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Human–agent teaming (HAT) is becomingmore commonplace across industry, military, and
consumer settings. Agents are becoming more advanced, more integrated, and more
responsible for tasks previously assigned to humans. In addition, the dyadic human–agent
teaming nature is evolving from a one–one pair to one–many, in which the human is working
with numerous agents to accomplish a task. As capabilities become more advanced and
humanlike, the best method for humans and agents to effectively coordinate is still unknown.
Therefore, current research must start diverting focus from how many agents can a human
manage to how can agents and humans work together effectively. Levels of autonomy
(LOAs), or varying levels of responsibility given to the agents, implemented specifically in the
decision-making process could potentially address some of the issues related to workload,
stress, performance, and trust. This study sought to explore the effects of different LOAs on
human–machine team coordination, performance, trust, and decision making in hand with
assessments of operator workload and stress in a simulatedmulti-unmanned aircraft vehicle
(UAV) intelligence surveillance and reconnaissance (ISR) task. The results of the study can be
used to identify human factor roadblocks to effective HAT and provide guidance for future
designs of HAT. Additionally, the unique impacts of LOA and autonomous decision making
by agents on trust are explored.
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INTRODUCTION

The exponential growth and benefits of automated systems have generated a lucrative and growing
market for unmanned aerial systems (UASs), projected to reach $82.1 billion by 2025 (Barnhart et al.,
2016). The major advantages for UASs include their compact size and quick deployability. UASs can
support data gathering, transport, package delivery, medical supply delivery, emergency services, and
military missions. UAS capabilities are also expanding to perform many warfighter tasks, including
tactical intelligence surveillance and reconnaissance (ISR), supply delivery, cyber defense, and
suppression of enemy air defenses (SEAD), and the future is likely to include UAS and humans
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working within multi-agent systems (U.S. Air Force, 2016; Chen
& Barnes, 2014). The majority of UAS missions are dedicated to
surveillance and reconnaissance uses (Schmitt & Stuetz, 2019).
During ISR missions, humans must operate under rapid response
times and simultaneously provide mission efficiency across the
board (Wang et al., 2017). In multi-unmanned aircraft vehicle
(multi-UAV) operations, the human controls or monitors a fleet
of UAVs, allowing for more rapid and dynamic missions. This
technological shift provides a promising outlook for
human–agent teams (HATs), which sets a new path for
autonomous systems, or agents, to be viewed as team
members, rather than tools. By identifying methods to
enhance human–agent cooperation through design, multi-
UAV teams can be utilized to greatly increase mission
performance in military operations.

Although there has been substantive research on a dyadic
HAT, research in multi-HAT settings has focused on automating
lower-level functions such as navigation and health monitoring
(Ruff et al., 2002; Porat et al., 2016). Research with basic UAV
automation has shown that as the number of UAVs increases, the
level of autonomous decisionmaking can impact human operator
trust and how operators utilize the UAVs in their own decision
making (Ruff et al., 2002; Nam et al., 2018). Utilization of two
vehicles in a multi-HAT target-tracking task has been shown to
lead to increased performance; however, studies have shown
utilizing three or more vehicles becomes difficult for operators
to manage and process (Porat et al., 2016; Humann & Pollard,
2019). Multi-UAV systems face many issues, including 1)
overlapping and diversity of tasks, 2) allocation of tasks, 3)
inconsistent and complex communication, 4) dynamic events
such as an unpredictable environment, 5) continuous system
monitoring, 6) issues with task switching and interruptions, 7)
lack of information prioritization, 8) lack of displays that are
centered around the task, and 9) lack of decision-aiding
technology (Zhang & Xing, 2020; Fu et al., 2018; Da Silva
et al., 2017). Furthermore, current research must start
exploring the dynamics of HAT from a human factor and
multi-agent perspective, as they perform more advanced
capabilities such as tactical decision making and adaptive
behaviors (Habib et al., 2017). More advanced agents require
different methods and techniques to facilitate coordination
between the system and human operators. Focusing on finding
the upper limits of structure and team size for human operators to
handle has led to a neglect of research focusing on improving the
way the team works together. There are many considerations
when pairing multiple UAV agents with humans as teammates
with respect to directability, transparency, collaboration,
predictability, availability of status and intentions, and
adaptability to new conditions (Christoffersen and Woods,
2002; Klein et al., 2004; Humann and Pollard, 2019).
Therefore, current research must start diverting focus from
“how many systems can a single operator control?” to “how to
distribute missions among operators and systems in an efficient
manner?” (Porat et al., 2016, p.1).

