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There are a large number of publicly available datasets of 3D data, they generally

suffer from some drawbacks, such as small number of data samples, and class

imbalance. Data augmentation is a set of techniques that aim to increase the

size of datasets and solve such defects, and hence to overcome the problem of

overfitting when training a classifier. In this paper, we propose a method to

create new synthesized data by converting complete meshes into occluded 3D

point clouds similar to those in real-world datasets. The proposed method

involves twomain steps, the first one is hidden surface removal (HSR), where the

occluded parts of objects surfaces from the viewpoint of a camera are deleted.

A low-complexity method has been proposed to implement HSR based on

occupancy grids. The second step is a random sampling of the detected visible

surfaces. The proposed two-step method is applied to a subset of ModelNet40

dataset to create a new dataset, which is then used to train and test three

different deep-learning classifiers (VoxNet, PointNet, and 3DmFV). We studied

classifiers performance as a function of the camera elevation angle. We also

conducted another experiment to show how the newly generated data samples

can improve the classification performance when they are combined with the

original data during training process. Simulation results show that the proposed

method enables us to create a large number of new data samples with a small

size needed for storage. Results also show that the performance of classifiers is

highly dependent on the elevation angle of the camera. In addition, there may

exist some angles where performance degrades significantly. Furthermore, data

augmentation using our created data improves the performance of classifiers

not only when they are tested on the original data, but also on real data.
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1 Introduction

A system that can handle 3D data has a wide range of

applications, such as autonomous navigation (Kriegman et al.,

1989; DeSouza and Kak, 2002), autonomous household robots

(Sziebig et al., 2008), obstacles detection (Manduchi et al., 2005;

Mane and Vhanale, 2016; Zhu et al., 2016), rescue operations

(Shang and Ma, 2015; Zhai et al., 2020), inspection of chemical

and radioactive contamination (Msallam and Syryamkin, 2021a),

and digital X-ray tomography for PCB diagnostics (Syryamkin

et al., 2020). There are several methods to represent 3D data, such

as RGB-D images, meshes, point clouds, voxels, etc. Point cloud

representation is one of the most preferred methods, it is widely

used in a large number of applications in many areas, such as

computer vision, autonomous driving, robotics (Guo et al., 2020),

chemistry (DeFever et al., 2019), fluid dynamics, digital rock

physics, membrane systems, medicine and other fields (Kashefi

et al., 2021; Kashefi and Mukerji, 2021; Kashefi and Mukerji,

2022). A system with point clouds at its input can perform many

tasks, such as 3D classification (Mohammadi et al., 2021), scene

and object segmentation (Thomas et al., 2019), detection and

tracking of 3D objects (Yang et al., 2022), 3D map construction

(Choy et al., 2020), reconstruction of 3D objects (Liu et al., 2019;

Boulch and Marlet, 2022), and prediction (Kashefi et al., 2021;

Kashefi and Mukerji, 2021; Kashefi and Mukerji, 2022).

There are many publicly available datasets that contain 3D

data, such as ModelNet (Wu et al., 2015), ShapeNet (Chang et al.,

2015), Sydney Urban Objects dataset (De Deuge et al., 2013),

McGill 3D Shape Benchmark (Siddiqi et al., 2008), etc. A good

survey of existing datasets for different deep learning tasks using

3D point clouds can be found in Guo et al. (2020). Such datasets

can be divided into two main categories, real-world datasets and

synthesized datasets. They generally suffer from some drawbacks,

such as small number of samples per class, small number of

classes, and imbalance between classes in terms of the number of

samples. Objects in synthesized datasets are complete without

any occlusion, they are also separated from any background. On

the other hand, shapes in real-world datasets may be

accompanied by background noise, and they are usually

incomplete, i.e. only part of their surface visible from the

camera’s viewpoint is available.

Synthesized data is a useful technology that allows to speed

up research and reduce its cost, it is currently getting accelerating

interest in a large number of applications, especially in machine

learning systems, and medical applications where data is usually

private, and obtaining a large amount of real data is a laborious

task. However, more research is still needed to fully understand

the opportunities and limitations offered by synthesized data. It

should also be noted that the synthesized data is not a substitute

for the real data. Results from synthesized data can give a good

idea about the results of real data, but in the end, the final tools

that will work in real applications must be evaluated and precisely

tuned using real data (Heyburn et al., 2018; Jordon et al., 2022).

We believe that one solution to this issue is to make the

synthesized data as similar as possible to the real one.

In this paper, we try to fill the gap between synthesized and

real-world datasets. We propose a method to convert complete

synthesized objects represented as meshes into real-like point

clouds. The resulting shapes are synthesized in nature, but they

are occluded in the same way as in the real-world datasets, where

the hidden parts of objects surfaces from the viewpoint of a

camera are deleted. So the main idea is to propose a camera

located at some point around the object in 3D space, then to

delete the hidden surfaces that are not seen from the camera’s

viewpoint. To make the resulting shapes more realistic, we

sample the detected visible surfaces randomly, where a

number of points are selected from each elementary surface at

random locations with uniform distribution. These selected

points form together the output point cloud. Choosing

different locations of the camera and different variations of

the randomly sampled points makes it possible to create a

large number of new data samples from each input object. In

our opinion, the proposed method enables us to create new 3D

data that can be used to solve the following problems:

1) Data augmentation: the proposed method can be applied to

existing datasets of 3D data with mesh representation, and

new objects can be created to overcome the problem of class

imbalance and to increase the number of samples, thus

improving the generalization ability of classifiers and their

performance.

2) Improving the training of classifiers: the created data allows

us to explore whether it is better to train a classifier using

complete shapes, or occluded shapes similar to those it

encounters in real applications, or a combination of both

complete and occluded shapes.

3) Testing already trained classifiers: even if the newly created

data does not provide any improvement to the performance

of a classifier, it can be used to test already trained classifiers to

predict their performance in real applications.

