robotic
Control Systems,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 29 August 2022
ACCEPTED 27 December 2022
PUBLISHED 12 January 2023

CITATION

Hou S, Bdiwi M, Rashid A, Krusche S and
Ihlenfeldt S (2023), A data-driven approach
for motion planning of industrial robots
controlled by high-level
motion commands.
Front. Robot. AI 9:1030668.
doi: 10.3389/frobt.2022.1030668

COPYRIGHT

© 2023 Hou, Bdiwi, Rashid, Krusche and
Ihlenfeldt. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 12 January 2023
DOI 10.3389/frobt.2022.1030668

https://www.frontiersin.org/articles/10.3389/frobt.2022.1030668/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.1030668/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.1030668/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.1030668/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.1030668&domain=pdf&date_stamp=2023-01-12
mailto:shuxiao.hou@iwu.fraunhofer.de
mailto:shuxiao.hou@iwu.fraunhofer.de
https://doi.org/10.3389/frobt.2022.1030668
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.1030668

The trajectories of the industrial robot are typically programmed
in the native language of the robot manufacturer. These programming
languages pre-define a set of high-level motion commands. The
typically high-level motion commands are Point-to-Point, Linear
and Cycle motion. The robot control system provided by the robot
manufacturer has its own interpolation algorithm and control loop to
execute the programmed motion. These control parameters are finely
tuned by the robot manufacturer according to the dynamic behavior of
each robot and they are usually inaccessible for the user.

There are two ways to plan and deploy robot motion on most
control systems of industrial robots.

1.1 Planning and deploying robot motion with
high-level motion commands

For some robot systems, the user can only use the pre-defined
high-level motion commands and adapt their parameters to program
the desired robot motions, such as programming the start and goal
configuration of Point-to-Point motion. In this case, most methods
use random shortcuts to reduce the amounts of via points. For
example (Hauser and Ng-Thow-Hing, 2010), uses various
interpolation algorithms, such as parabola and linear interpolation,
to directly connect two via points on the trajectory. If the direct
connection is collision-free, the redundant via points can be
eliminated (Figure 1C). Since some parameters of the robot are
inaccessible, such as dynamic behavior and control parameters,
these interpolation algorithms usually use estimated values to
interpolate the robot’s motion. Then the post-processed trajectory
should be converted to pre-defined high-level motion commands and
imported into robot control systems (Figure 2B) in the offline phase.
In the online phase, the robot control system provided by the robot
manufacturer executes the motion commands. The robot control
system uses the interpolation algorithm and control parameters
implemented and fine-tuned by the robot manufacturer, which
differ from the estimated value used in the offline phase. It may
result in a geometric and temporal deviation between the executed and
the planned motions. The geometric deviation may cause a collision
between the robot and static environments. For example, Figure 1
shows the trajectory planned by the interpolation algorithm used by
the shortcut method during offline post-processing, and Figure 2
shows the actual robot motion executed by a real robot control system
with the interpolation algorithm implemented by robot
manufacturers.

1.2 Planning and deploying robot motion with
low-level motion commands

Some robot control systems with an additional communication
interface allow an additional control loop to command the robots with
low-level control inputs in real time, such as position, the velocity of
robot joints (yellow arrows in Figure 2A). Most state-of-the-art
planners interpolate the motion between the via points to low-level
control inputs in the offline phase (Figure 1B) and use an additional
controller to execute the interpolated trajectories (Figure 2A). (Elhaki
and Shojaei, 2022; Rahali et al., 2022; Tan et al., 2023) use various
control algorithms in the online phase to minimize the deviation
between the executed and the planned motion. However, in heavy-

duty industrial robot applications that widely use high-speed and
long-distance motions, the deviation becomes significant. For
example, in the motion planning framework MoveIt (Chitta et al.,
2012), the user should define the maximum jerk and acceleration of
joints to interpolate the planned motion in the offline phase. In the
online phase, the additional controller tracks the planned motion in
real time. If the actual maximum acceleration of the joint during the
execution can not reach the values defined by the user, the executed
robot motion is slower than planned. This temporal deviation may
lead to a collision between the robot and dynamic obstacles such as
other robots. For example, in some multi-robot system, the planner
schedule multiple robots to pass through a shared area at different
timesteps. A robot may collide with others when it enters the shared
area earlier or later than planned.

1.3 Contributions

The robot motions planned in the described two ways above
should be verified in deploying phase to check whether the geometric
and temporal deviation between planning and executing of robot
motion results in a collision. When the deviation leads to a collision,
the actual robot motion must be adjusted and verified again. This
process usually iterates manually many times, thus increasing the
effort of deploying robot motion.

Most state-of-the-art collision-free motion planning methods
focus on improving the performance of motion planning
algorithms in the offline phase, such as computation time and
success rate of collision avoidance. Today’s agile manufacturing
systems require not only automatic robot motion planning but also
rapid deployment of robot motions. Therefore, more research is still
needed to bridge the gap between offline planning and the rapid
deployment of robot motions for reliable online execution. Therefore,
we proposed a data-driven motion planning approach that considers
deploying and deploying the planned motion already in the offline
planning phase. The proposed approach overcomes the problems
mentioned above:

(1) The proposed approach uses a neural network structure to
simultaneously learn high-level commands and robot dynamics
from acquired realistic collision-free trajectories. In the offline
planning phase, the trained neural network structure can generate
collision-free trajectory as high-level motion commands, such as
long-distance, high-speed Point-to-Point and Linear motion.
These motion commands can be converted as manufacture-
specifical robot language and directly imported into any robot
control system (Figure 2C). Because the robot control system can
execute these motion commands, the proposed approach does not
need an additional control loop to control robot motions in real
time and constructs a simpler control architecture. Furthermore,
the robot manufacturers tuned the control algorithm of their
robot control systems by fully accessing the robot parameters.
Therefore, the proposed approach achieves a more stable control
structure than the methods described in Figure 2A.

(2) The neural network learns realistic robot dynamics and motion
interpolation from actual robot motion execution and uses them
to accurately calculate the actual robot motions executed by the
robot control system. For example, at each search step in the
offline planning phase, the proposed approach use learned robot

Frontiers in Robotics and AI frontiersin.org02

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

dynamic behavior to interpolate the robot motion and check
whether the robot collides with other obstacles. In the proposed
approach, the planned robot motion deviates from the realistic
robot motion slightly. Therefore, it can be guaranteed that as long
as the robot motion planned offline is collision-free, the robot will
also not collide with obstacles as executed by the robot control
system. This feature addresses the problem described in Section

1.2. The robot motion planned by the proposed approach does not
need to be verified iteratively physically during the deployment
phase, thus reducing the manual effort and the time-consuming of
the engineering process.