Increasing the tasking load to the agent, otherwise known as
level of autonomy (LOA), by offloading tasks such as navigation
and object recognition, could result in reductions in operator

workload while also increasing the maximum number of UAVs
an operator could manage without performance decrements
(Humann and Pollard, 2019). LOA is defined as the range of
design options implemented in a system to enhance self-
sufficiency and self-directedness, ranging from manual
operations which require humans to complete all functions, to
fully autonomous operations, in which the system is able to
perform the task in its entirety, requiring no assistance
(Johnson et al., 2011; see Table 1). The trend in research for
single-HAT suggests the key to running a smooth operation is to
identify the appropriate calibration of task management amongst
team members whilst providing operators with flexible
automation tools to direct mission tasks (Eggers and Draper,
2006). However, as agents become increasingly intelligent, the
number of agents a human can control increases and requires
new considerations (Chen and Barnes, 2014). As HAT
capabilities become more advanced and humanlike, the best
method for humans and agents to effectively coordinate is still
an open question and requires careful and methodological design
of each LOA (Habib et al., 2017).

Human–Agent Team Effectiveness Issues
The effectiveness of HAT is influenced by various factors
including system transparency, communication methods,
human trust in the agent, human workload level, situation
awareness, and individual differences such as the ability to
multitask (Strybel et al., 2018).

Workload and performance. In the case of a single operator
overseeing multiple agents in multi-HAT missions, cognitive
overload may occur. During simulated ISR missions in which
an operator controlled four vehicles which were navigating and
communicating in a benign setting, workload was found to
exceed the acceptable limit for a majority of the mission,
resulting in mission degradation, particularly any time
communication was needed (Schneider et al., 2011).
Furthermore, workload can increase as the reliability of an
autonomous teammate decreases as operators take more
manual control (Chen and Barnes, 2012). Furthermore, other
research has shown operators may become neglectful of
monitoring agents during peaks of workload unrelated to the
agent (Ruff et al., 2002).

As the autonomy of the agent increases, one would expect that
workload would decrease; however, the nature of the operator’s
tasks shifts to a more mental task as opposed to physical. Many
studies have demonstrated that as the number of automated
systems that require monitoring increases, negative impacts occur
on various factors such as situation awareness, workload, and
target detection—which can ultimately hinder performance
(Salcedo et al., 2011; Chen and Barnes, 2012; Barnes et al.,
2015). Other negative outcomes could include overreliance on
automation, failure to maintain attention on automation, or
complacency (Spravka et al., 2003). More research on multi-
UAV teaming with more advanced autonomous capabilities and
independent agents and the resulting impacts on performance
and workload is needed. Based on the research in this area from a
range of domains, we anticipated that higher levels of decision-
making capabilities from the agent would result in reduced
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workload on the operator. However, the impact on mission
performance may not be as clear.

Trust. Trust in HAT can be defined as “the attitude that an
agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability” (Lee and See,
2004, p. 54). Trust is a crucial factor that aids in increasing the
efficiency between humans and autonomous agents, and without
it, the performance of the team can suffer (Joe et al., 2014).
Research has shown that achieving higher trust in HAT can be
acquired through humanizing the way automation interacts with
its teammates (Quinn et al., 2017).

Trust in an autonomous agent is related to the system
elements such as reliability, individual factors such as
willingness to trust, and situational factors such as task
workload (Endsley, 2015; Guglielmelli, 2015). Relative to
multi-HAT operations, the main drawbacks are the lack of
transparency (also referred to as observability) and
directability of the agent, which prevent UAVs from being
perceived as teammates (Christoffersen and Woods, 2002).
These deficiencies break down communication, and
consequently, trust may decrease due to the lack of awareness
relative to agent actions (Klein et al., 2004; Alaieri and Vellino,
2016). This can lead to a domino effect by increasing workload
and stress, which may result in low mission performance (Joe
et al., 2014). Reliability of an agent impacts HAT dynamics
including decreased trust, higher stress, and poor mission
performance with low reliability and a higher likelihood to
comply with false alarms when high (Chen and Barnes, 2014;
Schaefer et al., 2017; Wohleber et al., 2019). In the current study,
depending on the LOA, characteristics such as transparency,
reliability, and task allocation may impact the human operator
in various ways such as overreliance or disuse. Therefore, it is
important to investigate changes in the perceptions of the
characteristics and related levels of trust to further understand
how trust impacts mission performance, effectiveness, and team
capabilities in different LOAs.

Chen and Barnes (2014) presented the concept of mixed-
initiative autonomous systems which takes a more team-like
decision making approach to HAT. Decisions are facilitated
through interfaces to mimic the more collaborative
environment of a human–human team (HHT). The agents can
communicate their intents, which are reviewed and approved by a
human operator. Mixed initiative requires team members to

jointly make a decision regarding the developments in the
tasking environment and supports bi-directional
communication between the operator and the agents, which
can help improve situation awareness, transparency,
directability, and, ultimately, trust calibration (Chen and
Barnes 2014; Schaefer et al., 2019). Research suggests that
human operators require less effort, complete more tasks,
improve trust, and improve mission performance when
supported by mixed-initiative planning (Ramchurn et al.,
2015; Nam et al., 2018). This team dynamic has shown itself
to be superior specifically for tasks such as object
detection—making it a desirable task to explore LOAs and
mixed initiative design for ISR missions (Barnes et al., 2015).
Therefore, the current study utilized a mixed-initiative HAT
approach.

