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We developed a novel framework for deep reinforcement learning (DRL) algorithms in task
constrained path generation problems of robotic manipulators leveraging human
demonstrated trajectories. The main contribution of this article is to design a reward
function that can be used with generic reinforcement learning algorithms by utilizing the
Koopman operator theory to build a human intent model from the human demonstrated
trajectories. In order to ensure that the developed reward function produces the correct
reward, the demonstrated trajectories are further used to create a trust domain within
which the Koopman operator–based human intent prediction is considered. Otherwise,
the proposed algorithm asks for human feedback to receive rewards. The designed
reward function is incorporated inside the deep Q-learning (DQN) framework, which results
in a modified DQN algorithm. The effectiveness of the proposed learning algorithm is
demonstrated using a simulated robotic arm to learn the paths for constrained end-
effector motion and considering the safety of the human in the surroundings of the robot.

Keywords: deep reinforcement learning (DRL), deep Q network (DQN), Koopman operator, learning from
demonstration, human knowledge representation

1 INTRODUCTION

In robot motion planning, we are interested in finding a path from the start to the goal such that at all
the intermediate points, the robot is collision free. Motion planning for robots has a rich literature
and has been very successful (LaValle, 2006). In imitation learning (IL) Schaal (1999), the robot path
is generated by utilizing human demonstrated trajectories, which have been proven to be effective for
generating paths for complex tasks. The use of reinforcement learning (RL), along with the
demonstrated data, has emerged effective as it allows the optimal policy to be learned by
interacting with the planning environments (Finn et al., 2016). However, one of the major
challenges with this approach is obtaining the appropriate reward function for the RL agent.
Furthermore, the demonstrated data used in these algorithms are expected to contain rich
observation data. These algorithms are often computationally expensive and take a long time to
learn the optimal trajectories.

In this article, we propose a novel knowledge-guided deep reinforcement learning (DRL)
framework to learn path planning from human demonstrated motion. The Koopman operator is
used to develop the representation of human intent from the demonstrated trajectories for some
tasks, which are then used to design the reward function of the RL-based autonomous planning
agent. During the learning phase of the DRL agent, at each step, the state achieved by the agent after
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taking an action is compared to the human-preferred state
predicted by the Koopman model of human intent to decide
the reward that the DRL agent would receive. However, the
Koopman operator model of the human intent would only be
effective in the domain where the demonstrated data points are
available, resulting in wrong or ambiguous state prediction of the
human intent, which makes designing the appropriate reward
function challenging. In order to alleviate this issue, the
demonstrated trajectories are further used to generate a trust
region in which the Koopman model prediction can be relied
upon to provide the DRL agent an appropriate reward. To the
best of our knowledge, we are the first to use the Koopman
operator to design the reward function for the DRL agent. The
reason Koopman operator is effective in modeling nonlinear data
is that it uses several nonlinear basis functions to capture the
underlying nonlinear behavior of the data unlike the linear
regression model. Figure 1 outlines the end-to-end workflow
of learning to plan a path from demonstrated trajectories by an
RL agent utilizing the Koopman operator–based human intent
model to design the reward function.

Furthermore, to facilitate the DRL agent to explore regions
where no demonstrated data are present or the Koopman model’s
stated predictions are inaccurate, a provision is made to accept
human feedback in such states in the proposed learning
framework. We assume that the human feedback is always
optimal, and the human expert knows what the optimal state
is at any stage of the learning phase of the DRL agent. We have
used human feedback in terms of a fixed numeric positive reward
value for being at the right state (Griffith et al., 2013), otherwise a
fixed negative reward is received. This simple pair of human
reward values will reduce the effort of the human expert.
Furthermore, we chose numeric rewards as human feedback,
as they are relatively easier to provide by a human expert instead
of providing a correct state or action feedback. Since the DRL
agent only queries for the human feedback when there is no
demonstrated data or when the Koopman model of human intent

is inaccurate, the number of queries is significantly lesser than the
feedback asked for after every iteration Christiano et al. (2017).

We have presented two examples of learning human preferred
trajectories using the proposed algorithm which resulted in
successful learning of the expert’s trajectories. The second
example also signifies the potential of using the proposed
learning algorithm in achieving human preferred trajectories
where safety of the nearby human is essential.