In order to show the benefits of the proposed method, two

experiments are carried out. In the first experiment, we selected

200 objects of ModelNet40 dataset and created 2e5 new data

samples, then we used the created dataset to train and test three

different deep-learning classifiers, they are VoxNet (Maturana

and Scherer, 2015), PointNet (Qi et al., 2017a), and 3DmFV

(Ben-Shabat et al., 2018). We studied their performance with

respect to the elevation angle of the camera. The three classifiers

showed similar behavior, as their performance varies greatly at

different elevation angles. In addition, there are dead angles at

which the performance drops significantly (0° in our created

dataset). To the best of our knowledge, no other dataset can

provide such result. The second experiment is carried out to show

how the newly generated dataset can improve classification

performance when it is used to augment other datasets. A
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subset of 600 samples of 8 classes are selected from

ModelNet40 dataset, and 15,000 new data samples are

generated using the proposed method, then VoxNet and

3DmFV classifiers are trained using different variations of the

original and generated samples. The trained classifiers are then

tested on both original samples and generated samples, and even

on real data from Sydney Urban Objects dataset. The results of

the conducted experiment show that the generated data improves

the performance significantly in all three tests even though other

data augmentation methods were used during the training

process, such as rotation, scaling and jittering. In addition, the

results show that training a classifier using only complete shapes

gives a poor performance when it is tested on occluded shapes.

So, it is better to train a classifier using a combination of complete

and occluded shapes.

The paper is organized as follows: we present related work in

Section 2. In Section 3 we firstly provide a reminder of some

mathematical tools that we need to describe the proposed

method, then we provide its details. Simulation results and

discussions are presented in Section 4, and finally, we

conclude in Section 5.

2 Related work and comparison

2.1 Data augmentation

Data augmentation refers to a set of techniques that aim to

improve the quality of training classifiers by increasing the size of

datasets, where new data samples are generated from existing

ones by making some minor perturbations to them, and this in

turn allows to overcome the problem of overfitting, in which a

classifier is well trained to recognize its training data but it badly

recognizes new data, in other words, it has a poor generalization

ability. In the literature, many methods have been proposed to

augment image datasets, these methods can be divided into:

geometric transformations, color space augmentations, kernel

filters, mixing images, random erasing, feature space

augmentation, adversarial training, generative adversarial

networks (GANs), neural style transfer, and meta-learning

(Shorten and Khoshgoftaar, 2019).

To augment datasets of 3D point clouds, some perturbations

are usually performed on them using geometric transformations,

such as rotation, flipping, scaling and translation, in addition to

jittering and points dropout (Maturana and Scherer, 2015; Ben-

Shabat et al., 2018; Yan et al., 2020). In (Qi et al., 2017a; Qi et al.,

2017b), in addition to the previous methods, points are taken

randomly with a uniform distribution from the surfaces of

objects represented as meshes, where the number of selected

points from an elementary surface is proportional to its area.

Recently, some other methods that depend mainly on mixing

point clouds have been used. Although such methods provide an

improvement in performance, the resulting shapes do not

resemble real shapes, and the reason behind their success is

still not clear (Zhang et al., 2021). Other methods are based on

learning, they automatically learn the strategy for creating new

data. The reader can refer to Zhang et al. (2021) for a review of

the recent work according to these two approaches.

The method proposed in this paper falls under the

geometrical methods, where some parts of the input object

that are hidden from a camera are deleted. The method also

includes taking random samples from the surface of objects with

a uniform distribution as in (Qi et al., 2017a; Qi et al., 2017b). In

contrast to the methods that depend on mixing point clouds, the

proposed method gives shapes that are closer to the real shapes

that are captured in real applications.

2.2 Hidden surface removal

Determination of the visible parts of an object from a

viewpoint is an old problem in computer graphics, it dates

back to the early 1970s, it has many applications, such as in

renderers and games. Currently, there are a very large number of

methods that can be used to solve this problem, i.e. visible-surface

determination, or equivalently, hidden surface removal (HSR)

(Cohen-Or et al., 2003). Methods for HSR are generally divided

into two classes (Hughes et al., 2014): 1) object space algorithms,

which are based on comparing objects in the scene in order to

arrange them and determine the hidden parts in each of them.

The painter’s algorithm and binary space partitioning (BSP) trees

are two examples of such methods. 2) image space algorithms,

that try to find the closest surface to the camera for each pixel in

the image. The most common algorithms are ray casting, and

depth buffer (also called Z-buffer). Exact HSR methods have

usually a high computational complexity, so several methods

with lower complexity have been proposed that delete many

hidden surfaces while keeping all visible ones in the so-called

conservative visibility, where ‘culling’ is the most common

approach, it has different types: backface culling, view-frustum

culling, occlusion culling, portal culling, and detail culling. Such

methods are usually used as a first step before applying an exact

HSRmethod (Hughes et al., 2014). Recently, many methods have

been proposed to improve the efficiency of culling algorithms

using temporal and spatial coherence between adjacent surfaces

(Kim and Lee, 2022).

Among the culling methods, the proposedmethod is closer to

the back-face culling, where in this culling method, surfaces that

are directed away from the camera are deleted. This is done by

comparing the direction of the normal vector of a surface and the

vector coming from the camera. However, according to this

method, all surfaces that are directed towards the camera are

preserved, even if they are hidden. In addition, back-face culling

assumes that we know in advance the direction of normal vectors

of elementary surfaces, but in the proposed method there is no

such assumption. It may be useful to use the back-face culling
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method as a first step before applying our method to reduce

complexity similarly to what is usually done when applying exact

HSR methods, but some problems may arise in some cases. For

example, some objects such as curtains have no “inside”,

therefore the “back surfaces” of such objects may also be

visible and must not be deleted.

In fact, the proposed method, as we will see in the next

section, is closer to the methods of exact removal of hidden

surfaces, but it differs (in its original version) in that both

completely hidden and partially hidden surfaces are deleted.