Levels of Autonomy Impacts in
Human–Agent Teams
LOAs implemented specifically in the decision-making process
could potentially address some of the issues related to workload,
stress, performance, and trust. Schneider et al. (2011) outlined
how identifying the best LOA can aid in decreasing operator
workload and stress in dynamically changing environments and,
in return, increase mission effectiveness. Research by Ruff et al.
(2002) found that performance gains are highest with middle-
level LOAs in which the agent asks for consent to carry out
actions as opposed to manual or fully autonomous agents. This
LOA was most effective likely due to the lower LOA condition
offering no assistance to relieve operator workload, and the high
LOA condition not sufficiently keeping the human in the loop.
Increasing automation to the extent that the human simply
overrides potential actions removes the human more from the
decision-making process, lowering SA and making it more
difficult for the human to make decisions when it is necessary.
Therefore, too much automation can allow the human to “slack
off,” resulting in operators who are unaware of what is going on
until it is too late (Ruff et al., 2002). Additional downsides to too
much automation have been shown in studies in which high
levels of workload in dynamically changing environments led to
increased reliance on automation (Biros et al., 2004). Biros et al.
(2004) discovered that even though automation trust and use
have a positive relationship, increased workload can have a

TABLE 1 | Sheridan and Verplank’s (1978) LOA structured model.

Level of automation Definition

1 Automation offers no assistance, humans must do it all
2 The computer offers a complete set of action alternative and nice
3 Narrows the selection down to a few, or
4 Suggests one, and
5 Executes that suggestion if the human approves, or
6 Allows the human a restricted time to veto before automatic execution, or
7 Executes automatically, then necessarily informs the human, or
8 Informs the human after execution only if asked, or
9 Informs the human after execution if the automation decides to
10 The automation decides everything and acts autonomously, ignoring the human
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negative effect on this relationship, ultimately leading to use of
the automation even when trust is low.

In a multi-UAV setting, this could lead to poor decision
making based on incorrect UAV information, incidents, or
accidents. This notion emphasizes that automation should be
allocated based on the type of mission and the skill of the operator
who is carrying out the mission (Eggers and Draper, 2006).
Furthermore, Parasuraman et al. (2000) suggested that high
LOAs could be implemented for information acquisition and
information analysis. However, when considering high-risk
functions and outcomes, the LOAs should be lower for actual
decision making and action implementation as the outcomes
could be more devastating if left to automation. Some researchers
note that even if one chooses to follow guidance for a particular
LOA, no guidance is provided on how to implement each LOA in
an interface (Johnson et al., 2011). These findings suggest that the
relationship between performance and LOA is more nuanced and
cannot be simplified to a “more is better” scenario. As research
suggests, implementing meaningful human control through HAT
will allow human operators to fully benefit from a system’s
autonomous capabilities (van Diggelen et al., 2019).

Current Study
Determining the best LOA for HAT missions may lead to
improved mission performance, overall mission effectiveness,
and ease of communication in HATs. Agents are becoming
increasingly autonomous, ranging from navigation, industry,
and health, to decision making (Amanatiadis et al., 2015;
Khatib, 2019; Zacharaki et al., 2021). Furthermore, more
advanced agents in a multi-HAT may require new or different
LOAs and communication methods between human and agent.
As multi-UAV missions are becoming increasingly popular, it is
important for researchers to identify the unique challenges multi-
HAT faces compared to single-HAT. When operating under
different LOAs, the makeup of the autonomy and approach to
communicate status to the operator drastically change, requiring
new forms of coordination, interdependence, and
communication design (Johnson et al., 2011). As LOAs
fluctuate throughout a mission, designers typically overlook
how humans may adapt to changes in different LOAs and
how to implement higher LOAs effectively (Johnson et al.,
2011). This study sought to explore the impacts on a variety
of mission-critical factors as a result of changing LOA.

According to Chen and Barnes (2014), the general nature of
military operations leads to high-stress and high-workload
environments that are prone to mistakes and errors. The
responsibility for these mistakes will likely rest on the human
operator. The human in a HAT will perform as a supervisor to
agents, which can let the human operator focus on more complex
tactical decisions, and the agents can perform the tasks more
appropriate for agent technology. These most closely align with
Sheridan and Verplank’s (1978) LOAs 1 (computer offers no
assistance) through 7 (system executes and then informs the
human), allowing agents to perform tasks and the human
operator to act in a supervisory role. In a military setting,
mixed-initiative systems that provide information to the
operator and leave ultimate decision making up to the human

could create a “synergy between humans and intelligent
agents—but not an equivalency” (Chen and Barnes, 2014, p.
18). Level 5 (consent) was also utilized previously for target
detection in a multi-UAV simulation task (Wohleber et al.,
2019). Based on the expectation that UAV agents will serve as
teammates for a human operator and will always be—in some
form—supervised by the human for the foreseeable future, the
current study did not include the LOA in which the agent acts
without the human in the loop (levels 8 and above; Sheridan,
1992; Arciszewski et al., 2009; Chen and Barnes, 2014). Utilizing
LOA frameworks from the studies by Sheridan and Verplank
(1978) and Arciszewski et al. (2009), as well as Chen and Barnes’
(2014) mixed initiative concept, the current study evaluated a
range of levels from one to seven to determine the impacts on
mission performance, trust, and team effectiveness in a HAT
mission. The current study sought to answer three research
question areas:

1. How does LOA in UAV teammates impact human–teammate
mission performance and operator state (target identification
performance, stress, workload, and decision making) in an ISR
scenario with multiple autonomous vehicles?