Our key contribution in this article is the modeling of the
human intent using the Koopman operator theory and making
use of that intent model to design the reward function for an
autonomous planning agent which is an RL agent. Furthermore,
human demonstrated trajectories are utilized to obtain a trust
domain within which the Koopman model’s predictions are
considered. Also, the proposed algorithm asks for human
feedback occasionally, and the human expert has to provide a
fixed positive or negative reward which is relatively less
cumbersome than other feedback mechanisms used in the RL
literature. For details, please see Wirth et al. (2017) and the
references therein. The efficacy of the proposed RL algorithm is
demonstrated with two examples. In both the examples, the
proposed algorithm is utilized to learn human demonstrated
trajectories to the six degrees of freedom of a universal robot.
It is shown that the Koopman operator–based reward function
for the RL agents can effectively learn the human expert’s
trajectories in situations where the motions of the robot end-
effector are geometrically constrained (please see the example in
Section 5.1). In the second example, the proposed algorithm is
utilized to learn a human demonstrated path where the safety of
the human subject in the surroundings takes priority. Finally, we
have presented a modified DQN learning framework with a
Koopman model of human intent. We have chosen DQN
agent to leverage the simplicity of the algorithm such that the
new modifications are incorporated in it easily. We could have
used any other reward-based RL algorithms and our proposed
modifications would have been equally valid.

FIGURE 1 | Koopman operator–based knowledge-guided RL framework: (A) A simulated UR5 robot is executing a demonstrated trajectory to perform putting a
cup in a shelf task. The demonstrated path is shown using a green firm line. (B)Mean and standard deviations of the components of the position vectors, i.e., x, y, z, of all
the way points in the demonstrated trajectories. (C) Schematic diagram of the training loop of the RL agent using the proposed methodology.
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The proposed learning method can be treated as an alternative
approach to the inverse reinforcement learning (IRL) and generative
adversarial imitation learning (GAIL) for imitation learning
problems. Unlike IRL and GAIL, our method does not need a
reward function to be learned, instead we show that a fixed set of
reward values can be used to learn from the demonstrated
trajectories with some simplemodifications in the DQN algorithm.

The article is organized as follows. The next section provides the
works related to the algorithm presented in this article. In Section
3, we state the problem mathematically and propose knowledge-
guided DQN with the Koopman operator-based reward function.
In Section 4, we describe the proposed methodology in algorithm
format. Section 5 presents two case studies with learning from
human preferred trajectories using the proposed algorithm.
Finally, we conclude the work in Section 6 with the discussion
on the potential direction to pursue this work in the future.

2 RELATED WORK

To plan motion for robotic arms using any learning techniques,
the main objective is to identify the right action given the
observations of the robots’ states and their surrounding
environment. In many robotic applications, the planning agent
is desired to take actions that a human expert would take, given
the same observations. This leaning paradigm is known as
imitation learning (IL). For any realistic robotic tasks, the size
of the observation space becomes large and learning to take
human preferred actions in that observation space becomes an
overly challenging task. However, it has been proved by the
researchers that incorporation of human demonstrations in
the learning algorithm is not only effective but also helpful in
reducing the learning time (Bakker and Kuniyoshi, 1996; Schaal
et al., 1997; Schaal, 1999; Billard and Matarić, 2001).

Traditionally in IL, the demonstrated trajectories are used
as data points consisting of state–action pairs to train a deep
neural network-based agent with the assumption that each
data point comes from aMarkov decision process (MDP) (Ross
and Bagnell, 2010; Ross et al., 2011). The problem with Ross
et al. (2011) is that the agent only learns how to mimic experts’
behavior but fails to take the right actions where no
demonstrated data are present and cannot learn a better
policy than the experts. Essentially, Ross et al. (2011) does
not consider the cost of making a right or wrong action. In Ross
and Bagnell (2014), an RL perspective of the IL has been
introduced by considering the cost (cost-to-go) of an action
from a given state as a Q(s, a) value to the RL algorithm. Hester
et al. (2018) used deep Q learning to learn from small sets of
demonstrations by combining temporal difference updates
with supervised classification of the demonstrators’ actions.
The work in Hester et al. (2018) assumes that the
demonstration data provide both states and actions which
are true in many gaming environments, but when a human
demonstrates for a robot, he/she only provides the states as
end-effector pose, and no direct actions are provided. It further
assumes that the demonstrated data are noise free, hence they
completely represent the expert’s behavior. Furthermore,

unlike gaming environments, while working with real
robots, there is no reward function that is defined which is
essential for the success of the RL algorithms.

Behavioral cloning from observation (BCO) (Torabi et al.,
2018) considers only the states as the experts’ demonstration,
and the corresponding underlying actions are inferred from a
learned dynamics model of the robot and then IL is performed
with the states and recovered actions. A linear regression model is
developed using the collected data from a human prosthesis device
that represents a knowledge base, which is then used to guide a
Q-learning process in Gao et al. (2020). However, a linear regression
model of the state–action pair over the entire demonstration domain
can limit the use of the underlying knowledge.

