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Not having access to compact and meaningful representations is known to significantly
increase the complexity of reinforcement learning (RL). For this reason, it can be useful to
perform state representation learning (SRL) before tackling RL tasks. However,
obtaining a good state representation can only be done if a large diversity of
transitions is observed, which can require a difficult exploration, especially if the
environment is initially reward-free. To solve the problems of exploration and SRL in
parallel, we propose a new approach called XSRL (eXploratory State Representation
Learning). On one hand, it jointly learns compact state representations and a state
transition estimator which is used to remove unexploitable information from the
representations. On the other hand, it continuously trains an inverse model, and
adds to the prediction error of this model a k-step learning progress bonus to form
the maximization objective of a discovery policy. This results in a policy that seeks
complex transitions from which the trained models can effectively learn. Our
experimental results show that the approach leads to efficient exploration in
challenging environments with image observations, and to state representations that
significantly accelerate learning in RL tasks.
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1 INTRODUCTION

Recent improvements in computational power and deep learning techniques have been combined
with reinforcement learning (RL) to create deep RL (DRL) algorithms capable of solving complex
control tasks with continuous state and action spaces (Li, 2018). These improvements have
popularized end-to-end DRL techniques, which involve letting deep learning systems
automatically learn representations and make predictions simultaneously (i.e. without
performing a feature extraction as a preliminary phase). However, despite its simplicity of
design, this end-to-end strategy has limitations [see Glasmachers (2017)] such as potential
instability and slow convergence. In some cases it seems advantageous to separate
representations and policies in different modules and train representations independently from
the sparse and delayed rewards of RL tasks.

State-of-the-art end-to-end DRL algorithms face a significant computational challenge, especially
in the context of continuous control tasks with visual observations (Kostrikov et al., 2020; Laskin
et al., 2020). Instead of addressing this challenge directly, this paper focuses on the state
representation learning (SRL) alternative. SRL focuses on solving the state representation
learning problem independently of a control task, in order to make the inputs more machine-
readable for DRL algorithms (Lange and Riedmiller, 2010; Jonschkowski and Brock, 2013; Böhmer
et al., 2015). It relies on task-agnostic and reward-free interactions to capture relevant information
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about the agent and its environment and to represent it in a
compact form (Lesort et al., 2018; Morik et al., 2019).

The main starting point of our work is the following remark:
for state representations to be useful as inputs to new RL tasks, the
SRL training must have observed a large diversity of transitions.
In the SRL literature, this has typically been addressed with
demonstrations (Sermanet et al., 2018; Merckling et al., 2020)
or random exploration (Jonschkowski and Brock, 2015; Yarats
et al., 2019). However, it is often impossible to randomly explore
all environment transitions, and generating demonstrations
requires time and a priori knowledge about potential tasks.
Therefore, this work proposes to extend the exploration
strategies used in RL to the context of SRL. We place
ourselves in a pure exploration context, where no extrinsic
reward is provided by the environment. A common approach
with RL in this reward-free setting is to compute intrinsic rewards
that estimate a degree of uncertainty about trained models
(Bubeck et al., 2009; Shyam et al., 2019; Sekar et al., 2020).
With this approach in mind, we propose a new exploration
strategy to learn state representation models, called XSRL
(eXploratory State Representation Learning).

XSRL consists of a twofold training procedure. In the first
training procedure, XSRL learns state representations whose
transitions are Markovian while advantageously reducing
dimensionality by filtering out unexploitable information with
respect to the objective of next observation prediction. In the
second training procedure, XSRL learns discovery policies that
perform actions considered uncertain by an inverse model.
Finally, in order to cope with the two sources of non-
stationarity due to changing state representations and inverse
model predictions, we train two discovery policies in parallel and,
given their performances, reset one of them after a given number
of training steps (as explained in Section 3.2.1), where one
training step corresponds to a gradient descent for some loss
on a batch of transitions. We use an online training with a set of
agents, each half of which follows one of the two policies (see
Section 3.3).

The main contributions of XSRL can be summarized as
follows. First, we introduce a novel SRL architecture based on
recursive state estimation predictions. Second, XSRL provides an
exploration strategy by optimizing discovery policies driven
towards uncertain transitions (Section 3.2). Third, we
demonstrate the validity of XSRL representations as well as its
discovery policies through quantitative and qualitative
evaluations on three different environments (Section 5.1).
Finally, we show improvements over other representation
strategies through a comparative quantitative evaluation on
unseen control tasks with the popular RL algorithm SAC
(Haarnoja et al., 2018) (Section 5.2).

2 RELATED WORK

Several other SRL algorithms with a near-future prediction
objective have been proposed recently (Assael et al., 2015;
Böhmer et al., 2015; Wahlström et al., 2015; Watter et al.,
2015; van Hoof et al., 2016; Jaderberg et al., 2017; Shelhamer

et al., 2017; de Bruin et al., 2018). However, they separately learn
state representations from which current observations can be
reconstructed, and train a forward model on the learned states.
The main limitation of these approaches is the inefficiency of the
reconstruction objective, which leads to representations that
contain unnecessary information about the observations.
Instead, XSRL jointly learns a state transition estimator with
the next observation prediction objective. On the one hand, this
forces the learned state representations to retrieve information
andmemorize it through the recursive loop in order to restore the
observability of the environment (in this work, the partial
observability is due to image observations) and to verify the
Markovian property. On the other hand, this forces the learned
state representations to filter out unnecessary information, in
particular information about distractors (i.e. elements that are not
controllable or do not affect an agent).

The XSRL exploration strategy is inspired by the line of work
that maximizes intrinsic rewards corresponding to prediction
errors of a trained forward model, which is a form of dynamics-
based curiosity (Hester and Stone, 2012; Pathak et al., 2017; Burda
et al., 2018). These strategies often combine intrinsic rewards with
extrinsic rewards to solve the complex exploration/exploitation
tradeoff. Instead, the first phase of XSRL ignores extrinsic reward to
focus on SRL and prediction model learning. Extrinsic reward only
comes in a second step (the RL tasks). In addition, for intrinsic
motivation XSRL relies on prediction errors of an inverse model
instead of those of a forward model. Prediction errors of an inverse
model have the advantage of depending only on elements of the
environment controllable by an agent (assuming there are no
surjective transitions). It allows to discard the rest and thus to
significantly reduces the size of the acquired state representation.

Finally, a variant of k-step learning progress bonus is used to
focus on transitions for which the forward model predictions are
changing. Learning progress estimation was initially proposed in
the field of developmental robotics (Oudeyer et al., 2007). Lopes
et al. (2012) initiated the estimation of learning progress bonuses to
solve the exploitation/exploration tradeoff in the model-based RL
domain with finite MDPs. Achiam and Sastry (2017) have scaled
this approach to continuous MDPs with compact observations of
several dozen dimensions. We apply the approach of Achiam and
Sastry (2017) to image observations and in the SRL context.