2. How does LOA in UAV teammates impact human–teammate
trust in an ISR scenario with multiple autonomous vehicles?

3. How does LOA in UAV teammates impact human–teammate
team effectiveness (perceived effectiveness and perceived
coordination) in an ISR scenario with multiple autonomous
vehicles?

METHODS

A total of 49 participants completed the study and were within the
target age range of 18–40 years old. Eight participants were
removed from the data set for various reasons. Of these, two
participants were excluded due to low English proficiency, which
could potentially impact their responses. Additionally, six
participants were removed as outliers based on average trust
(subjective) and distrust (manual pictures taken) scores being at
least two standard deviations from the mean. The resulting 41
participants were utilized in the dataset. The overall average age
was 24 years old, consisting of 24 males and 17 females. A total of
61% of participants were Caucasian, followed by 9.8% African
American, 9.8% Asian, and 19.5% other. Participants’ UAS
experience was distributed with 53.7% having no experience,
29.3% having less than 5 h of UAS experience, and 17%withmore
than 5 h of UAS experience. Participants’ video game experience
was distributed with 26.8% having less than 6 months, 17.1%
ranging between 1 year to 3 years, and 56.1% over 3 years of video
game experience. 17.2% of participants stated that they play video
games daily, followed by 26.8% weekly, 26.8% monthly, 7.3%
yearly, and 21.9% who stated that they never play video games.

Experimental Design
The study design was a repeated measures within-subjects design.
The independent variable was LOAs, which was manipulated
using four levels (manual, advice, consent, and veto) presented in
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Table 2 and illustrated in Figure 1. The participants received all
four autonomy levels (manual, advice, consent, and veto) in
counterbalanced rotating orders. Seven dependent variables
were evaluated, including team coordination, mission
performance, team effectiveness, trust, stress, workload, and
decision making. The experimental task included the
participant monitoring four agent teammates whilst ensuring
correct target detection across the mission.

The experiment asked participants to complete a series of four
intelligence surveillance and reconnaissance missions with agents
of four levels of autonomy. Participants worked with four agent
teammates to take pictures of soldiers as targets andmark them as
friendly, enemies, or not targets. When a picture was taken (either
by the participant or the agent), the participant would need to
decide on what type of target it was. The participant received
varying levels of assistance with this decision-making task based
on the level of autonomy condition. After each mission,
participants filled out a series of surveys while performance
information was collected automatically by the simulator.

In the manual condition, the agent only assisted with target
detection. The agent would take pictures when enemy, friendly, or
neutral assets were detected. After the agent found targets, a

notification was placed in the urgent tab of the event manager in
which the participant would select the target event, classify the
target type as enemy, friendly, or neutral, and click confirm. Once
the participant confirmed the target, the target event moved to the
solved tab. In this condition, human involvement included
classifying, selecting the classification category, and confirming
every target.

In the advice condition, the agent detected the target, the
same as in the manual condition. However, once a participant
selected the target event, a message suggesting the target
classification type was presented. For example, messages
such as “Maverick thinks this is a FRIENDLY” or “Stryker
thinks this is an ENEMY” were displayed. The participant
then had to select the appropriate classification type and
confirm the selection. Once the participant confirmed each
target, the notification was moved into the solved tab. Human
involvement included classifying, selecting the classification
category (with advice from the agent), and confirming the
target type. These were the same responsibilities as those
included in the manual condition; however, participants
had the option to follow the agents’ suggestions or make
their own judgement calls.

TABLE 2 | Level of autonomy conditions.

Level of
autonomy

Level from Sheridan
& Verplank (1978)

Agent responsibilities Human involvement

Manual 1 Detects objects but does not offer any
assistance with identification

Determines if the object is a friendly target, neutral target, or enemy target
to update the mission mapComputer offers no

assistance
Advice 4 Detects objects and offers suggestion on

potential target type
Reviews agent suggestion and determines if the object is a friendly target,
neutral target, or enemy target to update the mission mapSuggests one

Consent 5 Detects objects and marks target type Reviews agent mark and either confirms or changes the agent’s decision
Execute automatically if
human approves

Veto 7 Detects objects and marks target type Can review the agent’s decision and change if needed
Executes and then informs
human

FIGURE 1 | Experimental conditions.
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In the consent condition, the agent detected the targets, the
same as in the manual and advice conditions. However, once a
participant selected the target event, the target classification type
was already selected. For example, messages such as “Maverick
marked this target as an ENEMY” or “Stryker marked this target
as a FRIENDLY” were displayed with the target type preselected
in the dropdown. Once the participant confirmed each target, the
notification was moved into the solved tab. Human involvement
included confirming or changing and confirming the
classification category in the event manager. These were the
same responsibilities as those included in the manual and
advice conditions; however, participants only had to confirm
the agent’s pre-selected target type or make their own
judgement calls.