The proposed approach is evaluated on two different industrial
applications. The results indicate that the proposed approach can

FIGURE 1
(A) Generated trajectory with a large number of via points (violet dots). (B) An interpolated trajectory interpolated as low-level control inputs (blue dots).
(C) post-processed trajectory using shortcuts (green dots are reduced via points after shortcuts).

FIGURE 2
(A) Deploying trajectories using post-processing and external control loop. (B) Deploying trajectories using post-processing and robot’s own control
system. (C) Direct Deploying trajectories based on High-Level Motion Commands without post-processing and using robot’s own control system.

Frontiers in Robotics and AI frontiersin.org03

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

generate high-level motion commands directly deployed to real robot
systems with a reduced temporal and spatial deviation between executed
and planned motions.

2 Related works

2.1 Motion planning methods

2.1.1 Optimization-based motion planning methods
Optimization-based motion planning originated in the field of

optimal control and has been used for decades in robotics. The
trajectories are usually discretized into via points, equally spaced in
time. The control inputs at every via point are considered as
optimization variables, such as angle, velocity and acceleration of robot
joints. The collision and the kinematics limits of robot joints are modeled
as constraint items. The length, smoothness and execution time of
trajectory are described as cost functions that should be minimized.
Ratliff et al. (2009), Schulman et al. (2013), Zucker et al. (2013), and
Schulman et al. (2014) use different approaches to optimize the modeled
motion planning problems with various constraints and objectives. The
trajectories are usually finely discretized into a large number of via points
to find valid solutions in complex and high-dimensional solution spaces.

2.1.2 Sampling-based heuristic search methods
In the past several decades, the sampling-based heuristic search

method has been widely adopted in the field of motion planning in
high-dimensional configuration space with great success. Rapidly-
exploring Random Trees (RRT) (LaValle, 1998), optimal Rapidly-
exploring Random Trees (RRT*) (Karaman and Frazzoli, 2011), Fast
Marching Tree (FMT) (Janson et al., 2015) and their extensions
(Kuffner and LaValle, 2000; Karaman and Frazzoli, 2011; Bdiwi
et al., 2018; Otto et al., 2021) explore the configuration space
incrementally by connecting feasible samples to a search tree. As
the complexity of environments and the DOFs (degrees of freedom) of
robot increase, samples are often infeasible. Therefore, the number of
samples needs to be raised to achieve probabilistic completeness.

Multiple informed methods explore regions with a higher
probability of generating feasible paths to improve the searching
efficiency in the configuration space of robots. Data-driven
techniques such as supervised learning, imitation learning and deep
reinforcement learning techniques are quickly becoming useful tools
to improve the efficiency of informed searching in high-dimensional
configuration space.

2.1.2.1 Learning sampling strategy
Cheng et al. (2020) learns to predict the optimal sampling distribution

over low-cost, valid samples. Based on the learned optimal sampling
distribution, the classical searching algorithms are used in the planning
phase to guide the search progress towards the region with more optimal,
feasible paths. Similarly (Gaebert and Thomas, 2022), uses a CVAE
Network to learn a sampling strategy that draws samples based on the
environment perception to improve sampling efficiency. In the planning
phase, the learned adaptive sampling strategy is used with an adaptive
probability λ and a uniform sampling with 1 − λ. The combination of
these two strategies guarantees asymptotic optimality. Instead of implicit
learning of sampling distribution (Molina et al., 2020; Shah and
Srivastava, 2022), learn to predict critical regions that have a high
density of feasible motion plans in the given environments.

2.2.2.2 End-to-end learning low-level control policy
In addition to the learning of sampling strategy (Bhardwaj et al.,

2017; Huh and Lee, 2018; Jurgenson and Tamar, 2019; Qureshi et al.,
2019; Qureshi et al., 2020; Jinwook et al., 2022), learn to directly
generate end-to-end low-level control policy to guide the search
progress efficiently towards goal regions. These methods learn
search strategies from previous planning problems and apply them
to new ones. Qureshi et al. (2019) and Qureshi et al. (2020) designs two
neural networks. The first one is embedding the points cloud of the
environment into a hidden vector. The second network takes the
environment embedding, current state, start and goal state as inputs to
generate a sample for the next search step. In (Huh and Lee, 2018), a
reinforcement learning approach is proposed. The control actions and
corresponding state-action values in a given state can be learned in the
learning phase. The trajectory expands towards the goal in the
planning phase based on the state-action value of possible control
action at each search step. Bhardwaj et al. (2017) defines the search
process as a Markov decision process and uses dynamic programming
to estimate the cost-to-go value of each possible sample. In (Jurgenson
and Tamar, 2019), a modified Deep Deterministic Policy Gradient
(DDPG) algorithm is proposed to learn control policy through a trial-
and-error fashion, which generates data with a more reasonable
distribution, including collision-free expert data and data that
escapes the obstacle. Jinwook et al. (2022), new trains a Higher
Order Function network to represent the cost-to-go function over
the configuration space. In the planning phase, the trained network
generates a smooth and continuous cost-to-go function directly from
workspace information. The gradient of the cost-to-go function yields
continuous collision-free trajectories.

The aforementioned learning-based methods generate low-level
control inputs, such as position, the velocity of robot joints. These low-
level control inputs should be post-processed to be deployed to real
robot systems.

2.2 Deploying generated trajectories to robot
system

The works mentioned above focus on improving and verifying the
performance of collision-free motion planning algorithms in
simulation environments rather than on how to deploy the
planned robot motion in real robot systems. Bhardwaj et al. (2017);
Jurgenson and Tamar (2019), Molina et al. (2020), and Shah and
Srivastava (2022) only verify their algorithms in simulation
environments. Huh and Lee (2018), Qureshi et al. (2019), Cheng
et al. (2020), Qureshi et al. (2020), Gaebert and Thomas (2022), and
Jinwook et al. (2022) deploy planned trajectories in real robot systems
by using additional controllers to control the robot motion in real
time, such as Robot Operation System (Quigley et al., 2009). In these
methods, the robots usually run at low speeds to ensure that the robot
can precisely track the planned collision-free motion.