Here we assume that the area of an elementary surface of an

object is very small compared to the total surface area, so deleting

or keeping partially hidden surfaces has a small effect on the

resulting shape. In the next section we will see howwe canmodify

the proposed method to implement exact HSR, and to reduce its

complexity significantly.

The proposed method cannot be considered as an object space

algorithm because it deals with only one object. Actually, it has some

similarities with the ray casting algorithm, which searches for

intersections between the ray coming from the camera and the

surface of the object under consideration, but the difference lies in

the formation of such rays, where the proposedmethod iterates over

the object points and not over the pixels of the projection plane. In

addition, the proposed method is concerned only with the presence

or absence of such intersections, it stops the search as soon as an

intersection is found.

2.3 Generation of occluded 3D point
clouds

In (Sun et al., 2022), ModelNet40-C dataset was generated by

applying 15 types of corruptions to ModelNet40 dataset. One such

corruption is occlusion, which was achieved by applying ray tracing

method to samples represented as meshes, where 5 different

viewpoints are chosen around objects at azimuth angles selected

with equal spacing from the interval [0, 2π]. Elevation angles were

randomly chosen between 30 and 60°. Occlusion is considered one of

the most challenging corruptions for the majority of recognition

models. So there is a great similarity between this generation method

and our proposed method, but there are many differences between

them, for example the method of detecting hidden surfaces is

different. However, an important difference is that ModelNet40-C

dataset is used in the test phase only and not in the training phase as

indicated in (Sun et al., 2022), while our generated dataset is intended

to improve the training of 3D point cloud recognition models, not

just to evaluate their robustness against corruptions. It should also be

pointed out that the idea of generating occluded samples from

ModelNet40 dataset was previously proposed by us in our

previous work (Msallam and Syryamkin, 2021b; Msallam and

Syryamkin, 2021c) prior to the date of publication of (Sun et al.,

2022).

3 Details of the proposed method

3.1 An introduction to 3D geometry

Firstly, we present a reminder of somemathematical tools that

we need to describe the proposed method (Stewart et al., 2015).

A position vector a � 〈a1, a2, a3〉 is a vector in 3D space

whose start point is the origin of the coordinates system, it can be

defined completely by its end point A � (a1, a2, a3). Let a, b, and
c be three position vectors defined by points A, B and C,

respectively. We assume that the three points are not located

on the same line in 3D space, then we can uniquely find an

equation of a plane passing through the three points. The normal

vector can be calculated as follows:

n � 〈n1, n2, n3〉 � v1 × v2, (1)

Where v1 � b − a is the vector starting at point A and ending at

point B, v2 � c − b, and v1 × v2 is the cross product. One of the

features of the cross product is that the resulting vector is

perpendicular to each of the two vectors included in the

product, therefore it is perpendicular to the plane formed by

them as shown in Figure 1. So the projection of any position

vector defined by a point from the plane onto the normal vector is

constant, and the plane’s equation can be written as:

n1x + n2y + n3z + d � 0. (2)

(x, y, z) represents any point from the plane, and d is a

constant that can be calculated using any point A, B or C:

d � −a.n � −b.n � −c.n, (3)

FIGURE 1
An illustration for finding the equation of a plane.
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where a.n is the dot product. The area of the triangle formed by

the three points A, B and C can be calculated as follows:

area � ||n||
2

, (4)

Where ||n|| is the magnitude of the vector n. Let p and q be two

different position vectors defined by the points P and Q,

respectively, then any point x of the line passing through the

points P and Q can be written as follows:

x � p + tu (5)

Where u � q − p, and t ∈ R is called the line’s parameter. In

addition, we can find the point of intersection between a line and

a plane by solving their equations jointly. By substituting Eq. 5

into Eq. 2 we get the following:

n. p + tpu( ) + d � 00tp � −d + n.p
n.u

. (6)

provided that n.u ≠ 0, i.e. the line must not be parallel to the

plane. Then we can substitute tp into the line’s equations (Eq. 5) to

find the coordinates of the intersection point S as shown in Figure 2.

s � p + tpu. (7)

3.2 Preparation of input objects

Objects from the publicly available datasets can be used as

input of the proposed method. We assume that each object is

represented as a polygon mesh which is defined by two sets, the

set of vertices and the set of elementary surfaces. Objects can also

be created using some mathematical formulas, but a better

solution is to use a CAD software such as SolidWorks which

allows to create more complicated and realistic shapes.

We assume that the input objects are complete, meaning that

the whole surface of each object is available. If an object is not

complete, the method also works, what happens is that additional

faces may be deleted during HSR step depending on the location

of the camera. We also assume that each elementary surface is

determined by three vertices, i.e. a triangle. Generalization to

higher-order meshes is simple as each polygon can be considered

as the union of many triangles.

3.3 Hidden surfaces removal

We suppose that there is a camera in the 3D space around the

input object. Camera’s location is determined by three

parameters: elevation angle el, azimuth angle az, and radius

rcamera as shown in Figure 3. In order to get different shapes at the

output of the proposed method, different locations of the camera

are selected by changing the aforementioned parameters.

An occluded vertex is a point of the object, hidden from the

camera because it is located behind other parts of the object’s surface.

So deleting the occluded vertices gives a result similar to capturing 3D

images by the camera from the specified viewpoint. Of course, this

does not completely correspond to reality, for example, the presence of

a transparent surface between the camera and a point may occlude it

only partially, but we will not consider such cases here. A point is

considered occluded if any surface intersects the line-of-sight between

it and the camera, regardless of the type of this surface.

The occluded vertices are firstly found, then they are removed

with their associated elementary surfaces. We assume that the area

of an elementary surface is very small compared to the whole area

of the object’s surface, so deleting a surface when at least one of its

vertices is occluded has a small effect on the resulting shape. If the

area of an elementary surface is not relatively small, then we have

to find the precise occluded part of it. One solution to this case is to

FIGURE 2
Intersection between a line and a plane formed by three
points.