In the veto condition, the agent found, marked, and confirmed
events. This automatically moved all target events into the solved
tab. If a participant selected a target event in the solved tab, the
same messages were presented as in the consent condition, but no
action was required of the participant other than reviewing events
if they chose to do so. If the participant felt the need to review and
correct the agent’s decision, they were able to do so in the solved
tab. Participants would select the new target type from the
dropdown and click the change button. Human involvement
included reviewing or changing the classification of the solved
target events. This shifted the responsibilities to where the human
was only responsible for double-checking agent target
classifications if they chose to do so.

In all conditions, once a participant clicked on any events in
the urgent or solved tab, a “reviewed” indicator would appear to
inform the participant of which events they had already visited
and which they had not. In addition to monitoring the event
manager and camera feeds of the four agent teammates, the
participants could also perform the target identification task
manually in parallel as a backup to the agents if they believed
the agent had missed a target. This would include manually
taking pictures which would then be displayed on the urgent tab
as “User has found something.” The manual picture events did
not offer any agent assistance and were moved to the solved tab
once the participant selected the target type and confirmed.

Experimental Task
The experimental task was a military ISR mission in which the
HATwas searching for enemies along a series of routes to identify
the safest route to send a convoy. Participants were exposed to
two separate screens. The left screen displayed a mission map
view, including color-coded UAV paths, revealed targets, and an
event manager with target events displayed on urgent and solved
tabs. The right screen simultaneously presented live camera views
from the four separate UAVs. The objective of the task was to
work with the UAVs to identify and classify potential targets
along each route as friendly, neutral, or enemy assets. Once
completed, the participant would select the route with the
least amount of enemies to send supplies through to their
allies. Each route was in a desert environment with town-like
features such as various types of houses, tents, and desert-like
foliage. Based on previous research, three or more UAVs that
require monitoring from the human operator can lead to

performance decrements (Porat et al., 2016; Humann and
Pollard, 2019). Therefore, the current study utilized a 4:1
UAV-to-operator ratio to allow for differences in operator
performance with LOAs to emerge. Each UAV would identify
and classify targets along their route per the experimental
condition. Each of the four scenarios had 11 friendlies, 10
enemies, and 3 neutral targets. This ratio was selected to be in
line with previous research, while still allowing for performance
variations to emerge (Ruff et al., 2002; Chen and Barnes, 2012;
Wohleber et al., 2019; Rebensky et al., 2021a). Targets were evenly
distributed across each scenario and the UAV route free of
enemies changed every scenario. The following additional
events were layered in the study.

Reliability of the UAVs’ object detection was set to
approximately 92%. The reliability of UAV’s object
classification of the targets was also set to approximately 92%.
This is similar to other UAV studies (e.g., 86%, Wohleber et al.,
2019; 90%, Chen and Barnes, 2012; 95%, Ruff et al., 2002) and was
chosen as automation will always be, to some extent, imperfect
but needs to be higher than 70% to still be utilized by operators
(Wickens and Dixon, 2007).

In the current study, the UAVs were responsible for collision
avoidance and automatically flew. This allowed participants to take
manual pictures if desired. Furthermore, each scenario consisted of
two mislabeled targets and two missed targets. For example, if an
agent found an enemy target, but labeled it as a friendly target, the
target was mislabeled. If the UAV flew by an enemy target and did
not take a picture of the target, it would be considered a missed
target. The UAV agents that made missed target errors and
mislabeled errors were changed per scenario so that
performance of one particular UAV was not consistently worse
comparatively. As a parallel task, participants were asked to select a
route free of enemy assets to send a friendly convoy at the end of
the mission. Two of the 26 targets were missed by the agents,
equating to approximately 92% reliability for object detection. Two
out of the 24 targets found by the agents were mislabeled, equating
to 92% reliability for object classification. At the end of the mission,
participants chose a route free of enemy assets to send a friendly
convoy. The road free of enemy assets would change every scenario
to provide counterbalancing measures.

Experimental Setup
The simulated task was completed on a custom-built desktop
computer equipped with a Ryzen 7 3800X CPU, 32GB of RAM, a
NVIDIA 2080ti graphics card, a Windows 10 Home operating
system, two monitors positioned side by side, and a Logitech
wireless keyboard and mouse (see Figure 2). The simulation
multi-Unmanned Aircraft Vehicle Simulator for Teaming
Research and Evaluation of Autonomous Missions (multi-
UAV STREAM) was created in Unreal Engine 4 in
conjunction with the Air Force Research Lab’s Gaming
Research Integration for Learning Laboratory.