Rahali et al. (2022) and Tan et al. (2023) use different
algorithms to reduce the motion tracking errors of robots.
However, these methods require the robot’s dynamics to be
identified and modeled. The algorithms in (Elhaki et al., 2022;
Elhaki and Shojaei, 2022) are designed to control multibody
systems, such as tractors and underwater vehicles, without
requiring detailed system models. Different from these systems,
industrial robots have own control systems. Any additional control

Frontiers in Robotics and AI frontiersin.org04

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

algorithms must run on an additional controller and control the
robot’s motors through an interface provided by the robot own
control system (Figure 2A). The stability of this control architecture
cannot be guaranteed because some parameters of the internal
control loop in the robot control system are not accessible.
Furthermore, the communication time between the additional
controller and the robot control system also affects the stability
and performance of the entire control architecture. For example,
the control systems of KUKA heavy-duty robots provide an
Ethernet-based communication interface (Robot Sensor
Interface- RSI) to control the robot motion using an additional
control loop. The cycle time of this communication interface is
4 ms. Therefore, it limits the control algorithms to reduce tracking
errors in higher control frequency. In some industrial applications,
the high-speed and long-distance robot motions in 4msmay lead to
significant tracking errors.

Again, the methods mentioned above use additional control loops
to control the robot in real time to track the motion planned and
interpolated in the offline phase. In contrast, the proposed approach
does not require an additional control loop to track the planned
motion since the proposed approach generates collision-free motions
as high-level commands, which can be executed directly by robot
control systems with a small deviation from the planned motion of less
than .5% on average.

3 Problem definition

This section describes the notations used in this work and formally
defines the problem we consider.

Let χ ⊆ Rd be the configuration space of a robot system with
degrees of freedom d ∈ N, d> 2. Let U ⊆ Rd be the control input space
of a robotics system. Let the discrete-time dynamics of the robot be
defined by fχ :

xk+1 � fχ xk, uk() (1)
where xk ∈ χ and uk ∈ U denote the state and control input of the
system at k-th search step.

In contrast to the approaches described in (Bhardwaj et al., 2017;
Huh and Lee, 2018; Jurgenson and Tamar, 2019; Qureshi et al., 2019;
Cheng et al., 2020; Molina et al., 2020; Qureshi et al., 2020; Gaebert and
Thomas, 2022; Jinwook et al., 2022; Shah and Srivastava, 2022), this
work considers the high-level motion commands commonly used in
robot handling applications as control inputs uk. These commands
typically consist of motion types (such as Point-to-Point, Linear and
Circle motion) and motion parameters such as motion velocity and
the desired state to be reached.

This work considers static obstacles and dynamic obstacles whose
motions are known. For example, for the multi-robot system, motions
of all robots are usually planned one by one. When planning the
motion of a given robot, the motions of the other robots are known.
Let χfeasible,t ⊆ χ define the feasible state space of the robotics system,
in which the robot did not collide with static and dynamic obstacles at
timestep t, xinit ∈ χfeasible,0 the initial state, and xgoal ∈ χfeasible,t the
goal state.

In this work, a trajectory π is defined as a series of states and high-
level control commands:

π � x0, u0, xt0, x1, u1, xt1, . . . , xk, uk, xtk() (2)
where tk is the timestep of k-th via point in the trajectory.

FIGURE 3
Architecture and planning pipeline of the proposed approach.

Frontiers in Robotics and AI frontiersin.org05

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

3.1 Main problem

For complex environments and robot systems with high DOFs
(degrees of freedom), the solution space of the motion planning
problem is highly dimensional. Even if the solution space is
represented implicitly using the sampling-based technique, it
cannot be searched efficiently. In this work, the proposed approach
focuses on learning the feasible solution space of motion planning
problems from previous experience to improve search efficiency. In
other words, the proposed approach first learns to perceive the
environment surrounding the robot. Then the robot dynamics are
learned to preciously simulate realistic robot motion. At last, the
proposed approach learns which optimal high-level commands can
move the robot toward to goal region with realistic dynamics in the
perceived environment model at each search step.

3.2 Subproblem 1: Learning local feasible
solution space of motion planning problem

Since learning the complete solution space is very difficult and
does not scale well to other problems, our approach begins with
learning the local feasible solution space Llocal:

Llocal xk,ϕk

∣∣∣∣xgoal → uk() (3)

The locally feasible solution space consists of all feasible control
policies that only consider the local system state (e.g., the state of the
environment ϕk, the current state of the robot xk and the target state
χgoal) and guide the robot from the current state toward the target area
with control command uk at k-th search step.

3.3 Subproblem 2: Suitable representation of
dynamic environment

Since this work considers environments with static and dynamic
obstacles, the geometric and temporal information of the environment
should be represented as environment state ϕk at k-th search step and
used in subproblem 1.

3.4 Subproblem 3: Learning robot dynamics
fχ controlled by high-level motion commands

The execution time and interpolation of robot motion
between two states should be calculated to check the collision
between the robot and the obstacles during the transition from
one state to the next state at each search step. As mentioned
before, the robot dynamics controlled by high-level motion
commands are seen as a “black box.” Therefore, the proposed
approach learns the realistic robot dynamics controlled by high-
level motion commands and uses it to calculate the realistic robot
motion.

4 Methods

The core of the proposed approach is three neural networks
(Figure 3) which solve the main problem described in Section 3.
Sections 4.1–4.3 describe the functionality of each neural network and
how they solve the corresponding subproblems. Then we give an
overview of the entire pipeline of the proposed approach in
Section 4.4.

4.1 Dynamic Environment Representation
Network for subproblem 2

Since the motions of the dynamic obstacles are known, the
environment can be discretized into a series of frames. The 3D
model, such as the voxel model of the environment at each frame,
can represent spatial and geometric information.

However, directly using this high-dimensional representation to
learn control policy for subproblem 2 leads to a large-scale network
that may be difficult to train. Therefore, a separate network struct is
used to extract spatial and temporal features of the environment as
low-dimensional representation.

Firstly, an encoder embeds the voxel model of the dynamic
environment at each discrete timestep into a hidden vector st. Let
denote this embedding as h(ϕt), which compresses the spatial state of
the dynamic environment ϕt at the timestep t:

st � h ϕt() (4)
Then an RNN-based encoder embeds the temporally ordered

hidden vectors st, st+1. . ., st+n into a hidden vector zt, which
represents the temporal information of the environment after
current timestep t.

zt � r st, st+1, . . . , st+n() (5)

FIGURE 4
(A) Voxel model with low resolution (edge length of each voxel is
8 cm). (B) Voxel model with high resolution (edge length of each voxel
is 1 cm).

