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Social robotics is an emerging field that is expected to grow rapidly in the near future. In
fact, it is increasingly more frequent to have robots that operate in close proximity with
humans or even collaborate with them in joint tasks. In this context, the investigation of how
to endow a humanoid robot with social behavioral skills typical of human–human
interactions is still an open problem. Among the countless social cues needed to
establish a natural social attunement, this article reports our research toward the
implementation of a mechanism for estimating the gaze direction, focusing in particular
on mutual gaze as a fundamental social cue in face-to-face interactions. We propose a
learning-based framework to automatically detect eye contact events in online interactions
with human partners. The proposed solution achieved high performance both in silico and
in experimental scenarios. Our work is expected to be the first step toward an attentive
architecture able to endorse scenarios in which the robots are perceived as social partners.

Keywords: mutual gaze, joint attention, human–robot interaction, humanoid robot, computer vision, experimental
psychology, attentive architecture

1 INTRODUCTION

Joint attention (or shared attention) is one of the most important mechanisms occurring in a non-
verbal interaction between two or more individuals. It is achieved when individuals direct their gaze
on the same object or event in the environment as a consequence of social gestures (e.g., gaze shift,
pointing, and facial expressions) (Moore et al., 2014). The ability to establish joint attention is crucial
in many mechanisms of social cognition, for example, comprehension, language development, and
intention (Tomasello, 1995; Tomasello et al., 2005; Mundy et al., 2007). A failure in such abilities,
indeed, represents one of the earliest and basic social impairments in autism and communicative
deficits (Mundy and Neal, 2000; Dawson et al., 2004).

In this context, designing and building an attention architecture enabling joint attention
between a human and an embodied artificial agent, such as iCub, has inspired many
researchers from different fields, spanning from artificial intelligence to robotics and from
neuro and cognitive science to social science (Henschel et al., 2020; Wykowska, 2020). Inspired
by the behavior of human beings, our ambitious goal is to develop a robotic visual attention
system that responds to several social cues characterizing an effective non-verbal human
interaction. For example, as a social cue, eye gaze estimation plays a crucial role for the
prediction of human attention and intention, and hence is indispensable for better
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understanding human activities (Kleinke, 1986; Emery,
2000). Humans, indeed, tend to look at an object before
trying to grasp it with the hand (Voudouris et al., 2018).
This implies that it is possible to predict human intention just
observing where their attention is focused at.

In our long-range aim, the humanoid robot iCub will be able
to establish social attunement with the human partner
recognizing and reproducing a wide range of social abilities in
a human-like manner. The robot’s ability to imitate human-like
behaviors might bring the humans to adopt the so-called
intentional stance as a strategy toward the robot like they do
with other humans (Marchesi et al., 2019). As proposed by the
philosopher Daniel Dennett, an intentional stance is the strategy
of prediction and explanation that attributes beliefs, desires, and
intentions to an agent and predicts its future behavior from what
it would be rational for an agent to do given those mental states
(Dennett, 1971).

In this research report, we present our first successful step in
the ongoing implementation of such a robotic system.
Specifically, we spent our initial effort on endowing iCub with
the key ability of recognizing eye contact events. The report is
organized in the following way. In the next section (Section 2), we
discuss the importance of the mutual gaze in dyadic interactions.
In Section 3, we describe the proposed solution for eye contact
detection. We benchmarked this algorithm in Section 4where we
compare it against the state-of-the-art method. In Section 5, we
test our architecture in a real HRI experimental setup, discussing
the advantages of our solution in regard to the chosen case study.
Finally, we draw the conclusion in Section 6.

2 FOCUS ON MUTUAL GAZE AND
MOTIVATION

In the context of joint attention, eye contact provides a
foundation of effective social interaction since it signals
the readiness for interaction and the attention of the
partner. Given the sensitivity of a human when being
watched by another one, it is not surprising that the
mutual eye contact may influence the efficiency of the
person-construal process (Macrae et al., 2002). For
example, studies revealed that human observers are faster
to detect target faces/eyes with a direct gaze than those with
averted gaze (Coelho et al., 2006), and the perceived eye
contact enhances the activation of components of the social
brain network (Senju and Johnson, 2009).