3 PROPOSED METHOD: XSRL

3.1 State Transition Estimator
The goal of SRL is to transform high-dimensional observations
into machine-readable compact representations which retrieve
information about an agent and the environment (Lesort et al.,
2018). With XSRL, we make the assumption that a good state
representation must contain the information needed to predict
the next observation from the previous time step, or at least the
change in observation that can be explained by the agent’s action.

Our state transition estimator φ consists of two neural network
parts (α, β), and a common network head γ. While α is a
convolutional neural network (CNN) to process image
observations, β is a multilayer perceptron (MLP) to process the
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concatenated action and state vectors. Finally, the common network
head γ is a MLP that processes the concatenated output vectors of
the two first networks to estimate next state vectors (st+1).

The graph in Figure 1A, shows how, from current observation
ot, action at and state st, information is compactly merged into a
next state st+1 through the intermediate functions (α, β, γ).
Because of the recursive loop on the state representation, φ
bootstraps from an initial state drawn from a Gaussian
distribution of mean zero and standard deviation 0.02. Putting
all the functions together, we get the following definition of next
state representation predictions:

st+1 � φ ot, st, at[ ]( ) � γ α ot( ), β st, at[ ]( )[ ]( ) (1)
where we abbreviate the state transition estimator network (α, β,
γ) by φ and their parameters into the following parameter set θφ =
{θα, θβ, θγ}. The implementation details of the whole neural
network are displayed in Table 3.

φ is trained jointly with a next observation predictor ω. ω is a
CNN with transposed convolution layers1 trained to
deterministically predict from the outputs of φ (i.e. st+1) the
next observations: ω(st+1) � ôt+1. This yields the following
prediction error:

‖ôt+1 − ot+1‖22 (2)
All the parameters of ω are gathered in a single parameter set

θω. The corresponding training process is described with the
complete XSRL training process in Section 3.3.

Thanks to this joint training of φ and ω, XSRL builds compact
state representations which contain the information needed to

predict the action consequences in the next observation. We
assume that a ground truth state space exists that follows
Markovian transitions. It is unknown and only image
observations are available, making the environment partially
observable, which may be due to perceptual aliasing or to the
dynamics of the system that cannot be fully captured by an image.
We therefore force φ to memorize in the state representations
(through the recursive loop) the information of past time steps in
order to build a state space withMarkovian transitions. Indeed, to
predict the (predictable part of the) next observation with ω, the
next state representation st+1 � φ([ot, st, at]) must contain the
information of past and current time steps. As this information
cannot only be retrieved from ot and at, some of it must be
memorized in st through the recursive state loop. In this way, the
state representations learned by XSRL are trained to form
Markovian transitions that translate mathematically as follows:

P st+1|st, at( ) � P st+1|st, at, st−1, at−1, . . . , s0, a0( ) (3)
for all states st+1, st ∈ S ⊂ RSd and actions at ∈ A ⊂ RAd .

As perceptual aliasing may occur, φ needs to encode
information about previous steps to predict the right
observations after ambiguous ones. For example, in the case of
a mobile robotics setup (such as the TurtleBot Maze environment
described below), the representation built by XSRL is expected to
capture the topology of the environment because a form of
odometry is necessary to predict next observations [see
Böhmer et al. (2013)].

3.2 Discovery in the Face of Uncertainty
3.2.1 Over-Commitment
A problem that arises in pure exploration with dynamics-based
curiosity is the non-stationarity of intrinsic rewards. Specifically,

FIGURE 1 | (A) XSRL learning process of state representations by jointly training a state transition estimator φ formed by (α, β, γ) and a next observation predictor ω;
the action aπ

t is sampled from π ∈ {π1, π2} with equal probability (a set of agents are considered in parallel and each is assigned a randomly chosen policy, as explained in
Section 3.3). (B) XSRL learning process of a discovery policy by minimizingL(θπ), which is related to intrinsic rewards. Intrinsic rewards are formed of twomain terms: (i)
rI : prediction errors of an inverse model I (also used in L(θI )); (ii) rLPB: k-step learning progress bonuses for φwhere the parameters of φ′ formed by (α′, β′, γ′) are
delayed by k training steps and kept fixed.

1We used the 2D transposed convolution operator provided by PyTorch.
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as in other dynamics-based curiosity explorations from image
observations, two sources of non-stationarity emerge (Burda
et al., 2018): (i) the models change and adapts to novel
observations, which modifies intrinsic rewards, (ii) the state
representations change, which requires further adaptation of
the models. Such a non-stationary training signal can lead to
slow exploration as policies have to “unlearn” in areas where the
novelty wears off. Shyam et al. (2019) have called this problem
“over-commitment.” They proposed to circumvent it by training
from scratch a new policy. We follow a similar idea in XSRL by
training two discovery policies in parallel called π1 and π2, and
every Treset iterations we reset the policy with the lowest
cumulative intrinsic reward.

3.2.2 Intrinsic Rewards
The intrinsic rewards to bemaximized by XSRL discovery policies
are a combination of the following terms: (i) prediction errors of
an inverse model which should be maximized on transitions with
high uncertainty with respect to the elements controllable by an
agent; (ii) k-step learning progress bonuses that should be
maximized on transitions for which the predictions of the
forward model φ are changing; (iii) a policy entropy
estimation to improve convergence stability. Figure 1B shows
the graph corresponding to the calculation of the two main terms
(i) and (ii).

3.2.2.1 Inverse Model
Previous dynamics-based curiosity methods typically used a
forward model to indirectly estimate action uncertainty (Burda
et al., 2018). The common issue with this approach is that it can
drive exploration policies towards transitions with intrinsic
(aleatoric) uncertainty (Schmidhuber, 1991). One way to solve
this problem is to train an ensemble of models (Chua et al., 2018).
Initialized differently, the models tend to disagree in
neighborhoods of transitions that have not been explored (so
where there is a lack of data, i.e. epistemic uncertainty), but the
models agree on transitions that have been observed, even if they
contain irreducible aleatoric uncertainty. Thus, seeking transitions
for which the models disagree drives the exploration towards
epistemic uncertainty, which is the desired behavior. In this
paper, we follow another approach, inspired by Pathak et al.
(2017), that combines a forward and an inverse model. In
Pathak et al. (2017), the inverse model is used to construct a
feature space that erases environmental features that are not
influenced by the agent’s actions. Curiosity based on a forward
model in this feature space avoids the issue of aleatoric uncertainty.
We proceed in a slightly different way that removes the need for a
new feature space, by encouraging discovery policies to seek
transitions for which the composition of a forward model (φ)
and inverse model does not retrieve the intended action. This tends
to be true when data is lacking (epistemic uncertainty), and false for
data on which the models are well-trained. Aleatoric uncertainty is
ignored by the forwardmodel, but that does not prevent the inverse
model from retrieving the correct action, therefore aleatoric
uncertainty alone does not attract exploration.