Frontiers in Robotics and AI frontiersin.org06

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

4.2 High-level control policy network for
subproblem 1

The high-Level Control Policy Network is the core component of
the proposed approach. Let denote the high-level control policy
network qθ with its parameter as

uk � qθ xk, ztk, xgoal() (6)

When the robot arrives a state xk after k-th search step at timestep
tk, the network takes the current state xk, the embedding of the
dynamic environment ztk at timestep tk and the target region χgoal as
inputs to generate a high-level motion command uk. The high-level
motion command uk consists of command type ck and corresponding
motion parameters, such as the motion speed vk and the desired state
xk+1 to be reached.

4.3 High-Level Controlled Robot Dynamics
Network for subproblem 3

We designed a neural network to predict the dynamics of robots
controlled by high-level commands. This network predicates the
execution time and interpolation of high-level motion commands.

T̂k � fexecution time xk, uk() (7)
xk,n � finterpolation xk, uk, tk + nt() (8)

where fexecution time denotes the function to predicate the execution
time T̂k, xk the current state and uk the motion command,
respectively. finterpolation denotes the function to predicate an
interpolation state of the robot motion x̂k,n at n-th timestep
tk + n∇t, where ∇t denotes the interpolation resolution.

4.4 Robot motion planning with learned
feasible solution space

The entire pipeline of the proposed approach consists of the
following procedures.

4.4.1 Data collection
Firstly, the expert data for training the above-described neural

networks should be collected. The proposed approach requires plenty
of realistic data, which are expensive in terms of time and resources.
Therefore, the near-realistic simulation environment Visual
Components (Visual Components, 2021) are used to generate

realistic datasets and verify the planning results. Visual
Components contains an offline programming system that can
connect with VRC module (Virtual Robot Controller) (Bernhardt
et al., 1994). The VRCmodule integrates the original robot controllers
and provides a simulation accuracy of .00005 radians and 1% cycle
time. In this work, following data are collected in the simulation
environment.

4.4.4.1 Environment data
In offline robot programming, the geometry of the production cell

is represented through 3D polygon mesh models in simulation
software. The polygon mesh models of the obstacles in the
environment are exported and collected as raw data for training
Dynamic Environment Representation Network. Then the 3D
polygon mesh of obstacles is rasterized into 3D voxel models
because 3D voxel grids have a highly regular data format, which is
suitable for representation learning. In contrast to representing the
environment in point clouds, the resolution of the voxel model can be
easily adapted to suit the diverse requirements for environment
representation for different robot applications.

For example, in some high-speed handling tasks, the robot should
keep a safe distance from the obstacles in the environment. In this case,
the edge length of the voxel grids occupied by the obstacles should be
increased to leave enough space between the robot and the obstacles
(Figure 4A). However, for tasks that require the robot to perform
delicate operations, such as spot welding tasks where the welding gun
enters some narrow areas, we need to increase the resolution of the
voxel models to represent more details of the narrow areas (Figure 4B).

4.4.4.2 Robot programs
Robot programs for scenarios of different applications are

collected to learn high-level motion commands. The robot
programs consist of high-level motion commands, which are
programmed manually or automatically through other motion
planners. These robot programs should be executed and verified on
real robot systems or near-realistic simulation environments to ensure
that the programmed robot motions are collision-free.

4.4.4.3 Realistic robot motions
Training the High-Level Controlled Robot Dynamics Network

requires realistic robot motions executed by the robot control system.
On the one hand, the collision-free robot motions generated in Section
4.4.1.2 are be reused. On the other hand, more high-level commands
are randomly generated. These commands should also be executed on
real robot systems or near-realistic simulation environments to collect
realistic robot motions.

TABLE 1 Four categories of environments of the SCARA robot handling application used in experiment.

Categories of environments Static obstacles Dynamic obstacles

Simple Staitc Environments 1x Cylinder or Cubic 0

1x Robot

Complex Static Environments 3x Cylinders or Cubics 0

1x Robot

Simple Dynamic Environments 1x Cylinder or Cubic 1x Roboter

Complex Dynamics Environment 3x Cylinders or Cubics 1x Roboter

Frontiers in Robotics and AI frontiersin.org07

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

4.4.2 Model training
In the second procedure, the three neural networks described in

Section 4.3 are trained on the data gathered in Section 4.4.1. All three
neural networks are trained in an offline supervised fashion. The
experiment settings for model training are detailed in Section 5.2.

4.4.3 Offline robot motion planning
In the offline planning procedure, the trained neural network

models are used to search a collision-free robot motion from the initial
state xinit to the goal state xgoal. The search process starts from the
initial state xk. At each search step k (at the timestep tk), Dynamic
Environment Representation Network embeds the dynamic
environment into a low-dimensional hidden vector ztk (see the blue
block in Figure 3). ztk is then fed into the High-Level Control Policy
Network along with the current state xk and the target state xtarget to
generate a high-level motion command uk consisting of motion
command type and motion parameters (see the orange block in
Figure 3). The High-Level Controlled Robot Dynamics Network
then takes uk as input to predict all interpolation states xk,n and
execution time T̂k of the motion to the next search step. For each
interpolation state, the collision between the robot and obstacles is
checked using conventional forward kinematics and the collision
check algorithm proposed in (Pan et al., 2012). If the robot motion
is collision-free, uk will be added to the search tree and the search
process will transit to the next state xk+1 at the timestep tk + T̂k (see the
green block in Figure 3). The planning pipeline repeats until the goal
state is reached.

4.4.4 Deploying robot motion to robot system
The robot motions planned by the proposed approach are in a

general format of high-level motion commands. Because the robot
programming must follow robot manufacture-specific programming
rules, the general format of high-level motion commands should be
converted to robot manufacturer-specific programming language
using a post-processor. Then the robot programs can be directly
uploaded to the robot control system. It should be noted that the

post-processing here is the syntactical conversation, which is different
from the post-processing mentioned in Section 1.1.

5 Experiment design and
implementation

This section reports the experiment settings and the
implementation details of the proposed approach.

5.1 Experiment setup

We evaluate the proposed approach on two industrial
applications: A handling application with two SCARA robots and a
machine tending application with one 6-axis heavy-duty robot.

5.1.1 SCARA robot handling application
In this application, two SCARA robots perform pick-and-place

tasks in different environments containing static and dynamic
obstacles. It is important to note that although this application
contains two SCARA robots, only the motions of one robot need
to be planned, and the other robot is seen as a static or dynamic
obstacle. Table 1 details the static and dynamic obstacles in four
different categories of environments. In this application, we focus on
evaluating the offline planning phase. Thus, the planned motions are
only verified in the simulation environment (Figure 5A).