In IL, the field of active learning allows the learning agent to
query the human expert for optimal state/action from a given
state where there is no demonstration data, and this is used to
improve the current policy. This technique has been proved to be
data efficient and learns the optimal policy quicker. In these
approaches, the learned agent executes the policy and asks for
new samples from the human in places where the agent does not
feel confident Chernova and Veloso (2008). In Jin et al. (2020), a
parametric reward function that is a representative of the experts’
intention is learnt from the sparsely demonstrated way points.
However, the way points are given with respect to a certain time
instance and selection of such way points also impacts the success
in learning the parametric reward function.

Success of the RL algorithms is vastly dependent on the reward
function. However, in many situations the appropriate reward
function is unknown to the agent or may be partially known. In
inverse RL (IRL) (Ng and Russell, 2000; Ziebart et al., 2008), the
reward function is developed simultaneously with the learning
process with the agent. Although IRL methods have been proven
to be effective in learning reward functions for a variety of the
problems, they are computationally heavy and need a huge number
of iterations before the learning processes are completed. Further use
of IRL to learning control policy from the human demonstrations
with unknown robot dynamics can be found in Finn et al. (2016).

The work in this article is targeted toward designing a simple but
effective reward function for the RL algorithms to learn paths from
human demonstrations. In this context, we have developed the
Koopman operator-based human knowledge representation from
human demonstrated trajectories. Unlike IRL techniques, our
reward function does not change during the learning process,
which makes the DRL agent to learn faster for certain kinds of
robotics tasks as presented in Section 5. Furthermore, the
demonstrated trajectories required for the proposed algorithm
merely contain the end-effector poses and the learning agent
recovers the underlying correct actions if the kinematics of the
robot is known. A similar approach has also been used by Niekum
et al. (2015). Furthermore, unlike in Gao et al. (2020) where human
knowledge has been developed using a linear regression model, in
our work the use of the Koopman operator to develop human
knowledge representation can accommodate nonlinearity in the
human intent model. Our work is partially related to the idea of
using DQN for IL as introduced in Hester et al. (2018). However, we
have designed a task-specific reward function using the Koopman
theory without assuming that a reward function is available to the
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learning agent.While inHester et al. (2018), the reward functionwas
assumed to be given. Soft Q imitation learning (SQIL) has been
proposed in Reddy et al. (2019) where it is shown that a simple Q
learning–based agent with fixed-type reward values can be used to
solve IL which outperformed GAIL. Our proposed method also uses
fixed reward type of reward values, but as to which fixed reward
value the agent would receive is decided by the Koopman
operator–based human intent model’s prediction. We
characterize our proposed method as an alternative to Reddy
et al. (2019) and further confirm the idea that simple Q learning
with a fixed type of reward can be used for IL problems.
Furthermore, Abraham et al. (2017) and Broad et al. (2020) used
the Koopman theory to obtain a data-driven linearized model of a
system, which was then used to obtain a model-based controller.
However, our work uses the Koopman theory to obtain human
intent model from the demonstrated trajectories to predict the
human preferred state from a state where the RL agent arrived
during exploration of the environment.

3 KNOWLEDGE-GUIDED
REINFORCEMENT LEARNING

In this article, we are interested in developing a knowledge-
guided RL algorithm to obtain polices by learning from the state-
only observation sequences to accomplish a specific task. Our
goal is to utilize the demonstrated state observation sequences as a
knowledge base, which we further use to predict the desired state
of the learning agent as compared to the actual state that the agent
has arrived at after taking an action to decide the reward value
that the agent would receive for that action.

Let us first define some of the notations that we will be using
throughout the article. We denote the state observation sequences
or trajectories as a set Ddemo � {T1,T2, . . . ,Tn} where each Ti, i ∈
1, . . .. n represents a full demonstrated trajectory and n is the
number of demonstrated trajectories. Each Ti is composed of a
sequence of the end-effector states of a manipulator, i.e., Ti = s1,
s2, . . ., sm, where each sj, j ∈ 1, . . ., m is a state of the robot end-
effector and m is the length of a trajectory. The state transition
pair (sj, sj+1) for any given value of j carries the signature of the
feature of the transition for the step number j. Our objective is to
utilize this state transition information of the demonstrated
trajectories to create a knowledge base that will be representative
of the human expert’s intent while demonstrating the trajectories.
We assume that the human demonstrated trajectories are the
optimal trajectories that the DRL agent tries to imitate. The
DRL agent finds the policy πθ: S → A that maps an input state
sj and recovers the hidden action aj such that F(sj, aj) = sj+1 will be
close to the state that the human expert would prefer. The
notations S and A represent the set of all possible end-effector
states of the robot and the set of all possible actions the DRL agent
can take. F(sj, aj) is the state transition function that takes sj and aj
as input and returns the next state sj+1 of the robot.