FIGURE 3
A description of the location of the camera in 3D space.
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further divide each large face into many smaller faces as shown in

Figure 4. However, one should be careful, as this solution may

increase complexity dramatically in some cases, and should be

avoided if the number of the resulting points is very large. Other

better solutions are presented later in Sections 3.5 and 3.6.

To check whether a vertex is occluded or not, we form a line

between this test point and the camera’s center, then we look for an

intersection between the formed line and any elementary surface of

the object. If such an intersection is found and the point of

intersection is between the test point and the camera, then the

vertex is occluded, otherwise it is visible. The equation of the plane of

an elementary surface can be found using Eq. 2, the equation of the

line passing through the test point and the camera can be found using

Eq. 5, and the point of intersection between them can be found using

Eq. 7. To check if the intersection point is located inside or outside an

elementary surface, we find equations of three perpendicular planes

whose normal vectors are n1, n2 and n3 as shown in Figure 5. These

vectors are defined as follows:

ni � n × vi, i � 1, 2, 3, (8)
and the constants of the three planes can be found as follows:

d1 � −a.n1, d2 � −b.n2, d3 � −c.n3. (9)

Each one of the perpendicular planes divides the plane of the

elementary surface at their intersection line into two regions, the

region of positive values which is indicated by the direction of its

normal vectors ni, and the region of negative values on the other

side. Now, let s be the position vector related to the intersection

point S. We calculate three values using the equations of the

perpendicular planes as follows:

vali � s.ni + di, i � 1, 2, 3. (10)

if val1 ≥ 0 ∧ val2 ≥ 0 ∧ val3 ≥ 0, then the point S is inside the

elementary surface, otherwise it is located outside it (Hughes

et al., 2014).

3.4 Random sampling of the detected
visible surfaces

The detected visible elementary surfaces after applying HSR

(see Figure 8B) are sampled randomly with a uniform

distribution. To ensure a uniform density of sampling points

over the entire surface of an object, the number of points to be

sampled from an elementary surface is selected proportionally to

its area (Eq. 4). If the area of a surface is too small so that the

required number of samples is less than 1, let’s say 0.1 for

example, then we take one sample from this surface with a

FIGURE 4
Division of elementary surfaces of large area into smaller ones: (A) original object, (B) resulting object after division.

FIGURE 5
An illustration of the three perpendicular planes of an
elementary surface.
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probability of 0.1. This can be done by generating a random

number between 0 and 1 with uniform distribution, then taking a

sample only if the generated value is less than 0.1. This procedure

is depicted in Algorithm 1. In this way, we avoid creating point

clouds with high densities in parts containing a large number of

tiny surfaces. It should be noted that the distribution of captured

points in real-world point clouds is not necessarily uniform. In

our future work, we may consider a variable density coefficient

for each elementary surface taking into account its distance to the

camera and their relative orientation.

Inputs: area of the elementary surface A, density coefficient s

1: Compute the exact required number of points as a real

number: n = A.s.

2: Compute the integer part of n: N1 = floor(n).

3: Increment N1 with probability equal to the decimal part

of n: b = rand

4: if b < n–N1 then

5: N = N1 + 1

6: else

7: N = N1

8: end if

Algorithm 1. Calculating the number of points to be samples from a

surface.

In order to generate points at random locations inside an

elementary surface we use the method described in Algorithm 2

and Figure 6, where the resulting vector p2 is the position vector

of the generated point. The condition at line 2 in Algorithm 2

ensures that all points that are generated inside the parallelogram

formed by v1 and v2 but outside the elementary surface are

moved back into the region inside it. In addition, the distribution

of the generated points is uniform.

Inputs: direction vectors of the surface v1 and v2, position

vector b

1: Generate two random numbers with uniform

distribution from the interval [0, 1]: r1 = rand, r2 = rand

2: if r1 + r2 > 1 then

3: r1 = 1–r1
4: r2 = 1–r2
5: end if

6: p1 = b–r1. v1
7: p2 = p1 + r2. v2

Algorithm 2. Generating a point at a random location within a triangle in

3D space.

The randomly generated points form together the resulting

point cloud. An example of the sampled points from all elementary

surfaces of an object is shown in Figure 7B. We show in Figure 8

the results of applying the steps of the proposed method to an

object. In Figure 8A we show the input object with the camera at

the specified location.We also show in Figure 8B the result of HSR,

and the output point cloud is shown in Figure 8C. The similarity of

the newly created data samples to real data is illustrated in Figures

7D-I, where a created sample is shown in Figure 7D-I from three

different view angles, we also show a real data sample from Sydney

Urban Objects dataset of the same class “car” in Figures 7G–I from

three different view angles. We note that the occlusion of the two

samples is almost the same. However, the points of the real sample

are distributed according to some linear patterns, which usually

happens when data is captured using a LiDAR scanner. The new

data can also be generated with such patterns by additional step as

in (Sun et al., 2022). The samples are scaled so that their maximum

dimension is 1.

The complexity of random sampling is of the order of the

number of elemental surfaces O(M). Practically, this process
can be performed only once for each input object, and when

running the generation algorithm the process reduces to a

simple selection of the points that belong to the visible

surfaces detected by HSR, that is, there is no need to re-

sample surfaces for each new generated object. The number of

times the vectors p1 and p2 are calculated is equal to the

number of points to be generated, which is a controlled

parameter. As for calculating the equations of the elemental

surfaces, this also can be performed only once as a

preprocessing stage before running the generation algorithm.