Our inverse model takes as input a pair of consecutive states
estimated by the forward model (st, st+1) to predict the action

ât � I(st+1, st) executed by an agent to obtain the next state st+1.
The prediction errors to be maximized by the discovery policies
and minimized by the inverse model are calculated as follows:

rI ât, a
π
t( ) � ât − aπt

����
����22. (4)

The action aπt is sampled from π ∈ {π1, π2} with equal
probability. The training process of the inverse model is
detailed later in Section 3.3.

3.2.2.2 Learning Progress Bonus
To ensure that actions considered uncertain by the composition
of a forward and inverse model lead to diverse unknown
transitions, we use a k-step learning progress bonus on φ. It
makes the agent curious mainly about things that change the
predictions of φ. Following Achiam and Sastry (2017), we
compute this learning progress bonus from φ and its clone
denoted φ′ formed by (α′, β′, γ′), whose parameters are
delayed by k training steps and kept frozen. The squared
Euclidean distance between the outputs of these two networks
is an estimate of the changes in φ after k training steps.

The k-step learning progress bonus to be maximized by the
two discovery policies is defined as follows:

rLPB ot, st, a
π
t( ) � φ ot, st, a

π
t[ ]( ) − φ′ ot, st, a

π
t[ ]( )

����
����22 (5)

where the action aπt is sampled from π ∈ {π1, π2} with equal
probability.

3.2.2.3 Policy Entropy Estimation
Ziebart et al. (2008) and Haarnoja et al. (2017) showed that
optimizing policies to maximize entropy in addition to expected
return improved their convergence. The formulation depends on
a temperature wH which is the weight of the entropy
maximization term. Following Haarnoja et al. (2018), the
temperature tuning is automated by formulating a different
entropy objective, where the entropy is treated as a constraint.
Approximating a dual gradient descent, wH is adapted online by
gradient steps on the following expression:

wH H π ·|st( )( ) − �H[ ] (6)
By default, �H, the target entropy, is chosen to be equal to

minus the action dimension −Ad. See (Haarnoja et al., 2018) for
more details.

3.2.3 Discovery Policies
Now that we have detailed the three terms for computing intrinsic
rewards, we explain how we train discovery policies to maximize
them. In this work, we study environments with continuous
action spaces. A possible approach to learn a policy in this
case is to model it as a multivariate Gaussian distribution with
a diagonal covariance matrix (Haarnoja et al., 2018). To do this,
we use a neural network with a first common part, then one head
μπwith parameters θμ to predict a mean vector, and a second head
Σπ with parameters θΣ to predict the diagonal covariance
elements of a covariance matrix. The outputs of these two
heads, which have the same dimension as the action space,
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allow us to parameterize a policy, so that it follows a Gaussian
distribution defined as:

π ·|st( ) ≜ N μπ st( ),Σπ st( )( ) (7)
All parameters of a discovery policy π are gathered in a single

parameter set θπ = {θμ, θΣ}. The reparametrization trick (Kingma
and Welling, 2014) is used to sample an action from a policy (i.e.
aπt Ħ π(·|st)) to keep all its parameters differentiable:

aπt ≜ μπ st( ) + t × Σπ st( ) , t Ħ N 0Ad
, IAd( ) (8)

The two discovery policies (π ∈ {π1, π2}) can be optimized
directly from the intrinsic reward gradients. The intrinsic rewards
are computed with prediction errors of an inverse model, k-step
learning progress bonuses on φ, and a policy entropy estimation,
all of which use actions sampled from π. Thus, our discovery
policy training strategy is based on stochastic gradients from
batches for the minimization of the expected value of the
following loss function:

− wIr
I ât, a

π
t( ) + wLPBr

LPB ot, st, a
π
t( ) + wHH π ·|st( )( )( ). (9)

This yields a maximization of the intrinsic rewards. The
corresponding training process is described in the next section.

3.3 Optimization Process
Let us define the notations for the training examples we
manipulate in our online training procedure. There is an
even number B ≥ 2 of agents in parallel, denoted by
b ∈ [[1, B]], each of them being initialized in the same fixed
configuration. At time step t, a training example for (φ, ω) is
an element of the form (o(b)t+1, o

(b)
t , s(b)t , aπt (b)), composed

respectively of next observation, current observation,

previously estimated state representation, and executed action
sampled from one of the two discovery policies as
aπt (b) Ħ π(·|s(b)t ) (following the sampling process defined in
Eq. 8). Specifically, each half of the set of B agents follows
one of the two policies π ∈ {π1, π2}. A state transition estimator φ
composed of three modules (α, β, γ) estimates from the triplet
input (o(b)t , s(b)t , aπt (b)) the next state s(b)t+1, from which ω predicts
the next observation ô(b)t+1.

The optimization problem to simultaneously train φ and ω, is
the minimization of the following objective function (based on
the next observation prediction error of Eq. 1):

L θφ, θω( ) � 1
B
∑
B

b�1
‖ω s b( )

t+1( ) − o b( )
t+1‖22 (10)

We compute this objective function after all B agents have
executed their actions aπt (b), and let the backpropagation
compute the partial derivatives of this objective function with
respect to the parameter sets θφ and θω. One gradient descent on
this loss is what we call a training step on L(θφ, θω).

3.3.1 Update Interval
The inverse model and the two discovery policies are trained
in parallel to the above training. For losses other than
L(θφ, θω), instead of performing a training step after every
agent executed its action, it is performed after a chosen update
interval (Tπ). Since the policy optimization is much more
sensible to the i.i.d. hypothesis (of the Robbins-Monro’s
conditions for stochastic gradient descent to converge
(Robbins and Monro, 1951)), we use the largest possible
sampling period k for these two types of optimization (k
also corresponds to the number of training steps whose the

FIGURE 2 | (A) Schematic representation of the XSRL twofold training procedure to provide compact state representations by jointly training a state transition
estimator φ with a next observation predictor ω, guided by two discovery policies π ∈ {π1, π2} in an online manner (see Section 3.3). Here st+1 � φ([ot , st ,at]), and
st+1′ � φ′([ot , st ,at]) where φ′ is a clone of φ whose parameters are delayed by k iterations and kept frozen. (B) A schematic illustration of the transfer of the pretrained
state representation model (φ) to an unknown RL task.
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parameters of φ′ are delayed). To do this, we specify an update
interval Tπ ∈ Z+ defining the number of time steps before a
training step is performed on the parameters of the inverse
model and of the two discovery policies. Given a chosen batch
size Bπ ∈ Z+ and the number B of agents running in parallel, a
batch of training examples is formed of �Bπ

B � samplings. To
maximize the independence between each of these samplings,
we choose the sampling period to be k � �TπB

Bπ
�.