5.1.2 Machine tending application
This application evaluates the proposed approach for the problem

domain of high-dimensional motion planning. A 6-axis heavy-duty
robot loads and unloads a machine tool. Unlike the SCARA robot
handling application, the planned robot motion in this application will
be deployed and verified on a real robot-based machine tending
system to evaluate the complete pipeline from planning until
deploying robot motions (Figure 5B).

FIGURE 5
(A) SCARA robot handling application (only in simulation environment). (B) Machine tending application with a 6-axis heavy-duty industrial robot.

Frontiers in Robotics and AI frontiersin.org08

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

5.2 Implementation

This section describes the structure of neural network models and
the datasets.

5.2.1 Dynamic Environment RepresentationNetwork
The Dynamic Environment Representation Network uses the

basis struct of Variational Autoencoders (VAE) (Kingma and
Welling, 2014) with five 3D-CNN layers (Ji et al., 2013) to
compress the static obstacles in the environment into a 20-
dimensional embedding. For the dynamic environment, for
example, in SCARA robot handling application, a 3-layer RNN
encoder with ten units to embed the changes of the dynamic
environment over time. Each of the ten units accepts a 20-
dimensional embedding of one frame of the dynamic environment
and the RNN encoder finally produces an embedding vector of the
dynamic environment. (See the blue block in Figure 3).

For the SCARA robot handling application, we randomly generate
1000 environments. Each environment contains a varying number of
static cylindrical or cubic obstacles and a SCARA robot seen as a

dynamic obstacle. Then we recorded a frame of the dynamic
environment every 50 milliseconds. The environment in each
frame is voxelized and fed into VAE to produce an environment
embedding. We take ten frames of environment embedding following
the current timestep as a data tuple for training the RNN encoder.

For the machine tending application, 500 static environments are
generated. In each environment, we select one of five different
machine tools and place it randomly within the reachable
workspace of the robot.

5.2.2 High-level control policy network
A high-level motion command consists of the motion type and

motion parameters. In this work we consider Point-to-Point (PTP)
and Linear motion of the SCARA robot and the 6-axis robot. The
motion parameters of bothmotion commands are the motion speed vk
and the state xk+1 to be reached.

The High-level Control Policy Network contains two branches:
one generates motion type (Motion Type Prediction Branch) and the
other generates motion parameters (Motion Parameter Prediction
Branch). These two branches take the same inputs: the goal state xGoal,

FIGURE 6
Procedure of collecting dataset for High-Level Control Policy Network.

FIGURE 7
(A) Planned trajectory without collision. (B) Executed trajectory with collision.

Frontiers in Robotics and AI frontiersin.org09

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

the current state xk and the environment embedding ztk at search
step k.

The Motion Type Prediction Branches for the SCARA robot
handling and the machine tending applications consist of 10 and

12 fully connected hidden layers followed by a Softmax layer with a
two-dimensional output, respectively. The Motion Parameter
Prediction Branch is a 12-layer forward neural network for the
SCARA robot handling application and a 15-layer forward neural

TABLE 2 Average prediction error of High-Level Controlled Robot Dynamics Network. The error in predicting execution time is defined as T̂k−Tk
Tk

, where T̂k and Tk are
predicted execution time and actual execution time, respectively. The error in predicting motion interpolation is defined as∑

i

0
|(x̂k,i−xk,i)|

lk
, where x̂k,i and xk,i are prediction

and ground truth of robot state at interpolation step of robot motion, respectively. lk is the euclidean distance along the robot motion executed. Because the 6-axis
robot in the machine tending application does not need to avoid other dynamic obstacles in the machine tending application, the robot moves with 100% velocity
override to achieve the shortest cycle time.

Motion speed override Average prediction error of execution
time

Average prediction error of interpolation

PTP motion (%) Linear motion PTP motion (%) Linear motion

SCARA robot handling application 0 - 25% 2.7 4.6% .23 .57 %

25% - 50% 2.9 5.8% .47 .79 %

50% - 75% 4.3 6.6% .48 .86 %

75% - 100% 6.0 7.2% .65 .91 %

Machine Tending Application 100% 1.4 — .31 —

FIGURE 8
Joint motion planned by the improved RRT* approach (blue line) and joint motion executed by robot control system (orange line).

Frontiers in Robotics and AI frontiersin.org10

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

network for the machine tending application, respectively. Unlike the
network structure that generates samples at every search step in (Bdiwi
et al., 2018), we do not use dropout layers to achieve stochasticity in
the Motion Parameter Prediction Branch because the dropout layer
affects the convergence of the neural network. Inspired by the struct of
VAE, we applied two hidden layers before the output layer to generate
two vectors simultaneously: means and standard deviations vector of
motion parameters. The output layer samples a final prediction of
motion parameters from the means and standard deviations. (See the
green block in Figure 3).

In the environments generated in Section 5.2, we collect data for
training High-level Control Policy Network. Each environment of the
SCARA robot handling application and the machine tending
application contains 50 start-goal pairs. In order to make the data
set closer to the real machine tending applications, the start position or
the goal position of each start-goal pair must be located over the
working table inside the machine tool.

An improved RRT* approach (Otto et al., 2021) is used to plan a
trajectory as expert data. Unlike the basic RRT, the improved RRT*
approach post-processes the planned robot motions using PTP and
Linear interpolation and generates containing high-level motion
commands. The robot motions post-processed by the improved
RRT* algorithm may collide with static and dynamic obstacles
during the execution due to the inaccurate estimation of robot
dynamics and control parameters in the planning phase. Therefore,
we execute all generated trajectories in the simulation environment
Visual Components with the VRC module and only add the collision-
free trajectories and corresponding environment models to the
training set (Figure 6).

Both branches of the proposed network are trained in a supervised
fashion. The loss of the first branch LT(θ) is defined as:

LT θ() � −∑2

i�1ci log pi() (9)

where i indicates the category of motion command type c and pi

represents the predicted probability of the command type ci.
The loss of the second branch LP(θ) is defined as:

LP θ() � v̂k − vk| || | + x̂k+1 − xk+1| || | (10)
where v̂k and x̂k+1 are predicated motion parameters. vk and xk+1 are
the corresponding ground truth.We use adam optimizer (Kingma and
Adam, 2015) with initial learning rate .001, momentum .9. The
learning rate is decreased by half every 50 epochs.

5.2.3 High-Level Controlled Robot Dynamics
Network

High-Level Controlled Robot Dynamics Network has two
branches, the Interpolation State Prediction Branch and Execution
Time Prediction Branch, to predict the interpolation states and
execution time of realistic robot motion.