3.5 Exact HSR

Performing HSR before the random sampling of visible

surfaces has some drawbacks, especially when the object has

FIGURE 6
Generating a point at random location inside a triangle in 3D
space.
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FIGURE 7
An illustrative example: (A) input original object from ModelNet40 dataset with mesh representation, (B) result of random sampling of all
elementary surfaces (1e5 points), (C) resulted occupancy grid with size 64 × 64 × 64, (D–F) a created sample shown from three different viewpoints,
(G–I) a real sample from Sydney Urban Objects dataset also shown from three different viewpoints.

FIGURE 8
Steps of the proposed method: (A) original object with the camera at the specified location, (B) result of HSR, (C) resulting point cloud after
random sampling of visible surfaces.
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many elementary surfaces with large areas. The proposed

solution, based on the division of such surfaces into a large

number of small surfaces as shown in Figure 4, can greatly

increase the complexity. In addition, HSR described in Section

3.3 is not precise, since both partially and completely hidden

surfaces are removed. These problems can be solved by making a

modification to the proposed method, which is to change the

order in which the two steps (random sampling and HSR) are

performed, as follows: at first, all elementary surfaces are sampled

with the required density, then HSR is applied to the generated

TABLE 1 (A) Comparison of the execution time of the original andmodified HSR, (B) Comparison of execution time between exact HSR andmodified HSR based
on occupancy grids for different grid sizes.

Object #Faces #Points Execution time (s) Reduction (%)

toriginal tmodofied

A

Car (5) 18,014 12,759 228.1 94.8 58.4

Car (6) 13,164 19,475 343.2 159.0 53.7

Chair (3) 2,628 7,884 12.5 5.6 55.2

Lamp (3) 5,903 5,364 29.9 12.4 58.5

Object #Faces #Sampling points Execution time (s) Reduction (%)

Exact HSR OG_32 OG_64 OG_32 OG_64

B

Car (5) 18,014

1,000 18.5 0.3 0.3 98.4 98.4

10,000 163.8 1.3 2.4 99.2 98.5

50,000 812.7 1.5 6.3 99.8 99.2

Car (6) 13,164

5,000 24.2 0.7 1.1 97.1 95.5

20,000 96.5 1.3 3.7 98.7 96.2

100,000 493.0 1.6 4.8 99.7 99.0

OG_n: HSR, using occupancy grids with size n × n × n

FIGURE 9
Some simple objects that we designed to test the proposed method.
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FIGURE 10
Some data samples of the class “chair” of the created dataset at different azimuth angles: top) fixed viewpoint, down) camera’s viewpoint.

FIGURE 11
Some data samples of the class “airplane” of the created dataset at different elevation angles: top) fixed viewpoint, down) camera’s viewpoint.

TABLE 2 Comparison between our dataset and other datasets for 3D object classification.

Dataset name #Samples #Classes Type Representation Size (MB) #Samples/ 1 MB

McGill Benchmark 427 19 Synthesized Mesh 412 1.04

Sydney Urban Objects 631 14 Real-World Point Cloud 9.66 65.32

ModelNet10 4,899 10 Synthesized Mesh 2,170 2.26

ModelNet40 12,311 40 Synthesized Mesh 9,100 1.35

ShapeNet 57,454 55 Synthesized Mesh 92,900 0.62

Our created dataset 200,000 40 Synthesized Point Cloud 6,940 28.82
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TABLE 3 Overall classification accuracy of the conducted experiments: (A) performance vs. elevation angle of the camera, (B) performance improvement by
data augmentation.

OA (%) Elevation angle (degrees)

−80 −60 −40 −30 −10 0 10 30 40 60 80

A

VoxNet 69.7 71.1 71.6 74.4 69.0 50.3 60.4 69.3 69.0 68.0 63.9

PointNet 65.6 64.9 74.4 76.9 75.5 60.6 75.6 78.3 78.2 74.8 68.0

3DmFV 97.6 97.3 98.0 98.6 97.6 86.8 97.7 99.1 98.5 97.0 97.3

Training data Test 1
(original) OA

Test 2
(generated) OA

Test 3
(real data) Acc

VoxNet 3DmFV VoxNet 3DmFV VoxNet 3DmFV 3DmFVa

car 4wd car 4wd car 4wd

B

C1 Generated 81.0 87.0 76.3 95.2 37.5 66.7 77.3 42.9 88.6 66.7

C2 ModelNet8b 82.0 88.5 45.9 81.3 0 0 17.1 19.1 36.4 42.9

C3 ModelNet8 + generated 87.5 89.5 79.7 95.7 20.5 38.1 63.6 38.1 76.1 81.0

ModelNet40 69.0c/83.0d 91.6e — — — — — — — —

OA: overall accuracy; Acc: accuracy; Ci: Classifier i.
aThe classifier uses 1,024 points, while in all other cases it uses 12,000 points.
bModelNet8 is the subset we selected from ModelNet40.
c(Maturana and Scherer, 2015) without rotation augmentation.
d(Maturana and Scherer, 2015) with rotation augmentation.
e(Ben-Shabat et al., 2018) with 2048 points.

FIGURE 12
Projected area of the visible part of an object onto the three planes of the coordinates system as a function of the camera elevation angle.
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points and not to the original vertices of the object. During HSR,

the occlusion of the generated points caused by the elementary

surfaces is detected, then all hidden points are deleted, and all

visible points are kept to form the output point cloud.

The modification made to the method has two main

advantages. Firstly, it allows exact deletion of hidden

surfaces because the points are checked independently.

Only the hidden points of a surface will be deleted, while

the visible points of the same surface will be preserved.

Secondly, this modification reduces complexity, especially

when the number of original points of the object is very

large. Instead of iterating over the object’s points, we iterate

only over the generated points whose number is under

control.