The optimization problem to train the inverse model is the
minimization of the following objective function (based on the
action prediction error of Eq. 4):

L θI( ) � 1
Bπ

∑
Bπ
B� �−1

i�0
∑
B

b�1
I s b( )

t+1−ki , s
b( )

t−ki( ) − aπt−ki b( )
�����

�����
2

2
(11)

The backpropagation computes the partial derivatives of
this objective function with respect only to the parameter set
θI .

The optimization problem to train the two discovery policies is
the minimization of the following objective function (based on
the loss of Eq. 9):

L θπ( ) �
1
Bπ

∑
Bπ
B� �−1

i�0
∑
B

b�1
− wIr

I âπ b( )
t−ki , a

π
t−ki b( )( ) + wLPBr

LPB[

o b( )
t−ki, s

b( )
t−ki, a

π
t−ki b( )( ) − wHlog aπt−ki b( )( )] (12)

where the parameter set θI is frozen, and that of φ′ is updated
every k iterations with that of φ and kept frozen. More specifically,
the backpropagation computes the partial derivatives of this
objective function with respect to the parameter set of π ∈ {π1,
π2}. This objective function is low where the inverse model fails to
predict actions, and the predictions of the forward model (φ) vary
greatly.

Finally, to automatically tune the temperature wH, we
minimize the following objective function:

L wH( ) � 1
Bπ

∑
Bπ
B� �−1

i�0
∑
B

b�1
wH −log aπt−ki b( )( ) − �H[ ] (13)

As explained in Section 3.2.1, we choose to simultaneously
train two discovery policies to mitigate the “over-commitment”
(Shyam et al., 2019). Specifically, our XSRL algorithm (as
displayed in Algorithm 1) resets the policy with the lowest
accumulation of the two main intrinsic reward terms, which
are the prediction error of the inverse model (Eq. 4) and the k-
step learning progress bonus (Eq. 5). This accumulation is
computed by summing over the indices (b) and i as in Eq. 12
and also over Treset time steps (defined in Table 3), which
results in:

∑

Bπ
B� �−1( )p T reset

Tπ
⌊ ⌋

i�0
∑
B

b�1
wIr

I âπ b( )
t−ki , a

π
t−ki b( )( )

+ wLPBr
LPB o b( )

t−ki, s
b( )
t−ki, a

π
t−ki b( )( ) (14)

where Treset > Tπ.

Algorithm 1. XSRL algorithm

In summary, our XSRL algorithm described in Algorithm 1,
performs four types of optimization: (i) of a state transition
estimator with Eq. 10, (ii) of an inverse model with Eq. 11,
(iii) of two distinct discovery policies with Eq. 12, (iv) of an
automatic temperature tuning with Eq. 13. See Table 3 for more
details on the hyperparameters of our XSRL implementation.

Figure 2 shows the two phases of XSRL considered in this
work. A: the twofold training procedure that XSRL follows in
order to effectively explore the environment and to estimate state
representations consistent with the true state of the system. B: the
use of the trained representation model φ in an unseen RL task.

4 EXPERIMENTAL SETUP

This section describes a systematic evaluation of the criteria that
the XSRL algorithm should fulfill. XSRL should learn state
representations which (i) retrieve information (possibly by
memorizing information from past time steps) to garantee
that their transitions are Markovian and (ii) filter unnecessary
information. Furthermore, XSRL should learn discovery policies
which (iii) explore efficiently even in the presence of aleatoric
uncertainty. Finally, after the XSRL pretraining, the state
transition estimator φ must (iv) provide advantageous inputs
to solve unseen RL tasks.

We evaluate criterion (i) by measuring the average of the next
observation prediction errors on a training dataset and a test
dataset. While the former is made up of samples generated during
the training process, the latter is carefully designed for each
environment, as described in Section 4.2.6. Although some
parts of the next observations are irreducibly unpredictable,
the lower the error, the more likely the transitions are to be
Markovian. Furthermore, we compare the observation prediction
error of XSRL with the observation reconstruction error obtained
by RAE (Regularized Autoencoder (Ghosh et al., 2019)).
However, since it is more complicated to predict the next
observation from past time step information than to
reconstruct it, it is expected that the latter will perform better.

We evaluate criterion (ii) on state representations and
criterion (iii) on discovery policies by training XSRL in a
TurtleBot Maze environment with artificial aleatoric
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uncertainty in its transitions. The aleatoric uncertainty is
introduced as follows: at every time step, the color of one of
the walls, initially in front of the robot, is randomly sampled (see
Figure 5). Besides, to fulfill the criterion (iii), we perform an
exploration evaluation during the state embedding pretraining of
XSRL. We measure the average number of training steps on
L(θφ, θω) before one of the B (B = 32 as detailed in Table 3)
agents reaches the other end of the maze. Furthermore, since
‖ot+1 − ôt+1‖22 is a useful prediction error measure to
quantitatively evaluate the generalization performance of ω
(which is directly related to the performance of discovery
policies), a high error measure will indicate that the
exploration strategy is not effective. To complete the
evaluation of the discovery policy criterion, we also compare
two XSRL ablations:

• XSRL-MaxEnt: trains a policy to maximize its entropy
estimation by keeping only the entropy term in Eq. 12

• XSRL-random: samples actions randomly from the
action space.

Here, XSRL-random is expected to give minimal performance,
while XSRL-MaxEnt should be worse than XSRL, as it only
depends on the policy distribution.

We evaluate criterion (iv) with the transfer of the trained
state representation network φ to unseen RL tasks. During RL,
the environment provides an agent with extrinsic rewards to
train an optimal policy, while φ transforms large observations
into compact state vectors as shown in Figure 2B. To rigorously
conduct this evaluation, we use a popular RL algorithm with
continuous actions—SAC (Soft Actor-Critic) (Haarnoja et al.,
2018)—on each of the three environment tasks shown in
Figure 3. These continuous control tasks (presented in detail
in Section 4.2) are challenging because of their high-
dimensional observation spaces consisting of images. In
order to obtain a quantitative evaluation of our results, we
compare the performance with other representation strategies
detailed below.

4.1 Baselines
We compare the performances of XSRL representations on
unseen RL tasks to the following five baselines: ground truth,
open-loop, position, RAE, random network.

Of all these baselines, only RAE (Regularized Autoencoder)
(Ghosh et al., 2019) is a state-of-the-art SRL method. We train it
using the same three rewardless environments with fixed state
initializations as for XSRL (described in Section 4.2.4).
However, since it has no associated exploration strategy to
generate observations, we use either a random policy (which
is defined as above for XSRL-random) as previously done by
Yarats et al. (2019), or an effective exploration designed with
expert knowledge (indicated by the suffix -explor). In TurtleBot
Maze, this effective exploration corresponds to episodes with
50 time steps, with random actions, and random resets (i.e.
random initial states anywhere in the maze). In the two torque-
controlled environments, this effective exploration has 0.5
probability to take a random action and otherwise takes an

action sampled from an optimal policy pretrained in the RL
context (i.e. where extrinsic rewards are available) with SAC
from the ground truth state space.