The Interpolation State Prediction Branches consist of 12 and
14 fully connected hidden layers for the SCARA robot handling and
the machine tending applications, respectively. The Execution Time
Prediction Branch consists of 10 and 11 fully connected hidden layers
for the SCARA robot handling and machine tending applications,
respectively. The Interpolation State Prediction Branch takes the
current state xk and motion command ck with motion parameter
(vk and xk+1 for Point-to-Point and Linear motion) as input to
predicate the execution time T̂i. A given interpolation step tk + n∇t
along with the same input as Interpolation State Prediction Branch is
fed into the Execution Time Prediction Branch to predict the
interpolation state of the robot x̂k,n at the given interpolation step
tk + n∇t (See the orange block in Figure 3).

FIGURE 9
Control inputs of external control loop (blue line) and actual joint motion (orange line).

Frontiers in Robotics and AI frontiersin.org11

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

The VRC Modul in Visual Components executes ten thousand
motion commands of the SCARA robot and fifteen thousand motion
commands of the 6-axis heavy duty robot. The execution time and the
interpolation states of executed motion commands are recorded as the
dataset.

The first and second branches are trained by using standard
L2 loss function LInterpolation(θ) and LExecutionTime(θ), respectively:

LInterpolation θ() � x̂k,n − xk,n

∣∣∣∣
∣∣∣∣

∣∣∣∣
∣∣∣∣ (11)

LExecutionTime θ() � T̂k − Tk

∣∣∣∣
∣∣∣∣

∣∣∣∣
∣∣∣∣ (12)

where xk,n and x̂k,n denote the ground truth and prediction of robot
state at the interpolation step n, respectively. Tk and T̂k denote the
ground truth and prediction of execution time, respectively. During
training, we use stochastic gradient descent (SGD) [35] with initial
learning rate .0005 and momentum .8.

6 Result and discussion

For each application, this section evaluates the proposed approach
in 100 new environments, which are not used in the training phase. In

each environment, 20 pairs of start and goal were randomly generated.
The performance of the RRT, the improved RRT* and the proposed
approach was analyzed in terms of validity, the execution time of
trajectory and computation time.

6.1 Validity of trajectory

6.1.1 SCARA handling application
For the SCARA handling application, the robot motions planned

offline by different planners are only verified in Visual Components.
Figure 7 shows an example of an invalid trajectory generated by RRT.
Figure 7A shows that when the SCARA robot follows the planned
trajectory exactly, the robot on the right side passes the shared area
before the robot on the left side. The executed motion of the robot is
slower than computed in the planning phase and enters the shared
area later than planned, resulting in a collision with a cubic obstacle
(Figure 7B).

In all scenarios of SCARA handling application, only 5.2% of
the trajectories generated by our approach are invalid because the
trained High-Level Controlled Robot Dynamics Network can
predicate the robot motion more accurately in the planning

FIGURE 10
Joint motion planned by the proposed approach (blue line) and joint motion executed by robot control system (orange line).

Frontiers in Robotics and AI frontiersin.org12

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

TABLE 3 Average execution time of trajectories generated by proposed approach and the benchmark approaches.

Environment Distance between start and goal Average execution time in second

Proposed approach RRT Improved
RRT*

Simple static environment of SCARA robot handling application Near .223 .210 .212

Middle .420 .544 .513

Far .661 .837 .702

Complex static environment of SCARA robot handling application Near .296 .370 .306

Middle .605 .801 .664

Far .736 .909 .759

Simple dynamic environment of SCARA robot handling application Near .246 .276 .266

Middle .495 .593 .563

Far .733 .948 .829

Complex dynamic environment of SCARA robot handling application Near .420 .464 .467

Middle .766 .978 .827

Far 1.070 1.292 1.116

Machine tending application Near 1.523 1.892 1.328

Middle 2.034 2.367 2.249

Far 3. 551 3.719 3. 406

FIGURE 11
(A) Example trajectory generated by the proposed approach. (B) Example trajectory generated by RRT. The green points represent the via points of
trajectory in Cartesian space.

Frontiers in Robotics and AI frontiersin.org13

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

phase. Table 2 shows the relative error of the trained model in
predicting motion interpolation and execution time. In all
experiment scenarios, the average error between the actual and
predicted execution time of the high-level motion commands is 5%.
Furthermore, Table 2 shows that the error in predicting Point-to-
Point motion is smaller than that in predicting linear motion. The
reason is that predicting the dynamics of linear motion requires
estimating the inverse kinematic model, which increases the
prediction error.

6.1.2 Machine tending application
For the machine tending application, we deployed the robot

motions planned offline on the real robot in different ways. The
proposed approach generates high-level motion commands that can

be directly uploaded to the robot control system (see Figure 2C).
Because the improved RRT* uses an interpolation algorithm to
convert the planned robot motion to high-level motion commands,
the generated motion commands can also be uploaded into the robot
control system (see Figure 2B). The RRT generates low-level control
inputs, which should be executed in an additional control loop (see
Figure 2A).

In Figure 8, we can see that the robot motion planned by the
improved RRT* deviates significantly from the robot motion executed
by the control system. It is because the control algorithm of the
improved RRT* used in the planning phase differs from the control
algorithm used in the robot control system-in the offline planning
phase, the improved RRT* assumes that the joints can reach the
maximum acceleration. However, in reality, the robot control system

TABLE 4 Average computation time of trajectories generated by the proposed approach and benchmark approaches.

Environment Distance between start and goal Average computation time in second

Proposed approach RRT Improved
RRT*

Simple static environment of SCARA robot handling application Near .18 .37 1.82

Middle .26 .61 2.27

Far .31 .84 2.38

Complex static environment of SCARA robot handling application Near .62 1.50 2.47

Middle .74 2.81 4.77

Far .88 4.16 5.49

Simple dynamic environment of SCARA robot handling application Near .42 1.83 5.05

Middle .57 3.59 6.92

Far .59 4.24 7.22

Complex dynamic environment of SCARA robot handling application Near .67 3.12 5.34

Middle .89 5.94 8.03

Far .94 7.12 9.11

Machine tending application Near .90 .85 1.15

Middle 1.08 .88 1.27

Far 1.17 .92 1.63

FIGURE 12
(A) Valid (green) and invalid (red) samplers generated by RRT, (B) RRT* and (C) by the proposed approach.

Frontiers in Robotics and AI frontiersin.org14

Hou et al. 10.3389/frobt.2022.1030668

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

only applies 60% and 45% of the maximum acceleration to the first
and second joints, respectively.