3.6 Complexity reduction of hidden
surface removal

The proposed method of HSR (Section 3.3) is in principle

based on comprehensive search, where for each vertex, all

elementary surfaces are checked until an occluding one is

found. So the complexity is of the order O(N.M), where N is

the number of vertices, and M is the number of surfaces. The

number of calculations is maximum of the from k.N.M when all

vertices are visible, as in the case of a planar object with a camera

outside its plane. But in the general case, the number of

calculations is less than this maximum limit, as the search

stops once an occluding surface is found, and there is no need

to check other surfaces. However, the complexity is still high, and

it is very necessary to think of some solutions to reduce it. In the

following, we provide some suggestions to reduce complexity.

The first suggestion is to calculate the distances between the

camera and the planes of elementary surfaces. This calculation can

be done with O(M) complexity for each location of the camera.

These calculated distances are then compared with the distance

between the camera and the point being tested for occlusion, and

only the surfaces with lower distances are considered and the others

are excluded. A surface whose all points are farther from the camera

than a point cannot occlude this point.

The second suggestion is similar to the first one, but instead of

calculating the distance between the camera and the plane of a

surface, we choose a set of points from inside the surface and

calculate the minimum distance between them and the camera.

We assume that this minimum distance is a good approximation

of the distance between the surface and the camera. Then, all

surfaces whose distances are greater than the distance between

the camera and the considered point are excluded. A good

approximation can be guaranteed by practically selecting a

sufficiently high value of the density of the generated point.

However, very large densities are not recommended because the

complexity of calculating distances is of the order of the number

of the generated points. It should be noted that the same points

that were generated to form the output point cloud can be used

here to calculate the distances. It should also be noted that the set

of surfaces excluded according to the first suggestion is a subset of

the set of surfaces excluded according to the second suggestion,

so in our simulation we implemented the second suggestion and

found that it can reduce the execution time by more than 50% as

shown in Table 1A.

The third suggestion is a method that greatly reduces

computational complexity but is less accurate, it depends on

converting the object into an occupancy grid as shown in

Figure 7C, then searching for the occluded cells instead of

searching for the occluded points, and finally, all points

belonging to an occluded cell are also considered occluded.

The advantage of this method is that its complexity is limited

by the number of occupied cells of the whole object, and therefore

it is best suited to objects that have a very large number of points.

The accuracy of HSR using occupancy grids is dependent on the

dimensions of the grid. Accuracy can be improved by increasing

the grid dimensions within the permissible limits of complexity.

In our simulation we firstly used grids of size 32 × 32 × 32 as a

good compromise between accuracy and complexity, then we

used grids of size 64 × 64 × 64 which gave better results with

acceptable increase in complexity.

In Table 1A we provide a comparison between the execution

time of the original method toriginal and that of its modified

version according to the second suggestion tmodified. The

comparison is made using objects from ModelNet40 dataset

whose names are shown in the first column, where the

number in parentheses indicates the object index in the

dataset. In the last column, we show the amount of reduction

in execution time, it is equal to 1 − tmodified/toriginal, and it is

around 55% as we can see.

In Table 1B we compare the execution time of the exact HSR

(Section 3.5) with its modified version according to the third

suggestion (based on occupancy grids). We note from the third

column that we are free to generate any required number of points

for the entire object. We also note that the use of occupancy grids

greatly reduces the execution time especially when the number of

points is very large. This allows us to create very dense point clouds.

Therefore, we choose this method to create our new data and to

obtain the results shown in the next section.

4 Results and discussion

4.1 Specifications of the created data

We implemented the proposed method described in Section

3 using both our own created objects and data from publicly

available datasets. At first, we used the simple objects shown in

Figure 9 as input, we created them using mathematical formulas

and plotted them in Matlab, then from each of them we created

1,000 new data samples using the proposedmethod. Secondly, we
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selected 5 objects from each of the 40 classes of

ModelNet40 dataset (Wu et al., 2015), and also generated

1,000 samples from each input object. The total number of

different camera locations that we selected is 100. Elevation

and azimuth angles are chosen using the following formulas:

eli � i − 1( ) × 10 − 90, i � 1, 2, . . . , 19{ }, (11)
azij � j − 1( ) ×

2π
Ni

, j � 1, 2, . . . , Ni{ }, Ni � min i, 20 − i( ).
(12)

The radius of the camera location is chosen so that it is

located far enough from the object (4 times the object’s

maximum dimension). At each camera location we generated

10 data samples for each object, they differ from each other by the

locations of random points as described in Section 3.4. The size of

occupancy grids for this experiment is 32 × 32 × 32.

We show in Figure 10 four data samples that we created from

the same input object but at different azimuth angles. The upper row

in Figure 10 contains the samples as seen from a fixed viewpoint.

The same samples are redrawn in the second row but as seen from

the camera’s viewpoint, so each column contains only one data

sample shown from two different viewpoints. Although the four

samples represent the same object, they are different from each

other, as different parts of the input object were deleted to create

them depending on the location of the camera. We note that from

the camera’s viewpoint, the samples seem complete, but in fact they

are incomplete, as the hidden parts of their surfaces have been

deleted, which is obvious from the fixed viewpoint (upper row). In

Figure 11 we show four other data samples that were created from

another input object at different elevation angles. Here also, each

column shows exactly the same created sample but from two

different view angles.

And in Figure 11 we show some other data samples of

another object at different elevation angles. The upper row in

Figures 10, 11 contains the samples as seen from a fixed

viewpoint, while the lower row contains the same samples but

from the camera’s viewpoint.

In (Guo et al., 2020) a good comparison between a number of

datasets dedicated for 3D object classification is presented. In Table 2

we provide this comparison and add information about our created

dataset using the proposed method with objects from

ModelNet40 dataset as input. We also add two columns, the size

required to store the dataset in Megabytes (MB), and the average

number of data samples per 1MB.We notice that our created dataset

has a larger number of samples compared to other synthesized

datasets that have almost the same size required for storage.