3.1 Deep Q Network as Learning Agent
We pose the IL problem as an MDP which is represented by a 5-
tuple <S,A, F, r, γ> , where r(aj, sj) is the immediate reward

function that the agent receives by taking action aj from state sj,
and γ is the discount factor. The DRL agent explores different
actions from A to learn to maximize the expected discounted
reward. In this context, Qπ(s, a) represents the expected total
reward that the agent can get by following the policy π. The
Qπ(s, a) can be expressed as Bellman equation given as follows:

Qπ st, at( ) � E r st, at( ) + γmax
a

Qπ st+1, at+1( )
∣∣∣∣∣∣∣st, at[ ] (1)

Then, an optimal policy πp is defined as

πp s( ) � argmax
a

Qπ s, a( ) (2)

A deep Q network approximates Q-function with a neural
network. In this article, we particularly used double DQN (Van
Hasselt et al., 2016), where a target network is used to find the loss
between the current and desired prediction of the Q values. This
loss is then used to update the weights of the neural network
representing the agent. The squared loss of the double DQN is
defined as follows:

loss � r st, at( ) + γmax
a

Q st+1, at+1( ) − Q st, at( )( )
2

(3)

In the case of DQN with experience replay, all the experiences
(state, action, and reward) while exploring different actions are
stored in a buffer storage and a batch (collection of the stored
experiences) is selected by randomly sampling experiences from
the buffer to train the deep Q network. Furthermore, human
demonstrated trajectories are used to obtain a model of human
expert’s intention. In this article, we have proposed the Koopman
operator–based human knowledge representation. The
knowledge representation is a statistical function, say F , which
takes the current state of the DRL agent (st) as input and returns
the predicted next state st+1. This predicted state can then be
compared with the actual next state of the DQN agent to make the
decision on the reward that the agent should receive. To be more
specific, to train the DQN agent, the value of the r term in the
back-propagated loss in Eq. 3 is decided using the Koopman
model representation of human intent. In the next section and the
following ones, we will present briefly the Koopman operator
theory and how that is used to obtain the reward of the
DRL agent.

3.2 Koopman Operator–Based Human
Knowledge Representation
The Koopman operator (Henrion et al., 2016) has been
traditionally a data-driven method used to obtain a linear
model of a nonlinear dynamic system. Let us consider a
discrete-time dynamical system as

xk+1 � f xk( ) (4)
where f(·) is a nonlinear function and xk, xk+1 ∈ Rl indicates an l
dimensional state vector of a time-varying system at time step k and
k + 1, respectively. Suppose, we are given a vector-valued function
g(·) such that g: xk → yk where yk ∈ Rl′ and l′ > l. That is, the
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function g simply lifts the lower dimensional vector xk to a higher
dimensional vector yk. In the higher dimensional space of dimension
l′, according to the Koopman theory, there exists a linear operator
K ∈ Rl′×l′, which maps yk to yk+1 as follows:

yk+1 ≈ Kyk (5)
0 g xk+1( ) ≈ Kg xk( ) � g f xk( )( ) (6)

Please note that, in general, the function g(·) is unknown.
However, there are several data-driven (Lusch et al., 2018) and
model-based (Abraham et al., 2017) techniques to approximate
g(·). Unless g(·) is an infinite dimensional vector, there will be an
approximation error or residual error. Using the residual error as
re, the approximate linear dynamics in finite dimensional lifted
space is described as

g xk+1( ) � Kg xk( ) + re (7)
We are interested in finding K such that the value of re
is minimum. In this research, we have adopted the least-
square method to compute K as given by Williams et al. (2015).