The control inputs and actual values are recorded during the
execution of robot motion controlled by the additional control loop
(Figure 9). The additional controller tries to drive the first and second
joints with maximum acceleration, but the internal motor controller
limits the joints to reach the maximum value. Then the fluctuation of
joint acceleration triggers the safety mechanism of the robot control
system, which disconnects the communication interface (Robot
Sensor Interface) between the additional controller and the robot
control system.

Figure 10 shows that the robot motion planned by the proposed
approach is close to the motion executed by the robot control system.
We can see that the trained neural network has learned the control
behavior (acceleration and deceleration) of the robot control system to
predicate the interpolation of robot motion.

6.2 Execution time of trajectory

We compared the execution times of the trajectories generated by
the proposed approach, RRT and improved RRT* (Table 3).

It is necessary to note that the trajectory’s execution time varies
significantly due to different distances between the start and goal
states. To compare the performance of different approaches more
reasonably, we classify the planning tasks into three categories
according to the distance between the start and goal states: 1. near
distance (smaller than 30% of the robot’s range), 2. middle distance
(bigger as 30% but smaller as 60% of the robot’s range) and 3. far
distance (bigger as 60% of the robot’s range). It can be seen that the
average execution time of the trajectories generated by the proposed
approach is twenty percent faster than RRT in the SCARA robot
handling application. Since improved RRT* optimizes the number of
via points while expanding the search tree, the execution time of the
trajectories generated by it is essentially the same as the proposed
approach. However, the optimization increases computation time, as
seen in section 6.3. Since all scenarios of the machine tending
application are simple, the execution time of the motion planned
by each approach varies slightly.

Figure 11 shows the valid trajectories generated by the proposed
approach and RRT in an example scenario. The proposed approach
generates a trajectory containing only three high-level motion
commands (Figure 11A). The first and second linear motion
commands guide the robot through a narrow area. After the robot
leaves the narrow area, the proposed High-level Control Policy
Network maps the empty surrounding area to a Point-to-Point
motion command because the Point-to-Point motion is faster than
the linear motion. RRT generates more via points (Figure 11B) in the
narrow area, resulting in acceleration and deceleration of robot joints.

6.3 Computation time

We compared the computation time of the proposed approach
with the benchmark approach in scenarios with different complexities.

As the environment becomes more complex, the advantage of our
approach in terms of computation time becomes obvious (Table 4). In
particular, the proposed approach is up to 10 times faster than the
improved RRT* approach in complex dynamic environments of
SCARA robot handling application because the proposed approach
reduces the computation time by efficiently exploring in learned
feasible solution space. In Figure 12, we visualize all the samples
generated by the different approaches for the same task. It has been
found that the benchmark approaches spent much time to generate a
large number of samples randomly. The proposed approach generates
fewer samples in critical areas based on environment information.

7 Conclusion

We have proposed a novel deep neural network that generates
collision-free trajectories as high-level motion commands. The
generated trajectory can be directly deployed in the robot control
system without post-processing. Furthermore, the experiment results
show that the proposed approach outperforms the benchmark
approaches in terms of validity, execution time of planned motion
and computation time. One future direction is to extend our data
collection procedure and generalize our network to handle more high-
level commands for robots with higher degrees of freedom.

Data availability statement

The datasets presented in this article are not readily available
because NDA is necessary. Requests to access the datasets should be
directed to shuxiao.hou@iwu.fraunhofer.de.

Author contributions

SH developed the theory. He worked out almost all of the technical
details and performed the experiments. SH wrote the manuscript with
support from all authors. All authors discussed the results and
commented on the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Robotics and AI frontiersin.org15

Hou et al. 10.3389/frobt.2022.1030668

http://shuxiao.hou@iwu.fraunhofer.de.
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

References

Bdiwi, M., Hou, S., and Delang, K. (2018). “Human-robot-cooperation real time robot
path planning for dynamic HRC-applications,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 5542.

Bernhardt, R., Schreck, G., and Willnow, C. (1994). The realistic robot simulation (rrs)
interface. IFAC Proc. Volumes IFACWorkshop Intelligent Manuf. Syst. 27, 321–324. doi:10.
1016/s1474-6670(17)46044-7

Bhardwaj, M., Choudhury, S., and Scherer, S. (2017). “Learning heuristic search via
imitation,” in Conference on Robot Learning, 271–280.

Cheng, R., Shankar, K., and Burdick, J. W. (2020). “Learning an optimal sampling
distribution for efficient motion planning,” in IEEE International Conference on
Intelligent Robots and Systems, IEEE, 7485–7492.

Chitta, S., Sucan, I., and Cousins, S. (2012). Moveit![ros topics]. IEEE Robotics
Automation Mag. 19 (1), 18–19. doi:10.1109/mra.2011.2181749

Elhaki, O., Shojaei, K., and Mehrmohammadi, P. (2022). Reinforcement learning-
based saturated adaptive robust neural-network control of underactuated
autonomous underwater vehicles. Expert Syst. Appl. 197, 116714. doi:10.1016/j.
eswa.2022.116714

Elhaki, O., and Shojaei, K. (2022). Output-feedback robust saturated actor–critic multi-
layer neural network controller for multi-body electrically driven tractors with n-trailer
guaranteeing prescribed output constraints. Robot. Aut. Syst. 154, 104106. doi:10.1016/j.
robot.2022.104106

Gaebert, C., and Thomas, U. (2022). “Learning-based adaptive sampling for
manipulator motion planning,” in IEEE 18th International Conference on Automation
Science and Engineering (CASE), Mexico City, Mexico, 715–721.

Hauser, K., and Ng-Thow-Hing, V. (2010). “Fast smoothing of manipulator trajectories
using optimal bounded-acceleration shortcuts,” in 2010 IEEE international conference on
robotics and automation (IEEE), 2493–2498.

Huh, J., and Lee, D. D. (2018). Efficient sampling with q-learning to guide rapidly
exploring random trees. IEEE Robotics Automation Lett. 3 (4), 3868–3875. doi:10.1109/lra.
2018.2856927

Janson, L., Schmerling, E., Clark, A., and Pavone, M. (2015). Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimensions. Int.
J. Robotics Res. 34 (7), 883–921. doi:10.1177/0278364915577958

Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3D convolutional neural networks for human
action recognition. IEEE Trans. Pattern Analysis Mach. Intell. 35 (1), 221–231. doi:10.
1109/tpami.2012.59

Jinwook, H., Lee, D. D., and Isler, V. (2022).Neural cost-to-go function representation for
high dimensional motion planning. Workshop: Motion planning with implicit neural
representations of geometry. ICRA.