RAE is a deterministic alternative to the variational
autoencoder (VAE) (Kingma and Welling, 2014), which
preserves the regularizing effect of the latter. To the best of
our knowledge, we do not know of any other method than
RAE, belonging to the SRL context and that achieves state-of-
the-art performance on the torque-controlled tasks of the
DeepMind Control Suite (DMControl) benchmark (Tassa
et al., 2018) with visual observations (similar to those
considered in this article). Specifically, in the DMControl
benchmark, Yarats et al. (2019) obtain results in which
RAE with the SAC algorithm performs as well as PlaNet
(Hafner et al., 2018), a state-of-the-art model-based RL
method.

We also use a random network representation in which,
instead of training a network (i.e. similar to the α function of
XSRL), its parameters are simply fixed to random values
sampled from a Gaussian distribution of mean zero and
standard deviation 0.02. This strategy without any training
was popularized for classification problems by Jarrett et al.
(2009) and then for RL tasks by Gaier and Ha (2019).

We use, only in the InvertedPendulum environment, the
position baseline which corresponds to position
measurements without velocities. The absence of velocities
let us show the relevance of such physical dynamic
information to solve the swing up task. To achieve a good
performance, XSRL must extract this information from the
observation of consecutive time steps by memorizing through
the recursive loop.

Finally, we use a ground truth baseline, which is a state directly
extracted from the environment dynamics (see Section 4.2 for
details in each environment), and an open-loop baseline, where
the state is defined as the time step of an agent. Wile the ground
truth baseline is expected to constitute an upper bound on RL
performance, the open-loop baseline serves as a sanity check. The
latter would enable us to validate whether the three RL tasks
require closed-loop policies. That is, whether it is necessary to use
the agent’s perception and proprioceptive information to solve
the task, or whether open-loop policy learning strategies may be
sufficient. In particular, this gives the minimum performance to
beat to show the relevance of different state representation
strategies.

We justify the absence of state-of-the-art end-to-end RL
baselines such as (Lee et al., 2019; Kostrikov et al., 2020;
Laskin et al., 2020; Srinivas et al., 2020), despite their open
source implementations, by their too high computational
complexity which is impractical in our hardware setting and
limited computational time.

4.2 Environment Details
We perform our experiments on the three environments
presented in Figure 3 which are all partially observable due
to image observations. InvertedPendulum and HalfCheetah
belong to the MuJoCo torque-controlled benchmark
(Todorov et al., 2012), and we chose their implemention on
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PyBullet (Coumans and Bai, 2016–2019) for compatibility
reasons on our computers.

4.2.1 TurtleBot Maze
We have implemented this environment as a U-shapedmaze with
the TurtleBot robot from PyBullet (Coumans and Bai,
2016–2019), inspired by Ant Maze from OpenAI Gym
(Brockman et al., 2016) used by Shyam et al. (2019). The two-
dimensional action applies a velocity to each of the left and right
wheels of the robot. The three-dimensional ground truth state is
formed by the cartesian coordinates in x and y axis of the robot
and its orientation angle. In this environment, the task consists in
a goal reaching task with sparse rewards and a long horizon.2

Thus, it is a challenge for a RL algorithm to address the
exploration/exploitation tradeoff. This task provides a RL
algorithm with a sparse reward of +1 each time the robot
reaches the goal, a reward of −1 each time it touches a wall,
and 0 otherwise, within a maximum of 100 time steps before the
robot and the goal are randomly reinitialized. In addition, this
task provides a RL algorithm with the position of the goal, which
is concatenated to the state representation. Indeed, since the goal
position is task-dependent, it cannot be learned by state
representations in a reward-free context.

4.2.2 InvertedPendulum
The InvertedPendulum is attached to a pivot point on a cart
sliding on a rail. The one-dimensional action applies a force to the
cart, which is limited to linear movement on the rail. The five-
dimensional ground truth state is formed by the x-axis position
and velocity of the cart, the angular position in Cartesian space
(i.e. cosine and sine of the angle) and angular velocity of the
pendulum. In this environment, the task consists in a swing up
task where the pendulum must swing up several times before
balancing upward (since the pendulum is initialized downwards).
This task provides a RL algorithm with a reward for keeping the

pendulum up vertically, within a maximum of 1,000 time steps
before the pendulum is reset to a random state.

4.2.3 HalfCheetah
The HalfCheetah is composed of eight rigid links, the torso and
the back, and two legs each composed of three rigid and
controllable links. The six-dimensional action applies
torques to each of the six joints of the two legs. The 17-
dimensional ground truth state is formed by the angular
positions and velocities of the six joints, as well as agent
cartesian position. In this environment, the task consists in
a locomotion task where an agent must run to progress as far as
possible. This task provides a RL algorithm with a reward for
moving the robot as fast as possible, in a maximum of
1,000 time steps and with a constraint that resets it as soon
as it gets too close to the ground (which is not applied during
XSRL and RAE trainings).

4.2.4 Rewardless Environments
We detail some of the differences in the three environments used
without reward in the SRL context and the three tasks described
above used in the RL context. In the SRL context (i.e. during
XSRL and RAE pretraining), an agent is reset after a longer
horizon, and is initialized to a constant state. For TurtleBot Maze
the horizon is 500 time steps, hence the need of an effective
exploration to reach the other end of the maze, which is at the
opposite of the fixed initial state. For the two torque-controlled
environments (InvertedPendulum andHalfCheetah), the horizon
is 2,000 time steps (so 500 after repeating the action four times).
The remaining common hyperparameters of the three
environments for the SRL and RL contexts are displayed in
Table 1.

4.2.5 Image Preprocessing
The image preprocessing performed in these environments
follows basically the same state-of-the-art approaches. We
divide the pixel values by 255 to normalize them to [0, 1].
Then we downscale the image size to 3 × 64 × 64 pixels just
like Mnih et al. (2013); Lillicrap et al. (2015). When the action

FIGURE 3 | High-rendered images of the three continous control environments in PyBullet (Coumans and Bai, 2016–2019). (A) The novel TurtleBot Maze
environment proposed in this work, where the observation space corresponds to a first-person perspective camera view. We use a goal reaching task in this
environment to quantify the exploration performance of XSRL. (B) The InvertedPendulum environment provides a swing up task. (C) The HalfCheetah environment
provides a locomotion task. (B,C) are two popular torque-controlled benchmark environments where the observation space corresponds to the view of a camera
tracking the agent, as in the DMControl benchmark (Tassa et al., 2018).