Suppose, we are given M data points of one trajectory or
multiple trajectories (not necessarily in order), then the total
residual due to linear approximation is obtained as

R � ∑
M−1

m�1
rem � ∑

M−1

m�1
| g xm+1( ) − Kg xm( )( )| (8)

Then, the least-square optimization problem can be
formulated as

Kp � argmin
K

1
2
∑
M−1

m�1
| g xm+1( ) − Kg xm( )( )|2 � argmin

K

1
2
∑
M−1

m�1
|rem|2

(9)
where K* is the optimal K for which the residual R will be
minimum. It can be shown that the least square solution of the
optimization problem in Eq. 9 will be (Abraham and Murphey,
2019)

Kp � AG† (10)
where the operator † represents pseudo-inverse of a matrix and

A � 1
M

∑
M−1

m�1
g xm+1( )g xm( )T (11)

G � 1
M

∑
M−1

m�1
g xm( )g xm( )T (12)

3.3 Designing Reward Function for the Deep
Q-Learning Agent
In this work, we have used the Koopman operator to represent
human knowledge base. More specifically, we have identified the
Koopman operatorKp based on human demonstrated trajectories
such that the given current end-effector state st and the human
preferred end-effector state can be obtained as

g st+1′( ) � Kpg st( ) (13)
st+1′ � g−1 g st+1′( )( ) (14)

where g is the same as defined in Eq. 6 and g−1(·) is the inverse
transformation of g(·). Once the desired end-effector pose st+1′ is
predicted by the Koopman operator model of human intent, then
we can compare it with the state that the DRL agent reached after
taking an action by the DQN agent. Let st+1 be the state that the
agent has reached after taking action at from state st. If st+1 is
sufficiently close to st+1′ , then the agent receives a positive reward,
otherwise the agent receives a negative reward. Since both st+1 and
st+1′ ∈ SE(3) (special Euclidean Group which represents all the
possible poses of a rigid body moving in space) and there is no bi-
invariant metric that can be defined on SE(3), we compared the
translation and rotation parts of s, s9 separately. Let pt+1 ∈ R3 and
Rt+1 ∈ SO(3) (special orthogonal group of dimension 3) be the
position and orientation components of the agent’s state st+1,
respectively. Similarly, let pt+1′ ∈ R3 and Rt+1′ ∈ SO(3) be the
position and orientation components of the predicted state st+1′ ,
respectively. Then, the distance metrics that we choose for position
pdist and orientation Rdist distances are defined as follows:

pdist � ‖pt+1 − pt+1′ ‖2 (15)
qdist � ‖log Rt+1RT′

t+1( )‖2 (16)
where ‖ ·‖2 represents 2-norm of a vector. Another advantage of
using the Koopman operator to represent human knowledge base
is that if at any step the DRL agent takes a wrong action from a
given state, it can step back and explore the other possible actions
from that state and compare the resulting state with the state
suggested by the knowledge base. The agent can then know from
that state what are the right andwrong actions to take and can store
both these experiences to utilize them during experience replay.

3.4 Trust Domain for the Koopman
Prediction
In RL, appropriate reward signal plays an important role in the
success of the learning process. In our case, this is hinged at the
correct prediction of the human intended state of the agent st+1′ as
given in Eq. 13. Since Kp is calculated from the states in the
demonstrated data set Ddemo, prediction of st+1′ could be
inaccurate if st does not belong to the domain of Ddemo. In
order to alleviate this issue, we identified the distributions of the
components of the positions and orientations for each step of the
demonstrated trajectories. That way, we obtain two sets of
vectors, one for the means and the other for the standard
deviations for each component of the position and orientation
element, where the lengths of the vectors are the maximum step of
all the demonstrated trajectories. All the parameters of the
distributions together define the trust domain. Any state of the
RL agent that lies inside this domain can be used to determine the
next state using the Koopman operator.

Let us denote sit � [xi
t, y

i
t, z

i
t, α

i
t, β

i
t, γ

i
t] as the state vector of the

ith demonstrated trajectory at step t; then, we are interested in getting
vectors μl ∈ Rm′, σ l ∈ Rm′, wherem′ is the final step number of the
demonstrated trajectories and l ∈ {x, y, z, α, β, γ}. The tth elements of
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μl and σl are themean and standard deviation values at the time step t
for the element l of the state vector. Please note that the use of Euler’s
angles is only to define trust domain since the angles are easy to
interpret. However, to generate motion over SO(3) during the
learning phase unit quaternion, interpolation is used.

4 KOOPMAN OPERATOR–BASED
KNOWLEDGE-GUIDED LEARNING
METHOD
Algorithm 1. Koopman Operator–Based Knowledge- Guided
DQN

The outline of the training loop is visualized in Figure 1C,
which represents a typical training loop for a DQN agent with an
improved reward function block on the right-hand side of the
figure. At the top of the reward function block is a decision-making
block named indomain, which takes the agent’s state after
executing an action, i.e., st+1 as input, and checks whether that
state lies in the trusted domain of the Koopman prediction domain.
If that block returns true, then the Koopman operator–based
human intent model predicts the state for step t + 1, i.e., st+1′ .
Then, the next block invokes the distmethod to determine whether
the states st+1 and st+1′ are close based on Eqs. 15, 16 up to certain
resolution values and returns the reward rt+1 as a positive number
or sets it to a negative value otherwise. On the other hand, if the
indomain block returns false, then a human expert has to manually
input a positive or negative reward based on his/her evaluation.