While the effect of mutual eye gaze has been largely studied in
human–human and human–screen scenarios with the use of
reaction time measures (Galfano et al., 2012), saccadic
behavior (Ueda et al., 2014; Dalmaso et al., 2017a; Dalmaso
et al., 2017b), and EEG (Hietanen et al., 2008; Pönkänen et al.,
2011), few works exist in the literature investigating whether
similar attention mechanisms arise in human–robot scenarios as
well (Boucher et al., 2012).

For example, in the context of human–human interaction,
Chong et al. (2020) proposed a novel approach based on deep
neural networks to detect eye contact using PoV cameras with

reliability equivalent to expert human raters. The proposed
algorithm has been used in this work as the baseline for the
comparison (see Section 4.3).

Wykowska (2021) underlined the importance of the role of
humanoid robots as a physical presence in real-time interaction
since they provide higher ecological validity than screen-based
stimuli and better experimental control than human–human
interaction. Along the same line, Kompatsiari et al. (2018)
exploited the widely used Posner paradigm (Posner, 1980) to
propose a novel interactive protocol involving the humanoid
robot iCub (Metta et al., 2010) and examine the impact of mutual
gazes on the mechanisms of joint attention.

The Posner paradigm (together with its variations) is a
neuropsychological test typically used to investigate attention
orienting in response to a directional cue. In such a gaze-cueing
task, the observer is typically asked to discriminate an object
target (usually presented in a lateral location) while looking at a
directional cue (e.g., schematic faces or arrows) presented
centrally, in between the locations of potential target
presentation. The cue can be either valid or invalid, depending
on whether it pointed to the target object or to a different
direction.

In their study, iCub was positioned between two lateral
screens on which the target object was presented (in line with
the Posner paradigm). iCub was used as the experimental
apparatus both to establish a real-time eye contact with the
human participant and to manipulate the directional gaze cue
across the trials. The results revealed that the human reaction
times depended on the combined effect of cue validity related
to the iCub’s gaze direction and social aspect of mutual gaze.
Another example can be found in Stanton and Stevens et al.
(2017) where the Nao humanoid robot1 was used to study the
impact of three different levels of a robot’s gaze (averted,
constant, and situational) in cooperative visual tracking task.
Nevertheless the main drawback of the aforementioned
studies was the use of the robot as a passive stimulus.
Specifically, in both studies, the humanoid robot was
operated either with pre-programmed default text-to-
speech and timed head movements or through pre-
programmed gaze behavior. As such, the robot had neither
any perception of a real human’s gaze nor any feedback from
the surrounding environment.

Some authors support the notion that a robot embodying
artificial models capable of reproducing human skills is a unique
and invaluable tool to explain human cognition (Wainer et al.
(2006); Pfeifer et al. (2007); Wykowska (2021)). With this
motivation, in this work, we propose a new module for iCub
which allows to automatically detect whether a mutual gaze is
established with the human partner during the interaction.
Specifically, the report consists of three main contributions:

1. Dataset collection for mutual gaze detection in frontal
human–robot interaction. In the context of frontal tasks,
the dataset collected is general enough to suit many

1https://www.softbankrobotics.com/emea/en/nao.
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different experimental scenarios. To the best of our
knowledge, it is the first mutual-gaze dataset collected
involving a humanoid robot.

2. Designing, implementation, and training of a learning module
based on the aforementioned dataset. Such a module is then
embedded into the iCub’s framework and validated both in
silico and in online scenarios. Furthermore, we compared our
method with the solution proposed in Chong et al. (2020),
achieving an improvement in the accuracy of around 15
percentage points.

3. As a case study, we select the experimental setup proposed
in Kompatsiari et al. (2018) where iCub was used as a
passive experimental apparatus. Within this framework, we
performed several controlled experimental trials to test our
application in a time-constrained social robotic experiment.

Our approach aims at reducing the amount of hardware
equipment required by the robot to detect a mutual gaze with
the human partner (e.g., external cameras and eye tracker). The
robot, indeed, relies only on the image frames captured by its eye-
like cameras making the interaction as natural as possible. The
algorithm developed in this work is an important building block
for robotic setups that can be used to study human social
cognition in naturalistic interactions.