4.2 Classification performance vs.
elevation angle of the camera

In this section, we show how the created dataset can be used

to obtain some results that cannot be obtained directly using

publicly available datasets. To be more precise, we will study the

performance of some classifiers of 3D objects as a function of the

elevation angle of the camera. Such result may be of interest in

many real applications where the camera is located at almost the

same elevation angle with respect to the objects in the scene. For

example, in flying robots that capture images of the ground, the

camera elevation angle is close to 90°, while in autonomous

driving applications, the angle is close to 0°.

We use a subset of the generated dataset as described in

Section 4.1 to train three different deep learning classifiers, they

are VoxNet, PointNet, and 3DmFV. Another subset of the

generated data is used for testing. The subsets are selected

based on the elevation angles of the camera locations, where

we choose data samples at elevation angles {±90, ±70, ±50, ±20}

for training, and at {±80, ±60, ±40, ±30, ±10, 0} for testing. The

total classification accuracy over all classes is shown in Table 3A

for the three classifiers. Although the performance of the

classifiers is different, the aim here is not to compare them

but to show the relationship between their performance and the

elevation angle.

From Table 3A we notice that the performance is highly

dependent on the elevation angle, this means that the ability to

correctly recognize an object depends on the viewpoint from

which it is seen. We also note that the performance degrades

significantly around elevation angle 0 for all classifiers. It also

degrades at ±60 and ±80. The reason for this phenomenon, as we

think, is that the area of the visible part of the object’s surface

differs from one elevation angle to another. Figure 12 shows the

relationship between the elevation angle and the projection area

of the visible part of an ‘airplane’ onto the three coordinate

planes. The curve on the left is the projection area onto the x-y

plane. We found that for a large number of objects this area is

relatively very small at elevation 0, which may explain the

performance degradation at this angle. We also found that the

area of the other two projections onto the other two planes is

relatively small around the ± 90 angles, which may explain the

degradation in performance around these two angles.

4.3 Performance improvement by data
augmentation

In order to verify the importance of the generated data

according to the proposed method, we conducted an

experiment as follows: a subset is selected from

ModelNet40 dataset as an input to the proposed generation

method, where 8 classes out of 40 are chosen, they are

{airplane, bed, bookshelf, bottle, car, chair, lamp, table}.

The number of selected samples from each class is 75,

divided into: 40 for training, 10 for validation, and 25 for

testing. So the total number of selected samples is 600,

represented as meshes. We call the selected subset

ModelNet8 since it has only 8 classes, it is a balanced
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dataset with a relatively small number of samples. The number

of samples was intentionally chosen so that the resulting set is

relatively small and insufficient to train classifiers. In such a

case, the need to augment data arises. If the number of samples

was originally large, then data augmentation methods will

provide a slight improvement in performance. We applied the

proposed method to generate 25 new objects from each input

one, where each new object corresponds to a different location

of the camera. As for the elevation angles, we chose the values

{±80, ±40, 0} in degrees, while for the azimuth angles, we

chose the values {0, 72, 144, 216, 288} in degrees. So, we have

5 elevation angles and 5 azimuth angles, and thus the number

of different camera locations is 25. The angles are chosen so

that the resulting samples are as different as possible from

each other, and this is done by making the camera locations

farther apart. The choice of camera locations usually affects

the quality of the resulting data, for instance, close locations

will most likely give very similar samples. Accordingly,

elevation angles were first selected with equal spacing from

the interval [−π/2, π/2], then azimuth angles were chosen with

equal spacing from the interval [0, 2π] at each elevation angle.

For some applications, elevation angles can be selected within

a specified range according to the angles at which objects are

usually seen in the real world, for example in automated

driving applications, camera elevation angles can be

selected between 0 and 50°. The size of occupancy grids

that are used for HSR in this experiment is 64 × 64 × 64.

Consequently, we get 600 original data samples from

ModelNet40 dataset, in addition to 15,000 new samples

generated using the proposed method. We employ these two

datasets with different configurations to form three different

training sets as follows:

− Training set 1: it only contains samples from the generated

data (8,000 samples). The resulting trained classifier in this

case is called Classifier 1.

− Training set 2: it contains samples from the original

dataset (320 samples), they are converted into point

clouds by sampling each of their elementary surfaces

randomly with a uniform distribution. The result is

called Classifier 2.

− Training set 3: it is the union of the sets 1 and 2

(8,320 samples). The result is Classifier 3.

These sets are used to train VoxNet and 3DmFV classifiers. As a

result of the training process, and for each one of these two models,

we get three classifiers that have the same structure but with

different parameters. We then evaluate the performance of the

resulting classifiers to recognize the test set of the original dataset

(200 samples). The overall accuracy is shown in Table 3B in the

columns below the label “Test 1 (original)”. In this table, the shaded

cells indicate the results that we got without using the generated data

either in the training process or in the testing process.

In all three cases, even when the classifiers were trained

using the original data only, the data is augmented using some

geometrical methods, namely rotation, scaling, and jittering,

which improved performance to some extent, but as we can

see from the results, there is still room to improve

performance by augmenting the original data using our

generated data. This is clear in Table 3B, where we notice

an improvement in the performance of VoxNet classifier from

82.0% using Classifier 2 to 87.5% using using Classifier 3. The

performance of 3DmFV classifier is also improved from 88.5%

to 89.5%. The result of Classifier 1 is also so interesting, it

shows that training a classifier using only occluded shapes

makes it able to recognize complete shapes with a small loss in

performance. However, the opposite is not necessarily true as

we will see in the next section.

In Table 3B, we also compare our results with the

performance of the classifiers when they are trained using the

entire ModelNet40 dataset. We note that the performance of

ModelNet8 dataset is slightly lower than that of ModelNet40, but

it can serve as a good approximation of

ModelNet40 performance. The slight performance loss is due

to the reduction in the number of samples in ModelNet8.

4.4 Prediction of classification
performance on real data

Now, we evaluate the performance of the trained classifiers,

as described in the previous section, using test samples only from

the generated data (5,000 samples). The objective of this test is to

predict the performance of classifiers in real applications, based

on the assumption that the generated samples are similar to the

real data, since they are occluded in the same way. The results are

shown in Table 3B in the columns below the label “Test 2

(generated)”.