Measures
Demographic information collected included age, gender, level of
drone experience, and level of gaming experience. The following
measures were collected for each of the research question areas.
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Mission Performance and Operator State Measures
Mission performance has been classified in other UAV or multi-
HAT studies as the following: 1) the number of targets correctly
detected and identified (Chen and Barnes, 2012; Chen, 2010;
Ramchurn et al., 2015; Rebensky et al., 2021a), 2) number of
mistakes (Porat et al., 2016), 3) number of missed targets (Porat
et al., 2016), and 4) mission map accuracy (Chen, 2010). In the
current study, the number of correctly identified targets was
utilized as it encompassed all three elements of correct targets,
incorrect targets, and the accuracy of the types of targets marked
on the mission map. Additionally, at the end of each mission,
participants were asked to select a safe route to send the caravan.
Performance on this task was used as an additional decision-
making mission performance metric. To assess operator stress
levels, the Short Stress State Questionnaire (SSSQ) distress
subscale was utilized, which has been used in other UAV
studies (Matthews et al., 2005; Dasgupta, 2010; Wohleber
et al., 2019). To assess operator mental workload, the widely
used NASA-Task Load Index (NASA-TLX) was administered
(Hart, 2006; Richards, 2020).

Trust Measures
To measure subjective perceptions of trust in each LOA, a
modified measure from Muir’s (1989) framework of trust was
utilized, similar to studies by Master et al. (2000), Lee and Moray
(1992), and Du et al. (2019). However, the following adjustments
to Du et al.’s (2019) were made: 1) the word “autonomous

vehicle” was replaced with “autonomous agents” and 2) the
rating system of “none at all” to “extremely high” on a scale
of one to seven was replaced with anchors of “not at all” and
“completely” and a 10-point scale from the study by Lee and
Moray (1992) to allow for more variability and the inclusion of
complete trust in participant ratings. For behavioral indicators of
trust, in driving simulation studies, taking over manual control in
a potential collision or missed exit indicated a low level of trust in
the automation to follow through (Miller et al., 2016). Therefore,
the current study utilized the number of times an operator took
manual pictures as an indicator of distrust in UAV teammates.

Team Effectiveness Measures
Perceived team effectiveness measures are important to target not
only actual performance but human perceptions of performance
as well. “Evaluations of HAT designs necessitate methods and
metrics for assessing effectiveness and efficiency, yet such metrics
are currently lacking” (Strybel et al., 2018, p. 25). Therefore, team
effectiveness was measured using a self-developed singular
question of “How effective do you believe your team was in
completing the mission?” rated on a 5-point Likert scale from 1 =
not at all effective to 5 = extremely effective. Additionally, at the
end of the study, participants were asked again “How effective
was the (manual/advice/consent/veto) condition in assisting you
to complete your mission?” for each condition rated on a 5-point
Likert scale from 1 = not at all effective to 5 = extremely effective.
Open-ended responses were asked in tandem with end-of-study

FIGURE 2 | Experimental testbed.
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effectiveness questions. The open-ended questions asked the
participant to describe what they liked or disliked about the
condition, and why. Team coordination was assessed using a
single question from the coordination subscale from the study by
Mathieu et al. (2019): “to what extent does our team actively work
to coordinate our activities with one another?” rated on a scale of
1 = “not at all” to 4 = “to a very great extent.”

Procedure
Participants were recruited via email, flyers, and social media to
partake in the study. Once participants arrived, they were asked if
they experienced any COVID-19 symptoms within the past
14 days. After this, their body temperature was taken for
precautionary measures, and they were informed that they
were to wear a mask for the duration of the study. All
equipment was sanitized between participants, and hand
sanitizer was provided for their convenience. Participants were
then asked to sign an informed consent form and given a pre-
survey, where they were asked demographic questions, their levels
of experience playing video games, level of drone experience, and
given the propensity to trust in technology scale.

After completing the pre-survey, participants entered the
training segment of the study. In the training segment, a
slideshow was presented in which the different types of
autonomy levels (manual, advice, consent, and veto) were
explained and illustrated using both video and text. Videos
illustrated the use of different features such as photo
enlargement, manual photographing, and utilization of the
event manager. Participants were advised to take their time
reviewing the slideshow and encouraged to watch the videos
provided. The training segment was self-paced; however,
participants typically spent approximately 10 min on this
section. After participants completed the training slideshow,
the participants were given a 3-min-long training mission, in
the manual condition. This included one neutral, friendly, and
enemy asset per drone route, totaling up to 12 targets in the
training scenario. Participants classified, categorized, and
confirmed every target whilst monitoring four drones
simultaneously. This abbreviated scenario allowed participants
to familiarize themselves with the controls and experimental tasks
to prepare them for the upcoming missions.