2In TurtleBot Maze, an agent must perform 47 actions of maximum amplitude to
cross the maze.
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repeat is one (with TurtleBot Maze), an observation corresponds
to the image ot = It. When it is four (with InvertedPendulum and
HalfCheetah), an observation corresponds to the stack of the
three consecutive images ot � [It′−2, It′−1, It′] of size 9, ×, 64 × 64,
just like Lillicrap et al. (2015) and Yarats et al. (2019), where t′
corresponds to a time scale four times smaller than that of t (i.e. t′
= 4 × t). For our XSRL method, this concatenation of images
obtained by repeating the last action three times allows not to lose
all the information on these time steps. This concatenation of
images solves the trade-off between computational complexity
and information loss.

4.2.6 Test Datasets
For quantitative performance evaluation of our XSRL algorithm,
we use an error measure of the next observation prediction, and
for the state-of-the-art RAE baseline, we use an error measure of
the next observation reconstruction. To perform those
evaluations, we need an appropriate test dataset for each of
the three environments described above. To do this, we
carefully collected a wide variety of 400 transitions formed of
observation-action pairs into a dataset. We generated them in two
different ways. In the case of TurtleBot maze, we hand-designed
expert trajectories that follow the U-shape of the maze. In the case
of InvertedPendulum and HalfCheetah, we executed a policy
learned by SAC from the ground truth state space.

4.3 Implementation Details
We now detail the implementation of the training procedures for
XSRL and SAC. The source code of our implementation is
available online.3 This implementation uses the deep learning
library PyTorch (Paszke et al., 2017). The hyperparameter details
for XSRL are detailed in Table 3, and for SAC, when different
from the original implementation of Haarnoja et al. (2018) in
Table 2. Preliminary experiments showed that the
hyperparameters wI and wLPB (to solve the tradeoff during
discovery policy training between maximizing the prediction

error of an inverse model and maximizing the k-step learning
progress bonus on φ) had little impact on final performance.

For a fair comparison with RAE baseline, the same
architecture as α (a convolutional neural network) and ω (a
transposed convolutional neural network) is used for the encoder
and decoder respectively. For the RAE and random network
baselines, their neural networks similar to α output state
representations, while for XSRL the neural network of the

TABLE 1 | Hyperparameters used in the PyBullet environments (Coumans and
Bai, 2016–2019).

Hyperparameter Value

Image rendering size 3 × 96 × 96
Image size after downscaling 3 × 64 × 64
Action repeat 1 TurtleBot Maze

4 otherwise

TABLE 2 | Hyperparameters used for SAC [Soft Actor-Critic (Haarnoja et al.,
2018)] experiments.

Hyperparameter Value

Episode length of the environments 100 TurtleBot Maze
1,000 otherwise

Discount facor γ 0.99
Replay buffer capacity 100,000
Optimizer Adam (Kingma and

Ba, 2014)
Batch size 256
Update frequency for the critic target model, and actor model 2
Learning rate for the critic and actor models, and the
automatic temperature tuning

5e−4

Hidden units of critic/actor models 128, 512, 128

TABLE 3 | Hyperparameters used for XSRL experiments.

Hyperparameter Value

Episode length for all the environments (after action repeat) 500
State representation dimension Sd 20 TurtleBot Maze; InvertedPendulum
(i.e. γ output dimension) 30 HalfCheetah
α output dimension 30
β output dimension (Sd +Ad)
Intrinsic reward weight terms wI � 0.5, wLPB = 1
Optimizer Adam (Kingma and Ba, 2014)
Batch size B for α, β, γ, ω 32
Batch size Bπ for I and π 128
Update interval Tπ for I and π 512
Reset interval Treset 4,096 for both discovery policies
Learning rate for α, β, γ, ω, I , π, wH 1e−4
Hidden units of I , π, γ 128, 512, 128
Hidden units of β 128, 512, 32
Hidden units of α, ω:
A CNN (strides and filters): (2, 32), (2, 64), (2, 128), (2, 256) MLP hidden units: 1024, 256, 32
Ω MLP hidden units: 32, 256, 1024 transposed CNN (strides and filters): (1, 256), (2, 128), (2, 64), (2, 32)

3https://github.com/astrid-merckling/SRL4RL.
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forward model (φ) predicts next state representations. We chose a
state representation of 20 dimensions for TurtleBot Maze and
InvertedPendulum, and 30 dimensions for HalfCheetah, which
correspond to heuristically chosen values. These dimensions were
empirically selected to account for the trade-off between sample
efficiency and final performance (i.e. between computation time
and the optimal policy performance).

We use the same architecture for the policy (a.k.a. actor model)
and the action-value function (a.k.a. critic model) of the SAC
algorithm as for the discovery policies, the inverse model and γ of
our XSRL algorithm. This architecture is made of three-hidden
layers (see Table 3). The total number of parameters in the
corresponding neural network is less than that of the neural
network architecture with fewer layers used by Yarats et al.
(2019); Hansen et al. (2020) on similar RL tasks, because each
layer of our networks is much smaller; see Poggio et al. (2017) for
theoretical explanations. As Yarats et al. (2019), we use double
Q-learning (Van Hasselt et al., 2015) for the critic model.

The Leaky Rectified Linear Unit (Leaky ReLU) is used for the
activation functions between hidden layers, which removes the
vanishing gradients encountered with the ReLU and improves the

convergence speed and stability (which we observed empirically
on preliminary experiments); see Xu et al. (2015) for details.

In our RL experiments, the SAC algorithm is only used to test
the generalization of the XSRL state representation to unseen
control tasks. This implies that we keep the parameters of φ fixed.
Due to memory constraints, for all experiments, we use a reduced
buffer capacity unlike work comparable to ours: 100,000 instead
of 1,000,000 in Yarats et al. (2019).

4.3.1 Hardware Details
All our experiments are performed on three computers, each
containing 40 cores and a Titan Xp GPU provided by Nvidia.

5 EXPERIMENTAL RESULTS

5.1 Evaluations of XSRL Representations
and Exploration
In this section, we show the results of our quantitative and
qualitative evaluations to validate whether XSRL fulfills criteria
1), 2), and 3) which we defined in Section 4.

FIGURE 4 | Error measure results (the lower the better) obtained on a training dataset (top row) and a test dataset (bottom row) (which is defined for each
environment in Section 4.2.6), averaged across 5 runs (with different random seeds). This measure corresponds to the prediction of ot+1 with XSRL, and to the
reconstruction of ot+1 with RAE. XSRL (w/distractor) is performed in TurtleBot Maze with a randomly sampled wall color (as defined in Section 4). XSRL-MaxEnt and
XSRL-random are XSRL ablations that follow the entropy maximization strategy and random sampling respectively. RAE-explor benefits from effective exploration
(described in \mysec{sec:XSRL_baselines}) while RAE follows only random exploration.
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FIGURE 5 | One of the most complex transitions in each of the test datasets (defined in Section 4.2.6) of three environments. From left to right: TurtleBot Maze,
TurtleBot Maze w/distractor, InvertedPendulum and HalfCheetah. The top line shows: (left) the locations of (A) and (E); (right) the locations of (B,F). In the bottom line,
(I–L) show the corresponding ot+1 predictions of XSRL. In (J) XSRL tends to filter the random wall color because it predicts a neutral gray color instead. For
InvertedPendulum and HalfCheetah environments, as the action is repeated four times, ot corresponds to the three consecutive images [It′−2 , It′−1 , It′] (as defined in
Section 4.2.5).