3 EYE CONTACT LEARNING APPROACH

3.1 Data Collection
3.1.1 Participants
A total of 24 participants were recruited for data collection
(mean age = 29.54 ± 3.14, 15 women). All participants had
normal or corrected normal vision (6 participants out 24 wore
glasses) and provided written informed consent. The data
collection was conducted at the Istituto Italiano di
Tecnologia, Genoa, and it was approved by the Local
Ethical Committee (Comitato Etico Regione Liguria).

3.1.2 Setup
The humanoid robot iCub embeds two Dragonfly2 cameras2

(right and left eyes); only one eye camera was used with
the frame resolution set to 640 × 480 pixels. In this study,
we used the right eye camera, but the left eye camera can
also be used equivalently. In order to have higher quality
images for the training phase of the proposed eye contact
classifier, a second dataset was also collected using the Intel
RealSense depth camera D435.3 (See Figure 1 for a visual
evidence.) The RealSense camera was mounted on the iCub’s
head through a 3D printed mount. The middleware YARP
(Yet Another Robot Platform) (Metta et al., 2006) was
used to integrate different modules (e.g., iCub’s controller,
cameras, data dumper, and code modules). The recording
setup is shown in Figure 1. In line with what we claimed in
Section 1— that is, to avoid the need of external hardware—we
underline that the RealSense camera was used only for acquiring
training data. In the deployment phase, the system was
always tested using images provided by the cameras in the
eyes of the iCub.

3.1.3 Task
Participants were asked to sit in front of the iCub at a distance
of around 1 m and to establish first mutual gaze and
then averted gaze with the iCub’s eyes in order to acquire
frames both in eye contact and in no eye contact condition.
In the eye contact recording session, participants were
also asked to look at the iCub’s eyes but moving first
their torso and then their head (Figure 1). For each
position, the frame was captured both by the iCub’s right
camera and the RealSense camera by pressing the bar space
of the laptop’s keyboard. The final datasets consisted of 484
frames each (207 in eye contact and 277 in no eye contact
conditions).

FIGURE 1 | Dataset collection. (A) Overall setup. The participant was seated at a desk in front of iCub. The latter was mounted with a RealSense camera on its
head. (B) Sample frameswere recorded using both iCub’s camera (first row) and the RealSense camera (second row). Different frames capture different human positions
(rotation of the torso/head) and conditions (eye contact and no eye contact).

2http://wiki.icub.org/images/c/c9/POINTGREY_-_Dragonfly2.pdf.
3https://www.intelRealSense.com/depth-camera-d435/.
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3.2 Eye Contact Classifier
Once the dataset was collected, the vector feature was extracted
from each image bymeans of OpenPose4 (Cao et al., 2019), a well-
known real-time system for multi-human pose estimation.
Specifically, OpenPose takes w × h color image as input and
produces the 2D locations (x, y) of anatomical keypoints for each
person in the scene with the corresponding detection confidence
level k as output. Relying on a multi-stage deep convolutional
neural network, OpenPose can jointly detect body, face, hands,
and foot keypoints reaching highly accurate and real-time
performance, regardless of the number of people in the image.

In our work, a subset of 19 face keypoints were considered (8
points for each eye, 2 points for the ears, and 1 for the nose),
resulting in a vector of 57 elements (i.e., the triplet (x, y, k) was
taken for each point). Then, the detected keypoints were centered
with respect to the head’s centroid, computed as the mean
coordinates of all keypoints of the face, and normalized on the
farthest point from the head’s centroid. The use of the face’s
keypoints as a feature vector has the main advantage of making
the classifier independent of the light conditions and the picture’s
background.

The resulting feature vector is finally used as input to the
binary classifier. A support vector machine (SVM) with the RBF
kernel was chosen to address this classification task. We
compared the results produced by the SVM with a random
forest classifier; the former was chosen because it reported the
best performance in terms of accuracy and F1 scores. (For a
detailed comparison, see the Supplementary Material.)
Moreover, given the results of the principal components
analysis (PCA), we considered the RBF kernel. (See the
Supplementary Material for further details.) The hyper
parameters of the SVM model were selected using an
exhaustive search over a grid of parameters and optimized by
a 5-fold cross-validation (Pedregosa et al., 2011). After the
training, the classifier’s output was the pair (r, c) where r = 1

if a mutual gaze is detected (0 otherwise), while c ∈ [0, 1] is the
confidence level of the prediction.

The overall learning architecture is depicted in Figure 2.