In Algorithm 1, we present the pseudo-code for the proposed
Koopman Operator–Based Knowledge-Guided DQN for the ease of
implementation. Algorithm 1 follows the basic outline of the DQN
architecture but has been improvised into learning to imitate
human intended trajectories with a newly introduced reward
function using the Koopman theory. The added functionalities
are highlighted as blue texts. Please note, in Algorithm 1, the
method getTrustDomain simply follows the equations described in
Section 3.4. The indomain method is equivalent to the indomain
block in Figure 1C, as already discussed. Furthermore, the method
getHumanFeedback invokes a query to the human expert for a
feedback in terms of positive or negative rewards. The
env.humanIntentModel implements Eq. 13. Finally, the dist
method is equivalent to the dist block of Figure 1C, which has
been discussed previously. Table 1 shows the elements of the
discrete action space considered in this article.

5 CASE STUDY

In this section, we provide two examples to demonstrate the utility
of the proposed algorithm. The first example pertains to learning to
execute putting object in shelf task with a universal robot (UR5
arm) from the human demonstration. The path planning for this
kind of task is challenging with traditional motion planners since
the motion of the end-effector is constrained to lie only in R3

(Stilman, 2007); Sinha et al. (2021) instated SE(3) since orientation
of the end-effector has to be kept constant throughout the path.
The second example pertains to safely transferring a sharp-edged
object to a human being. Learning to perform to plan for this type
of task is challenging since in the demonstrated trajectories, both
the position and orientation of the robot end-effector change, but
at different rates, to ensure the safety of the human in the
surroundings. Again in this example, we have used an UR5 arm
to demonstrate the learning of the path planning.

5.1 Learning to Plan to Put an Object in Shelf
In this example, the proposed Algorithm 1 is utilized to plan a path
for putting an object into a shelf using an UR5 robot. Even for this
seemingly simple task, the planning problem is challenging because
of the constrained motion of the robot end-effector. More
specifically, throughout the path, the end-effector’s orientations
are kept fixed and only the positions are changed. The learning
agent has to recover that information to plan a path using the reward
feedback from the human intent model developed using the
demonstrated trajectories. The learning agent was successful in
learning to plan a path for the task. Figure 2 shows an instance
of the initial and goal end-effector poses and one of the
demonstrated trajectories for this task. The distributions of the
individual components of the states considering all the
demonstrated trajectories are presented in the Figure 3.

Since for this particular task, the orientation of the end-effector
was kept fixed, the Koopman operator–based human intentmodel is
required only to predict the experts’ end-effector position. For any
action taken by the learning agent that changes the end-effector’s
orientation, a negative reward is provided to the learning agent. For
this reason, given the end-effector poses from the demonstrated
trajectories data, we extracted the position vectors pit � [xi

t, y
i
t, z

i
t],

where pit , x
i
t, y

i
t, z

i
t represent the position vector and its x, y, and z

components at time step t of the ith demonstrated trajectory,
respectively. Furthermore, we considered a second-order

TABLE 1 | Discrete action space with their meanings.

Action no. Description

0 moves uniformly in position and rotation space
1 moves only in position space
2 move only in rotation space
3 moves both in position and rotation but moves more in rotation
4 moves along +x
5 moves along −x
6 moves along +y
7 moves along −y
8 moves along +z
9 moves along −z
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polynomial function g([a, b, c]T) � [a, b, c, a2, b2, c2, ab, ac, bc]T
with the input vector [a, b, c], where a, b, c are scalars, to
obtain the higher dimensional representation of the
vectors pits. Then, we set xm’s in Eqs. 11, 12 as g(pit) to
obtain Kp using Eq. 10. This Kp matrix characterizes the
human intent model to predict the human preferred states.