Participants were then notified that the missions would last
5 min, followed by questionnaires after eachmission. Furthermore,
participants were informed that their mission goal was to scope out
enemies and find a clear route to send a caravan. Finally,
participants were told that the UAVs would have a target
detection and classification reliability of approximately 90%.
Then, participants completed the four experimental missions in
their respective counterbalanced order. After each scenario,
participants were asked to fill out an online questionnaire
including the SSSQ Distress Subscale, NASA-TLX, trust
questionnaire, individual agent trust ratings, communication
effectiveness, team effectiveness, and open-ended comments.
After the last post-task survey was completed, the participants
were asked to complete a questionnaire capturing their perceived
effectiveness for each LOA and open-ended comments. Data were
then exported into SPSS for data analysis.

RESULTS

The following section presents the results of analyses related to 1)
operator performance, stress, and workload, 2) trust, and 3)
perceived effectiveness. All variables included in analyses were
checked for normality via Q-Q (quantile-quantile) plots. In
addition, a correlation matrix was checked to ensure linear
relationships between the dependent variables included in
analyses together while also ensuring multicollinearity was not
occurring.

Mission Performance and Operator State
Performance, Stress, and Workload
To determine how well participants performed in each LOA and
the resulting impacts on stress and workload, the following
measures were utilized in a repeated measures MANOVA: 1)
the total percentage of correctly identified targets, 2) stress as
measured by the SSSQ distress subscale, and 3) workload as
measured by the NASA-TLX. The null hypothesis was as follows:
LOA will have no effect on performance, stress, and workload.
The analysis revealed a significant overall MANOVAmodel, F (9,
29) = 3.71, p = 0.003. Univariate follow-up analyses revealed
significant influences on performance F (2.41, 89.15) = 5.59, p =
0.003, η2 = 0.13, workload F (3, 111) = 5.08, p = 0.002, η2 = 0.12,
and stress F (3, 111) = 9.79, p < 0.000, η2 = 0.21 by LOA.

Post hoc analyses for performance revealed that participants
performed significantly worse in themanual condition than in the
consent (p = 0.001) and veto (p = 0.015) conditions. The same was
true when comparing the advice condition to the consent (p =
0.016) and veto (p = 0.017) conditions. However, there were no
significant differences between manual and advice conditions or
between consent and veto conditions relative to performance.
The results indicate significantly better performance in higher
levels of autonomy than in lower levels of autonomy.

Similar trends were observed for stress levels with significantly
higher stress levels observed in the manual condition than in the
consent condition (p = 0.003) and veto condition (p = 0.015).
There were also significantly higher stress levels in the advice
condition than in the consent (p = 0.010) and veto (p = 0.014)
conditions. No significant differences in stress levels were found
between the manual and advice conditions or between the
consent and veto conditions.

With respect to workload, the manual condition resulted in
significantly higher workload scores than the consent (p = 0.001)
and veto (p = 0.000) conditions. The advice condition also
resulted in significantly higher workload than the consent (p =
0.002) and veto conditions (p = 0.001). No significant differences
in workload were observed between manual and advice or
between consent and veto (see Table 3).

Additional Performance Metrics
Participants were informed that the agent was not 100% reliable
and the agents would make mistakes in both target detection and
classification approximately 1 in 10 times. Each condition had
twomislabeling events and twomissed target events. Mislabels, or
agent mistakes relative to target classification, were not present in
the manual condition as the agents only assisted with target
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detection in the manual condition. As LOA increased, more
participants failed to correct mislabels, with the highest
percentage of mislabels going uncorrected in the veto
condition. For missing targets, more missing targets were
found in advice and consent than in the manual. In the veto
condition, there was a decrease in the percentage of missing
targets found compared to the advice and consent conditions, and
even less than the manual condition (see Figure 3).

An additional measure of performance included whether or
not participants selected the correct route. This was analyzed
separately as it was nominal in nature of whether the participants
selected the correct route or not. In the manual condition, the
incorrect route was selected four times or 9.8% of the time,
followed by zero times or 0% of the time in advice, one time or
2.4% of the time in consent, and two times or 4.9% of the time
in veto.

Trust
To determine the impact of each LOA on participant perceived
trust in their agent teammates, the following measures were
utilized in a repeated measures MANOVA: 1) trust as
measured by the modified Du et al.’s (2019) measure of trust
and 2) manual pictures as a measure of distrust. The null
hypothesis was as follows: LOA will have no effect on trust.
The analysis revealed a non-significant MANOVA model, F (6,
35) = 2.24, p = 0.06. However, if the reader is willing to accept a p
value of 0.06, there was a noticeable effect of LOA on distrust.
Univariate follow-up analyses revealed no significant influences
of LOA on trust F (3, 120) = 1.34, p = 0.262, η2 = 0.033, but a
significant influence of LOA on distrust, F (3, 120) = 2.68, p =
0.039, η2 = 0.067. Inversely, the highest levels of distrust, by
means of manual photo taking, were reported by participants in

the advice and consent conditions, with highest levels of distrust
found in advice (see Figure 4).