3.3 Training Details
The mutual-gaze classifier was trained both using the dataset
collected with the RealSense and iCub’s eye. From now on, we
refer to the classifier trained with the dataset via the iCub’s right
eye since it reported higher performance metrics. (For a full
comparison between the two datasets, see the Supplementary
Material.)

The acquired dataset was augmented in order to be robust to
the degenerative case in which OpenPose fails to detect the eyes’
boundaries and the pupils. To simulate such a condition, the
coordinates of those keypoints in case of eye contact were set to
zero, while the others (namely, the ones for nose, ears, and eyes)
were left unchanged. Moreover, we applied a further
augmentation by geometrically rotating the face’s keypoints,
extracted by using OpenPose, to the left and right of a certain
angle around the face’s centroid to cover a wider range of head
rotations (not covered by the acquired samples). In detail, the
facial keypoints were rotated to the left and right by an angle α ∈
{15°, 30°, 45°, 60°} taking the {5%, 10%, 10%, 5%} of the data,
respectively. The final augmented dataset consisted of 654
samples (377 in eye contact and 277 in no eye contact conditions).

We handled the unbalanced dataset by properly weighing each
class of classification. Such weights were chosen inversely
proportional to class frequencies in the input data.

Finally, OpenPose parameters were tuned in order to have the
best performance for the considered dataset (e.g., neural network
resolution and images at different scales).

4 RESULTS

4.1 Evaluation on the Collected Test Set
For the training of the classifier, the dataset was split into two
subsets taking 19 out of 24 participants for the training set and the
others 5 participants for the test set. The dataset was split k = 5
times in order to average the performance over different

FIGURE 2 | Learning architecture. The acquired image is first used as input for OpenPose in order to get the facial keypoints and build the feature vector for the
individual in the scene. Then, such a feature vector goes in as input to the mutual gaze classifier whose output is the pair (r, c), where r is the binary result of the
classification (eye contact/no eye contact) and c is the confidence level.

4https://github.com/CMU-Perceptual-Computing-Lab/openpose, https://github.
com/robotology/human-sensing.
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participant subsets and evaluate the statistical properties of the
method. The performance was evaluated in terms of accuracy,
precision, recall, and F1 scores reaching in all metrics values
around 90%. Precisely we had accuracy = 0.91 ± 0.03, precision =
0.90 ± 0.08, recall = 0.89 ± 0.06, and F1-score = 0.89 ± 0.04.

4.2 Evaluation on Temporal Sequences
The mutual-gaze classifier was validated also on video streams
recorded from the iCub’s camera during different controlled
interactions with a human. In detail, four video streams were
recorded in order to cover the following scenarios: 1) no mutual
gaze, 2) frontal mutual gaze, 3) human rotating the head to left/
right while maintaining a mutual gaze with the robot, and 4)
human rotating the torso while maintaining a mutual gaze with
the robot. To avoid the flickering in the classifier predictions
caused by the high video frame rates, we implemented a
mechanism to propagate the predictions to those frames for
which the classifier output is not available due to frame rate
incompatibilities. The reason behind this is that, in practical
settings, it is reasonable to assume coherent predictions in a time
span of ~ 100 ms. To this aim, we implemented a buffer of 3
elements at the inference time. The actual classifier result was
selected through a majority rule evaluated on the buffer. The
implementation of the buffer allowed us to reach even a higher
level of accuracy. Specifically, the accuracy registered in the first
three scenarios reached its maximum value—that is, 1.0—,
whereas in the last one the accuracy was 0.93. Analyzing the
last scenario, we found that the classifier made wrong predictions
when the human’s torso reached the extreme angles of 90 (right)
and −90 (left) while keeping the head straight toward the robot
(see the videos in the Supplementary Material). Such a drop in
performance for extreme torso rotations is reasonable since the
classifier was trained only for the frontal task.

4.3 Comparison With State-of-the-Art
Method
In this section, the mutual gaze classifier is compared with the
solution proposed in Chong et al. (2020). To the best of our
knowledge, this is the most recent solution in the current
literature that best adapts to our purposes. In Chong et al.
(2020), the authors trained a deep convolution neural network
(i.e., ResNet-50 (He et al., 2016)) as the backbone to automatically
detect eye contact during face-to-face interactions. As network
performance, the authors reported an overall precision of 0.94
and an F1-score of 0.94 on 18 validation subjects. The network
was trained only with egocentric cropped frames of the
individuals’ face.