The left panel of Figure 4 shows the accuracy of the trained
Koopman operator to predict human preferred state pt+1′ given the
state pt for one of the demonstrated trajectories that was not usedwhile
determiningKp. It can be noticed that the predictions closelymatch the
ground truth states (error < 1.5e − 3), indicating the quality of the
learnedmodel of the experts’ demonstration atmost of the steps except
between step numbers 48 and 52, where the errors were comparatively
higher (1.5e − 3 < error < 2.3e − 3), as highlighted with a red
rectangular box in the left panel of Figure 4. Since in the region
around 48 and 50, the Koopman operator–based human intent model
has a higher prediction error, an expert intervention is requested to
receive the reward after taking action by the DQN agent occasionally.
The agent learned the experts’ behaviour after 1,200 episodes as shown
in the right panel of Figure 4, which takes ≈ 135 minutes on an

average on a computer with Intel i7 processor with 16 GB
memory. The structure of the deep neural network to
model the DQN agent is given in Appendix 7.1 along with
the parameter values for training the RL agent in Table A1.
Furthermore, to compare the benefit of using the Koopman
operator against a simpler fitting method, a least square line
fit is performed through one of the demonstrated trajectories.
As shown in the left panel of Figure 5, a line fit could not
properly capture the nature of the trajectory at all. The right
panel of Figure 5 shows the error between the actual
demonstrated states (only positions vectors are considered
since the orientation is kept fixed for this example) with
respect to the fitted line. As can be noticed that the prediction
error is worse in the case when the demonstrated data are
modeled by fitting a line (please see right panel of Figure 5) as
against that of the Koopman operator–based modeling
(please see the left panel of Figure 4). This comparison
demonstrates the effectiveness of the Koopman operator as
a linear operator of potential complex nonlinear systems vs.
simple linear models to capture the human intent models.

FIGURE 2 | Planning to put an object in a shelf. Left: initial pose of the arm. Middle: goal pose of the arm. Right: one of the demonstrated path for putting the object
in the shelf task.

FIGURE 3 | Means and three standard deviations of the x (left), y (middle), and z (right) values of the demonstrated trajectories.
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5.2 Learning to Safely Transfer Knife in the
Close Approximation of Human
The objective of this example is to utilize Algorithm 1 to make the
DQN agent learn to transfer a sharp object (e.g., a knife) safely
while a human being is in close proximity of an UR5 robot. The
initial pose of the robot is such that the sharp edge of the knife is
held upward which is an unsafe pose to deliver the object to a
human being (see left panel of Figure 6). Ideally, the knife should
be transferred in such a way such that the sharp edge is brought
down as quickly as possible before transferring the sharp-edged
object to the human. Also, at the goal pose when the knife reaches
in front of the human, the sharp edge should be completely in the
downward direction. The left panel of Figure 6 shows the initial,
goal, and some of the intermediate poses of the end-effector for
one of the demonstrated trajectories. This task is particularly
interesting because throughout the path, both the position and
orientation of the end-effector change during the execution of the
task while the rotational distance to the goal is minimized faster
than that of the positional distance. The changes in position and

orientation distances from the start to the goal pose, are shown in
the right panel of Figure 6, respectively. It can be noted that
throughout the steps of the demonstrated path, the position
distance was reduced at the same rate, whereas the orientation
distance was reduced at a higher rate in the initial steps and at a
lower rate afterward to ensure the knife edge is brought
downward rapidly before passing it to the human.

In this example, the planning agent has to learn the expert’s
trajectory where the end-effector’s position and orientation both
change and at different rates at different segments of the trajectory.
The span of the demonstrated trajectories used to obtain the human
knowledge representation using the Koopman operator is shown in
Figures 7, 8, respectively. Furthermore, since in this task, both the
position and orientation of the robot’s end-effector change, the
Koopman operator–based human intent model is characterized by
two matrices Kp and Ko, such that

g pt+1′( ) � Kpg pt( ) (17)
g ot+1′( ) � Kog ot( ) (18)

FIGURE 4 | Left: absolute prediction error between the ground truth and the Koopman operator–based human intent model predicted end-effector positions at
different steps. The region with a higher prediction error is marked as a red box where human intervention to provide reward is preferred. Right: evolution of the episodic
cumulative rewards averaged over 100 episodes.

FIGURE 5 | For one demonstrated trajectory: left, line approximation of the position data by minimizing the least square errors; right, line approximation errors at the
different steps of the demonstrated trajectory.
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where pt � [xt, yt, zt]T ∈ R3, ot � [αt, βt, γt]T ∈ R3 are the
position and orientation vectors of the learning agent at time
step t, xt, yt, zt are the components of pt, and αt, βt, γt are the roll,
pitch, and yaw angles representing the components of ot,
respectively. Also, the function g(·) ∈ R9 is defined as before.
Therefore, both Kp and Ko ∈ R9 × 9as per Eqs 17 and 18.