We notice that Classifiers 1 and 3 performed relatively well,

while there is a huge loss in performance using Classifier

2 which is trained using only original samples. We therefore

conclude that a classifier that is trained using only complete

shapes will have a poor performance in recognizing occluded

shapes, compared to the case when it is trained using occluded

shapes.

From the results of Test 2 we expect that Classifiers 1, and

3 will perform better than Classifier 2 in real applications. Of

course, it is indispensable to test the classifiers on real data to

verify the validity of this conclusion.

Actually, we tested the trained classifiers using data

samples from Sydney Urban Objects dataset (De Deuge

et al., 2013). This dataset has many classes for different

types of cars, such as “4wd,” “bus,” “car,” “truck,” “ute,”

and “van.” However, the classifiers we’ve trained have only

one output for all types of cars, so when they are tested on

Sydney Urban Objects dataset we would expect that all the
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samples of these classes will be labeled as instances of the class

‘car’. In this case, the true positive (TP) of the class ‘4wd’ for

example will be the number of its samples that are correctly

labeled as instances of the class “car.” A false positive (FP) can

be defined as the number of samples of the other classes (other

than the six mentioned earlier) that are wrongly labeled as

instances of the class “car”.

We show the classification accuracy of the classes “car” and

“4wd” in Table 3B in the columns below the label “Test 3 (real

data) .” We note the following: 1) The performance in general is

lower compared to the results of Test 2. We conclude that it is

preferable to include some real data samples when training a

classifier in addition to the synthesized samples. 2) Classifier

2 which is trained using only complete shapes was unable to

recognize most of the test data. 3) Classifiers 1 and 3 that were

trained using occluded shapes have indeed recognized the test

samples better than Classifier 2, with a very good performance in

some cases.

If we consider the aforementioned definitions of TP and FP,

we can calculate average F1 score for the above-mentioned six

classes of Sydney Urban Objects dataset that represent different

types of cars. The total number of samples in these classes in

188, and the resulted average F1 score using our trained

3DmFV classifier with 1,024 points is 79.3%, which is higher

than the average F1 score found in (Maturana and Scherer,

2015; Ben-Shabat et al., 2018). We emphasize that we trained

the classifiers using synthesized data only, and tested them on

real data.

In Test 3, the best results, which are shown in the last two

columns of Table 3B, are provided by 3DmFV classifier when it is

trained using 1,024 points in the training samples, while in all

other cases it was trained using 12,000 points. The reason behind

this improvement, as we think, is that the value 1,024 is closer to

the number of points in the real test samples. So, it is preferable to

select the training samples with density close to that of the shapes

that will be encountered in real applications.

A general comparison between Classifiers 1 and 3 shows that

in general it is preferable to train a classifier using a combination

of both complete and occluded objects.

Finally, it should be noted that we do not claim that the

newly created samples are a substitute for the original samples.

Replacing a complete original sample with only one occluded

sample is simply a waste of data and is expected to lead to

worse classification performance. The generated samples are

supportive of the original samples, they improve the quality of

training classifiers when they are added to the original

samples, as we have found that it is best to train classifiers

using a combination of complete and occluded samples. Using

occluded samples alone in training may cause some slight

decrease in performance as seen in Table 3B, and to achieve

this a sufficient number of new samples must be generated

from each original sample (we generated 25 new samples from

each one).

5 Conclusion and future work

In this paper, we provided the details of our proposedmethod to

create synthesized 3D point clouds that have similarities to those in

real-world datasets. The method consists mainly of hidden surface

removal and random sampling of visible surfaces. Many

modifications have been proposed to reduce its computational

complexity. We implemented the proposed method firstly using

our designed objects, then on data samples from the public dataset

ModelNet40. Simulation results show that the proposed method

enables us to create a large number of new data samples from each

input object. Using only 200 objects ofModelNet40 dataset we could

create 2e5 new samples to form a new dataset for 3D object

classification. The created dataset is characterized by a large

number of data samples per class and a small size needed for

storage compared to other synthesized datasets.

We used our created dataset to train and test three different

deep learning classifiers, they are VoxNet, PointNet, and

3DmFV. We evaluated their performance at different

elevation angles of the camera, and found that their

performance differs from one angle to another. Such result

may be of interest in many real applications. Another

interesting result is that the performance may degrade at

some angles according to the area of the visible surface of the

object from the camera’s viewpoint.

We also conducted an experiment to verify how the newly

generated dataset can improve classification performance when it

is used to augment other datasets. A subset of 8 classes and

600 samples are selected from ModelNet40 dataset for the

experiment, and 15,000 new data samples are generated using

the proposed method, then VoxNet and 3DmFV classifiers are

trained using different variations of the original and generated

samples. The trained classifiers are then tested on original

samples and generated samples, and even on real data from

Sydney Urban Objects dataset. The selected dataset, which we

called ModelNet8, is a typical example of a small dataset with

balanced classes. We hope that in the future this dataset will be

used widely to evaluate the performance of the recognition

models, as the training process can be done very quickly

compared to ModelNet40 and even ModelNet10, and thus a

rough estimation of the performance can be made before training

the model using a large dataset which usually takes a very

long time.

The results of the conducted experiment showed that

the generated data improves the performance significantly

in all three tests even though other data augmentation

methods were used during the training process, such as

rotation, scaling and jittering. In addition, the results show

that training a classifier using only complete shapes will not

guarantee a good performance in real applications. Rather,

it is preferable to train classifiers using a combination of

complete and occluded shapes. However, there is still a gap

between the performance of the generated data and the real
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data. This is due to many reasons, for example, number of

points, their distribution, occlusion caused by other objects,

etc. Therefore, in our future work we will try to consider all

such influences to create data that is more similar to

real data.
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