Because the training code of Chong et al. (2020) was not
released by the authors, we used the publicly available pre-
trained model. We tested this model on our scenario where
the participants wore face masks due to COVID-19’s
ordinance, and the frames captured by the robot were low
quality frames. Since the algorithm used in Chong et al.
(2020) failed to detect the bounding boxes of the humans’
face in 33% of cases (probably due to the face masks), we used
OpenPose for the bounding box detection. Such a bounding

box was then used to crop the image sent as input to the
convolution neural network. This was done to obtain a fair
comparison between the two algorithms. The accuracy and F1
score were evaluated as metrics both on the test set and on the
video streams.

• Proposed approach
• Test set. Accuracy = 0.91 ± 0.03; F1 score = 0.89 ± 0.04.
• Stream videos. Accuracy = 0.97; F1 score = 0.98.

• Chong et al. (2020) + OpenPose
• Test set. Accuracy = 0.76 ± 0.05; F1 score = 0.77 ± 0.06.
• Stream videos. Accuracy = 0.89; F1 score = 0.82.

Since data were normally distributed (Shapiro–Wilk test,
p-value > 0.05), the paired t-test was performed to assess the
statistical difference between the performance of the two
approaches (accuracy: p-value = 0.01, Cohen’s d = 2.009, 95%
CI for Cohen’s d [0.385, 3.581]; F1 score: p-value = 0.037, Cohen’s
d = 1.375, 95% CI for Cohen’s d [0.072, 2.609]).

On the test set, we obtained an improvement of 15% in the
accuracy and of 12% in the F1 score, whereas on the video
streams, we obtained an improvement of 8% in the accuracy
and of 6% in the F1 score. In addition, our method was based
on a low dimensional feature vector computed from facial
and body landmarks. With respect to Chong et al. (2020) and
other methods based on RGB information, it can be trained
with less expensive hardware and without acquiring sensitive
information (i.e., full RGB images depicting faces) from
subjects.

The drop in the performance reported by Chong et al. (2020)
in their work demonstrates the need of collecting a new dataset
and shows that the current approaches in the literature are not
suitable for our scenario. Indeed, the considered setting is
challenging both for the presence of face masks and for the
low-resolution camera that is often available in humanoid robots.
On the contrary, Chong et al. (2020) used high-resolution
cameras from camera glasses (1080p resolution). Notably, we
could not compute the performance of our algorithm on the
dataset used in Chong et al. (2020) because the latter was not
made publicly available due to constraints imposed by the IRB
protocol.

4.4 Model Interpretability
With the aim of understanding which face keypoints have
larger contribution to the final output of the learning
architecture, SHAP analysis was performed on the trained
SVM model. SHAP (SHapley Additive exPlainations) is a
method based on the coalitional game theory used to explain
individually how each prediction is made by the learning
algorithm. For each individual prediction, a value (SHAP
value) is assigned to each feature as the measure of its impact
on the model’s output. The final contribution for each feature
is evaluated by averaging its SHAP values over a set of
predictions (Lundberg and Lee, 2017).

In Figure 3 the bar plot of the feature’s impact on the model
output is reported for the first 20 most important face keypoints.
It can be observed that the internal points of the eyes (points 15,
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16, 38, 39, 40, and 42) and partially the ears (point 18) have a
mean SHAP value between 0.02 and 0.09; this means that a
change in these input features has an impact on the prediction of
around 2 − 9% percentage points. The analysis revealed that there
is no feature that predominate the others, but all the elements of
the feature vector make a comparable contribution to the
prediction of the output. This was also confirmed by principal
component analysis (PCA) reported in the Supplementary
Material. The PCA performed on the data, indeed, did not
make any improvement to the system implying that none of
the considered features was completely redundant.

5 DEPLOYMENT IN AN EXPERIMENTAL
SETUP

Next, we further validated our approach presented in Section 3.
As a test bed example, we integrated our algorithm in the
experimental scenario presented in Kompatsiari et al. (2018).
In such a setup, the participants were seated face to face with the
iCub robot at a 125-cm-wide desk. iCub was positioned between
two lateral screens on which target letters were presented to the
participant. Also, iCub’s height was set at 124 cm from the floor in
order to have its eyes aligned with participants’ eyes (Figure 4).