In order to obtain Kp and Ko, we have used Eq. 10 with xm �
g(pit) and xm � g(oit), respectively, where pit and oit are the position
and orientation vectors of the way point of the ith demonstrated

trajectory at time step t. Please note that we could have
concatenated pit and oit and used g′([pit , oit]T) to learn a
single K matrix to characterize the Koopman operator–based
human intent model. However, in such a case, the size of the
predicted vector would be bigger, which will become prone to
greater residual error than that of a smaller predicted vector. In
this case, g9(·) would be a function that takes a vector of six
elements ([pit , oit]T ∈ R6) and returns a second-order
polynomial with the components of the input vector.

FIGURE 6 | Left, the robot executing one of the demonstrated trajectories for transferring a knife safely to a human. Right: characteristic of the change of the
positional (blue) and orientational (green) distance to the goal at different steps of one of the demonstrated paths.

FIGURE 7 | Means and three standard deviations of the x (left), y (middle), and z (right) values of the demonstrated trajectories.

FIGURE 8 | Means and three standard deviations of the roll (left), pitch (middle), and yaw (right) values of the demonstrated trajectories.
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Once the matrices Kp and Ko are identified, for any given
position and orientation vectors of the learning agent at time step t,
the human preferred states can be predicted using Eqs. 17, 18,
respectively. To test the performance of the learned human intent
model, we took the states of one of the demonstrated trajectories
and predicted the next position and orientation states usingKp and
Ko, respectively. This trajectory was not used while identifying Kp

and Ko. We found that the maximum predicted position error was
in the order of submillimeters and did not vary much for different
steps. However, the prediction errors of the orientation states
varied over the step as shown in the left panel of Figure 9.

In the right panel of Figure 9, we present the evolution of the
accumulated reward of the DQN agent while learning the task
using the proposed Algorithm 1. The learning agent took ≈ 210
minutes on average to learn the task. Please refer to Appendices
7.1 and 7.2 for more information about the structure of the
neural network used to model the learning agent and the other
hyper-parameters used for this task, respectively.

6 CONCLUSION

In this article, we have proposed a novel knowledge-guided RL
framework for arm-type robots to learn from expert demonstrated
trajectories. This is achieved by developing a human intent model
based on the Koopman operator theory utilizing the data from the
human demonstrated trajectories. This Koopman operator–based
human intent model is then used to shape a reward function for a
DQN agent which should act as an autonomous planner upon
successful training. Furthermore, we have used the span of the
coordinates of the poses of the demonstrated trajectories to help the
learning agent to decide whether to rely on the Koopman
operator–based human knowledge representation prediction or
not such that the agent does not receive a spurious reward

during its learning stage which would otherwise hinder the
learning process. We have presented two examples that utilize
our proposed Koopman operator–based knowledge-guided RL
algorithm to learn the tasks satisfying human intent. The second
task not only shows the efficacy of the proposed algorithm but also
demonstrates how the algorithm can be used to add safety measures
in performing a task while humans are in close proximity.

This work paves the way for many future research directions to
be pursued. In this work, we have considered a discrete action
space which is a limitation that we want to work on in the future
to make the algorithm work in more general settings by utilizing
the continuous action space. Furthermore, we have assumed that
there are no obstacles around the robots’ workspace. It would be
interesting to extend this work to environments with obstacles.
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obtained with multiple trial runs of the learning task.
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7 APPENDIX

7.1 Deep Q-Learning Structure
The learning agent and target agent both have the same structure
with two hidden layers each having 1,024 units of neurons for the
putting object in shelf task (task 1) or 1,560 units for knife transfer
task (task 2) and relu activation for both task 1 and task 2. In the
current implementation, the agent can observe the full end-
effector pose and its distance to the goal, both in position and
orientation spaces. Hence, the dimension of the observed state is 8
(pose: 6, position distance to goal: 1, and orientation distance to
goal: 1). The input layer for task 1 has the dimension 5 (3 for
position coordinates and 2 for the position and orientation
distances). For task 2, the dimension of the input layer is 8 (3
for position coordinates, 3 for rotation coordinates, and 2 for
position and orientation distances). The output of the DQN has
the same dimension as that of the size of the action space which is

10 for both of the tasks considered in this article. Each element of the
output vector represents the Q value of the state–action pair. The
neural network is compiled with ADAM optimizer and MSE loss.
We have used TensorFlow version 2.7 to model the neural network.

7.2 Hyper-Parameters

TABLE A1 | Hyper-parameters used in the DRL training process.

Parameter description Task 1 Task 2

Max. number of episodes 1,500 1,200
Tolerance to reach goal 0.005 0.005
Tolerance to compare poses 0.002 0.002
DQN agents’ learning rate 1e-5 1e-4
Size of the replay buffer 10,000 10,000
Batch size 1,000 1,000
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