FIGURE 6 | (A) Shows the top view of TurtleBot Maze where the robot’s position corresponds to the constant initial state, hence the complexity of crossing the
dotted red line in less than 500 time steps. (B,C) Number of training steps on L(θφ , θω) before an agent crosses the dotted red line during XSRL training (mean ±
standard deviation over 10 runs; the lower the better). Remark: a training step on L(θφ , θω) corresponds to a time step for each of the 32 agents. Our XSRL exploration
strategy outperforms XSRL-MaxEnt, while XSRL-random provides an upper bound.
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Figure 4 reports the results of the error measure obtained on a
training dataset and a test dataset (defined in Section 4.2.6) on
each of the three environments. This error measure corresponds
to the prediction error of the next observation for XSRL and the
two ablations (XSRL-random and XSRL-MaxEnt); it corresponds
to the reconstruction error of the next observation for RAE
(Ghosh et al., 2019) (following a random exploration) and
RAE-explor (following an effective exploration) as defined in
Section 4.1.

We observe on the two environments, TurtleBot Maze and
HalfCheetah, that the error measure for XSRL is higher than that
for RAE and RAE-explor on both training and test datasets. This
does not correspond to a poor exploration performance of XSRL
but to the objective function which is more complicated than
RAE. Indeed, all information in the next observation that cannot
be predicted from the current time step is ignored as it is the case
for random distractors or too complex information from the
transition model, which tends to increase the prediction error.
Furthermore, the qualitative results in Figure 5 show that XSRL
captures well what is relevant to predict the observation that can
be explained by agent actions, but ignores less useful/redundant
information. For example, in TurtleBot Maze it predicts walls
with relatively good precision despite their potentially small size
(see the purple wall in Figure 5I), but it predicts the checkerboard
pattern on the floor in a less accurate way. The former is related to
the global information on the topology of the maze, while the
latter is not.

The results tend to show that representations learned by XSRL
follow Markovian transitions which is criterion (i). Indeed, the
representations learned by XSRL can predict the observation
change related to robot actions from the current time step only.
This is a consequence of the fact that XSRL is based on recursive
state estimation predictions (see Section 3.1).

In TurtleBot Maze with a distractor represented by a wall color
that is randomly sampled after every transition (as defined in Section
4), the gray wall predicted by ω in Figure 5J shows that the random
colors are ignored by the forward model φ. Using its forward model,
XSRL learns state representations which filter out stochastic
information and more generally information that is unnecessary
to predict the motion of the system, which is criterion (ii).

We evaluated XSRL discovery policies with a quantitative
evaluation of maze exploration presented in Figure 6.
Figure 6 shows that XSRL discovery policies lead more
quickly to episodes (of 500 time steps) in which agents reach
the other end of the maze. Specifically, with XSRL-random,
agents can almost never reach the other end of the maze in
only 500 time steps. We observe no significant decrease in
performance of XSRL with a distractor in TurtleBot Maze.
Furthermore, with and without a distractor, XSRL exploration
reaches the end of the maze almost twice as fast as with XSRL-
MaxEnt. These results tend to confirm that XSRL discovery
policies are successful in guiding agents quickly to diverse and
learnable transitions, without being affected by the presence of
distractors, which is criterion (iii).

The video available here https://youtu.be/IbGa-TC7wek,
shows a comparative evaluation between XSRL exploration
(left) and random exploration (right) in each of the three

environments. It highlights that discovery policies learned by
XSRL allow: in TurtleBot Maze to quickly visit transitions far
from the initial state position (as shown in the previous results);
in InvertedPendulum to balance the pendulum upwards while it
is initialized downwards with zero velocity; in HalfCheetah to
keep the robot constantly moving and exploring various kinds of
postures. We can see that for random exploration: in TurtleBot
Maze the robot moves little away from its initial constant state; in
InvertedPendulum the pendulum is never upwards; in
HalfCheetah it is complicated for the robot to stay in motion
since it ends up stuck in a lying position.

In addition to these qualitative and quantitative comparisons,
the better performance of XSRL exploration is also confirmed by
the quantitative evaluation of the prediction error measure on test
datasets for XSRL and its ablations (Figure 4). This measure
reaches its lowest value with XSRL exploration, followed by
XSRL-MaxEnt and finally XSRL-random which is by far the
worst strategy.

Apart from the comparative study of our XSRL exploration,
we observe that an effective exploration improves the
generalization performance of RAE models, which could be
expected. Indeed, the quantitative evaluation of the
observation reconstruction shows a smaller error on the test
dataset with RAE-explor (which is trained with an effective
exploration defined in Section 4.1) than with RAE (see Figure 4).

Qualitative and quantitative performance differences with
respect to exploration strategies show the advantage of visiting
quickly diverse transitions during state embedding pretraining to
obtain better generalization performance over new transitions.
However, as we see below, it is only with XSRL that the low error
measure translates into good transfer performance with a new
RL task.

5.2 XSRL Representations Transfer
In this section, we show quantitative evaluations to validate
whether state estimators pretrained with XSRL provide
advantageous inputs to RL algorithms for solving three
unseen control tasks (which is an instance of criterion (iv)
defined in Section 4). In particular, we use the deep RL
algorithm SAC (Soft Actor-Critic) (Haarnoja et al., 2018)
which has shown promising results on the standard
continuous control tasks InvertedPendulum and HalfCheetah.
Throughout these experiments, all parameters of the pretrained
state embeddings (with XSRL and RAE) are kept fixed: only the
actor and critic neural networks of SAC are trained. We
performed 10 runs with different random seeds just like
Henderson et al. (2018), Yarats et al. (2019), resulting in 10
different trained policies for each of the representation
strategies. For each state embedding pretraining approach
(XSRL and RAE) and for the random network, we used 5
different models trained with different random seeds, from
which 2 SAC runs with different random seeds are executed.
In addition, unlike ground truth, open-loop and position
baselines, they transform visual observations into compact
state representations of 20 dimensions for TurtleBot Maze
and InvertedPendulum, and 30 dimensions for HalfCheetah
(as explained in Section 4.3).
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Figure 7 shows the learning curves of the episode returns
averaged over 10 episodes across 10 different runs. After training,
we measured the episode returns averaged over 100 episodes for
the 10 different trained policies, which are displayed in Table 4.
For clarity, we normalized all episode returns between the average
SAC + ground truth performance and that of SAC + open-loop,
except for the task with TurtleBot Maze as this is evaluated with
the probability to reach the goal (from a random initial
configuration) in 100 time steps or less. Indeed, SAC +
ground truth is an upper bound because it has easy access to
the agent’s proprioceptive information, and SAC + open-loop is a
lower bound because it corresponds to a blind agent. These results
show that only XSRL state representations perform well in all
three RL tasks, unlike the other state representation baselines.