FIGURE 3 | Feature importance. (A) Bar plot reporting on the x-axis the SHAP feature importance in percentage measured as the mean absolute Shapley value.
Only the first 20 most important features are reported on the y-axis. (B) Numbered face keypoints of the feature vector.

FIGURE 4 | Experimental setup. (A) The iCub is positioned between two lateral screens face to face with the participant at the opposite sides of a desk that is
125 cm wide. (B) Sample frames acquired during the experiment in which the participant first looks at the robot to make an eye contact and then simulates a distraction
looking at the lateral screen. On each frame, the prediction (eye contact yes/no) with the confidence value c is also reported.
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The conclusions of Kompatsiari et al. (2018) were based on the
assumption that a mutual gaze was established between the
subjects and robot, as confirmed by manual annotation by an
experimenter. Therefore, the solution presented here offers a
significant advancement as it provides an automatic mechanism
that can avoid manual annotation and implements a contingent
robot behavior allowing bidirectional eye contact mechanisms,
which, as shown by the results of Kompatsiari et al. (2018), are
crucial for establishing joint attention in HRI.

The experimental trial was designed as follows:

• iCub starts with the head pointing down and with its eyes
closed for 2 s;

• it opens its eyes for 500 ms without moving the head;
• iCub looks toward the participant’s eyes (eye contact)
for 2.5 s;

• iCub moves the head laterally toward one of the lateral
screens, where the letter V or T appeared randomly either
on the same screen where the robot is looking at (valid trial)
or on the opposite screen (invalid trial) for 200 ms; and

• the participant was instructed to identify the target letter by
pressing V or T on the keyboard while keeping a mutual
gaze with the robot and without gazing at the screen.

To validate the classifier, we asked a total of 4 participants to
carry out 8 blocks of 8 trials each. The experiments were
controlled in order to have the ground truth for each block of
trials. In detail, the participant was asked to maintain a mutual
gaze with the robot in 5 blocks of trials and to always simulate a
distracted participant in the other 4 blocks left (e.g., checking the
phone and looking at the lateral screens). To assure the quality of
the ground truth, the experimenter monitored online eye
movements of the participants, and the trials were further
checked offline before the analysis. Only one trial was discarded.

As done before, the performance was evaluated in terms of
accuracy, precision, recall, and F1 scores. We registered accuracy
= 0.97, precision = 0.95, recall = 1.00, and F1 score = 0.97.

6 CONCLUSION

In this research report, we presented our first results of an
ongoing work aiming at developing a novel attentive
architecture for the humanoid robot iCub. In this context, we
focused on the social cue of the mutual gaze making iCub capable
of recognizing eye contact events while interacting online with a
human partner. We validated the proposed mutual gaze classifier
both computationally and experimentally, showing high
performance values. We also compared the proposed approach
with the state-of-the-art method described in Chong et al. (2020),
reporting a consistent improvement in the performance. We
underline that our method requires neither any additional
hardware (e.g., external camera and eye tracking glasses) nor a
robot with embedded high-quality and expensive eye cameras.
Another advantage of our method is that it uses relatively low
dimensional features extracted by facial landmarks which are
intrinsically anonymous. With respect to other methods that use

RGB information, it can be re-trained with less expensive
hardware and without storing personal data from the subjects.
Our results may potentially allow the research community to use
an active robotic framework in more complex interactive
scenarios helping the study of human cognition. For example,
it has been previously found that the mutual gaze condition
increases the level of engagement and/or is rewarding during a
human–robot interaction compared to an averted gaze (Kampe
et al., 2001). Similarly, Schilbach et al. (2010) investigated the
neural correlation of joint attention finding that following or
directing someone else’s gaze activates several cortex areas of the
brain related to the coordination of perceptual and cognitive
processes.

Improving and extending the mutual gaze scenario to a wider
problem of the gaze estimation is a part of our current research.
As a potential improvement, temporal information (e.g.,
temporal coherence between consecutive frames, and optical
flow) from dynamic data, such as videos, could bring
additional information to the system increasing performance
and generalization capabilities. Furthermore, the
implementation of an attention system with the ability to
detect social cues is a fundamental step toward the realization
of socially capable humanoid robots.
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