Jurgenson, T., and Tamar, A. (2019). “Harnessing reinforcement learning for neural
motion planning,” in Robotics: Science and systems, 1–13.

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. Int. J. Robotics Res. 30 (7), 846–894. doi:10.1177/0278364911406761

Kingma, D. P., and Adam, J. Ba. (2015). “A method for stochastic optimization,” in
International Conference on Learning Representations.

Kingma, D. P., and Welling, M. (2014). “Auto-encoding variational bayes,” in
2014 International Conference on Learning Representations, Banff, Canada, 1–14.

Kuffner, J., and LaValle, S. M. (2000). “RRT-connect: An efficient approach to single-query
path planning,” in Proceedings of the IEEE International Conference on Robotics and
Automation (San Francisco, CA, United States), 995–1001.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
Computer Science Dept., Iowa State University. tR 98-11.

Molina, D., Kumar, K., and Srivastava, S. (2020). “Learn and link: Learning critical
regions for efficient planning,” (Paris, France: in IEEE International Conference on
Robotics and Automation).

Otto, A., Hou, S., Ahrens, A., Frieß, U., Todtermuschke, M., and Bdiwi, M. (2021).
“Combining safe collaborative and high-accuracy operations in industrial robots,” in
Advances in automotive production Technology – theory and application. Berlin: Springer
Vieweg, 451–459. doi:10.1007/978-3-662-62962-8_52

Pan, J., Chitta, S., and Manocha, D. (2012). “Fcl: A general purpose library for collision
and proximity queries,” in 2012 IEEE International Conference on Robotics and
Automation, Saint Paul, MN, United States, 3859–3866. doi:10.1109/ICRA.2012.6225337

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T. B., and Leibs, J. (2009). “Ros: An
open-source robot operating system,” in 2009 International Conference on Robotics and
Automation Workshop Open-Source Software, Kobe, Japan.

Qureshi, A. H., Bency, M. J., and Yip, M. C. (2019). “Motion planning networks,” in
2019 International Conference on Robotics and Automation, Montreal, Canada,
2118–2124.

Qureshi, A. H., Miao, Y., Simeonov, A., and Yip, M. C. (2020). Motion planning
networks: Bridging the gap between learning-based and classical motion planners. IEEE
Trans. Robotics 37, 48–66. doi:10.1109/tro.2020.3006716

Rahali, H., Zeghlache, S., and Benyettou, L. (2022). Fault tolerant control of robot
manipulators based on adaptive fuzzy type-2 backstepping in attendance of payload
variation, International Journal of Intelligent Engineering and Systems, Japan, 14 (4),
312–325.

Ratliff, N., Zucker, M., Andrew Bagnell, J., and Srinivasa, S. (2009). “Chomp: Gradient
optimization techniques for efficient motion planning,” in Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 489–494.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., et al. (2014). Motion
planning with sequential convex optimization and convex collision checking. Int.
J. Robotics Res. 33 (9), 1251–1270. doi:10.1177/0278364914528132

Schulman, J., Ho, J., Lee, A. X., Awwal, I., Bradlow, H., and Abbeel, P. (2013). Finding
locally optimal, collision-free trajectories with sequential convex optimization. Robot. Sci.
Syst. 9 (1), 1–10.

Shah, N., and Srivastava, S. (2022). “Using deep learning to bootstrap abstractions for
hierarchical robot planning,” in Proc. of the 21st International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS).

Tan, S., Yang, J., and Ding, H. (2023). A prediction and compensation method of robot
tracking error considering pose-dependent load decomposition. Robotics Computer-
Integrated Manuf. 80, 102476. doi:10.1016/j.rcim.2022.102476

Visual Components (2021). Visual components. Espoo, Finland. 4.3.

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M.,
et al. (2013). Chomp: Covariant Hamiltonian optimization for motion planning. Int.
J. Robotics Res. 32 (9), 1164–1193. doi:10.1177/0278364913488805

Frontiers in Robotics and AI frontiersin.org16

Hou et al. 10.3389/frobt.2022.1030668

https://doi.org/10.1016/s1474-6670(17)46044-7
https://doi.org/10.1016/s1474-6670(17)46044-7
https://doi.org/10.1109/mra.2011.2181749
https://doi.org/10.1016/j.eswa.2022.116714
https://doi.org/10.1016/j.eswa.2022.116714
https://doi.org/10.1016/j.robot.2022.104106
https://doi.org/10.1016/j.robot.2022.104106
https://doi.org/10.1109/lra.2018.2856927
https://doi.org/10.1109/lra.2018.2856927
https://doi.org/10.1177/0278364915577958
https://doi.org/10.1109/tpami.2012.59
https://doi.org/10.1109/tpami.2012.59
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1007/978-3-662-62962-8_52
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1109/tro.2020.3006716
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1016/j.rcim.2022.102476
https://doi.org/10.1177/0278364913488805
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668

	A data-driven approach for motion planning of industrial robots controlled by high-level motion commands
	1 Introduction
	1.1 Planning and deploying robot motion with high-level motion commands
	1.2 Planning and deploying robot motion with low-level motion commands
	1.3 Contributions

	2 Related works
	2.1 Motion planning methods
	2.1.2.1 Learning sampling strategy
	2.2.2.2 End-to-end learning low-level control policy

	2.2 Deploying generated trajectories to robot system

	3 Problem definition
	3.1 Main problem
	3.2 Subproblem 1: Learning local feasible solution space of motion planning problem
	3.3 Subproblem 2: Suitable representation of dynamic environment
	3.4 Subproblem 3: Learning robot dynamics fχ controlled by high-level motion commands

	4 Methods
	4.1 Dynamic Environment Representation Network for subproblem 2
	4.2 High-level control policy network for subproblem 1
	4.3 High-Level Controlled Robot Dynamics Network for subproblem 3
	4.4 Robot motion planning with learned feasible solution space
	4.4.4.1 Environment data
	4.4.4.2 Robot programs
	4.4.4.3 Realistic robot motions
	4.4.2 Model training
	4.4.3 Offline robot motion planning
	4.4.4 Deploying robot motion to robot system

	5 Experiment design and implementation
	5.1 Experiment setup
	5.1.1 SCARA robot handling application
	5.1.2 Machine tending application

	5.2 Implementation
	5.2.1 Dynamic Environment Representation Network
	5.2.2 High-level control policy network
	5.2.3 High-Level Controlled Robot Dynamics Network

	6 Result and discussion
	6.1 Validity of trajectory
	6.1.1 SCARA handling application
	6.1.2 Machine tending application

	6.2 Execution time of trajectory
	6.3 Computation time

	7 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