Figure 7B shows that the position baseline does not allow SAC
to learn a good policy on the InvertedPendulum task. This
confirms that InvertedPendulum and HalfCheetah tasks
require information from the positions and velocities of the
agent’s joints to follow Markovian state transitions which are
only related to the local coherence of the environment (Lesort
et al., 2018). According to Figure 7 and Table 4 on both torque-
controlled environments (InvertedPendulum and HalfCheetah)
SAC + XSRL and SAC + RAE-explor achieve about the same
performance. While on InvertedPendulum they catch up to the
ground truth performance, on HalfCheetah they remain slightly
below. This is because HalfCheetah is more complex on the
control part than InvertedPendulum, as the former has six
degrees of freedom and the latter only one.

TABLE 4 | Episode returns after convergence of the curves in Figure 7 averaged over 100 episodes (mean ± standard deviation over 10 runs; the higher the better).

Mean score TurtleBot Maze InvertedPendulum HalfCheetah

SAC + XSRL 0.98 ± 0.02 1 ± 0 0.82 ± 0.03
SAC + RAE-explor 0.34 ± 0.04 0.99 ± 0 0.87 ± 0.09
SAC + RAE 0.34 ± 0.06 0.93 ± 0.03 0.85 ± 0.08
SAC + random network 0.27 ± 0.1 0.74 ± 0.02 0.31 ± 0.05

SAC + ground truth 0.98 ± 0.02 1 ± 0 1 ± 0.1
SAC + open-loop 0.04 ± 0.03 0 ± 0.06 0 ± 0

FIGURE 7 | Learning curves of the episode returns averaged over 10 episodes (mean in lines and standard deviation in shaded areas over 10 runs; the higher the
better) of SAC with different state representation strategies (defined in \mysec{sec:XSRL_baselines}) on three different continuous control tasks. Learning curves of the
episode returns averaged over 10 episodes (mean in lines and standard deviation in shaded areas over 10 runs; the higher the better) of SAC with different state
representation strategies on three different continuous control tasks. The XSRL pretrained representations are the only one to perform well in three of the
environments, while ground truth and open-loop provide an upper and lower bound respectively. A video showing the corresponding learned policies can be found at
https://youtu.be/XpRcU75i-iQ.
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In TurtleBot Maze, none of the state representation strategies
other than XSRL were successful on the navigation task. In
addition, a random network is not a viable strategy in any of
the three environments, hence the need for a representation
learning strategy. Furthermore, as shown by Figure 7A, the
performance of SAC + XSRL is the same in TurtleBot Maze
with a distractor (where XSRL was pretrained with the
distractor). This tends to show that XSRL representations can
capture information about the environment topology to encode
the orientation and position of the robot. As previously explained
in Section 3.1, this is related to the ability of following Markovian
state transitions despite perceptual aliasing (Cadena et al., 2016).

Overall, these quantitative evaluations show that pretrained
state estimators with XSRL provide advantageous inputs to
solve unseen RL tasks with SAC algorithm, which is an
instance of criterion (iv). This confirms that by memorizing
the information useful for predicting the consequences of the
robot’s action in the next observation, XSRL representations
can encode the robot’s configuration in a state space that
exhibits Markovian transitions (useful to control it with RL),
while filtering out unnecessary information (useful for
generalization on new transitions).

6 DISCUSSION

Experimental results show that our proposed XSRL algorithm builds
state representations that performwell on three unseen RL tasks.We
see the link between the generalization performance of XSRL with
respect to its next observation prediction objective (see Figure 4) and
the transfer performance of its pretrained state estimator (φ) to a
new RL task (see Table 4). Specifically, when XSRL achieves good
prediction performance on a test dataset, this tends to imply good
transfer performance to new RL tasks. On the contrary, our results
showed on TurtleBot Maze that the generalization performance of
RAE did not guarantee a good transfer to a RL task.

The generalization performance on the test dataset strongly
depends on the exploration efficiency (see Figure 4), which is
better with XSRL than with its two ablations. Our exploration
allows agents to reach transitions far away from their initial states
and much faster than the policy entropy maximization and
random strategies (see Figure 6).

Instead of dedicated policies, the exploration strategy could
rely on count-based methods (Tang et al., 2017). It might lead to
promising extensions of XSRL, with more direct ways to
encourage the agent to visit states it has never seen before.
However, this approach raises the challenge of keeping the
state counts up-to-date and relevant during the whole
representation learning process, which requires to constantly
update state visitation statistics while the state space changes.

Another promising avenue for XSRL is to extend it to the case
where partial observability can be handled not only with memory,
but also via active perception (Chrisman, 1992; McCallum, 1993;
Whitehead and Lin, 1995). It would both require a modification
of the representation learning procedure, in order to take into
account information that may be related to hidden aspects of the
state, and a modification of the exploration strategy to specifically

aim at discovering and exploiting information that removes
ambiguity about the true state of the agent.

In this work, we are interested in a state representation that
makes the evolution of the system predictable. XSRL tends to
filter out information that is unnecessary for this purpose.
However, this can be an issue if, in a new RL task, rewards
are not related to the evolution of the system. For example, in a
task in which an agent must respond to a color signal. Since this
information is not controlled by the robot, it will be unpredictable
for XSRL and thus filtered from its state representations. Solving
this kind of problem is outside the scope of this paper, since we
are specifically interested in learning state representations before
being exposed to various RL tasks and reward signals.

Overall, experimental results have highlighted the main
advantage of XSRL in learning state embeddings that can
capture both the local coherence of the environment and a
global information about its topology. While the state-of-the-
art RAE method succeeds in encoding the former, it fails in
encoding the latter, and leads to significantly worse results in the
TurtleBot Maze navigation task (see Table 4).

7 CONCLUSION

We have presented a SRL algorithm (XSRL) that trains discovery
policies for efficient exploration and pretrains state representations
at the same time. Our experiments show that XSRL exploration
provides fastmaze traversal compared to random policy and policy
entropy maximization strategies. Moreover, our comparative
evaluation on unseen RL tasks confirms the transfer efficiency
of the pretrained XSRL models. One of the most striking results is
the superiority of XSRL representations over autoencoder ones,
which is due to better representational properties since the
constructed states are constrained to follow Markovian
transitions. Furthermore, these results highlight the importance
of an efficient exploration strategy in state representation
pretraining approaches, and more generally in the SRL framework.
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