Team Effectiveness
Perceived effectiveness of the team was captured using the end-of-
study subjective measures of team effectiveness and post-task
measure of team coordination. The null hypothesis was as
follows: LOA will have no effect on team effectiveness. Team
effectiveness for the advice condition was rated “somewhat
effective” with an average score of 3.3, followed by “somewhat”
to “very effective” for the manual and veto conditions with an
average score of 3.7, and ratings of “very effective” for the consent
condition with an average score of 4.1. An ANOVA revealed
significant effects of LOA on team effectiveness ratings F (2.10,
8.12) = 3.45, p = 0.034, η2 = 0.08. Post hoc analyses revealed that the
advice condition was rated as significantly less effective than the
manual (p = 0.03) and the consent condition (p < 0.001). No
significant differences were found between manual and consent,
manual and veto, advice and veto, or consent and veto. For team
coordination, ratings had a very narrow range across conditions
from 3.21 to 3.38, indicating an ability to coordinate with their
agent teammates “to some extent” (see Figure 5).

DISCUSSION

Mission Performance and Operator State
Findings
For performance, stress, and workload levels, the results indicate
significantly better scores in the two higher levels of autonomy than
in the two lower levels of autonomy. In line with previous research,
the higher levels of automation resulted in lower levels of stress and

TABLE 3 | Mission performance scores by condition.

Construct Captured by Average scores by condition

Manual Advice Consent Veto

Performance Percentage of correctly detected targets 84.27% 85.00% 89.10% 88.54%
Stress SSSQ Distress subscale score 10.12 10.58 7.43 8.04
Workload NASA-TLX Score 61.17 60.78 54.04 52.56

FIGURE 3 | Mislabels corrected and missing targets found by condition.
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workload (Chen and Barnes, 2014; Barnes et al., 2015). A small
increase in stress in the veto condition compared to the consent
condition could be due to the change in the nature of the task from
an active target identification task to a supervisory role. Some
participants noted “I liked this mode the least. I did not like not
having any control and just reviewing” and “I did not like the drone
making the choices for me. I [would] rather confirm first before the
drone does.” The nature of placing more tasking on the automation,
but the human being ultimately responsible for its actions, may have
elicited a small increase in stress. Additionally, advice may not have
resulted in any reductions in stress or workload as the identification
task was still primarily the responsibility of the human. One
participant noted that “advice mode was effective but I still had
to perform the task of categorizing each target which became time
consuming making me pay more attention to the picture.” Another
noted “I still have to manually check the picture so it still feels like
manual, although I have an idea on what to look for.” These
comments are in line with certain HHTs research, which found
that when a team member shares the workload, this can lead to less
stress and better performance (Chen and Barnes, 2014).

Similar to Ruff et al. (2002) and Barnes et al. (2015), we found
that performance, across the differentmetrics for performance, was
best for the middle levels of autonomy. Higher levels of autonomy
led to better target identification accuracy, reducing workload, and
reducing stress; however, consent was superior when compared to
veto for correcting agent mistakes and decision-making. The
consent condition allowed for the higher percentage of

mislabels and missing targets detected. The added assistance of
pre-marking the target may have allowed for additional workload
reductions that allowed the participant to play a more active role in
supervising the agents. In the veto condition, it is possible that the
participants became more complacent with the agents and did not
catch as many mistakes as they could have. As a result, in the
consent condition, participants had the most favorable
performance related to correct targets, missing targets found,
mislabeled targets corrected, and correct routes identified.

Interestingly, the incorrect route frequency findings do not
align with the target accuracy percentages observed in the current
study. Based on the percentage of correct targets, it was
anticipated that veto and consent would lead to the highest
decision making accuracy as their mission maps of enemy and
friendly target locations were the most accurate. However, it was
advice and consent that led to the lowest frequencies of incorrect
routes selected. The findings suggest the middle levels of
autonomy, advice and consent, sufficiently support operator
workload while also keeping the human sufficiently in the
loop to make accurate battlefield decisions. Similar to findings
in previous research, higher levels of autonomy can lead to
automation bias, or an overtrusting of agent behaviors
resulting in poorer performance in terms of mislabels
corrected and missing targets found (Barnes et al., 2015; Chen
et al., 2016). As a result, it is suggested that the lower-level tasks
such as object detection fall on the automated agents, whereas
tasks such as object identification require human-in-the-loop

FIGURE 4 | Average trust and distrust ratings by condition.

FIGURE 5 | Average team coordination and mission effectiveness scores by condition.
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consent and the human to make the ultimate decision to avoid
automation complacency—particularly in military settings
(Arciszewski et al., 2009; Barnes et al., 2015). The consent
condition allowed for reduced workload, giving it clear gains
over the manual and advice conditions, without human-in-the-
loop challenges that occur when automation becomes too high in
the veto condition.

For performance, future research should examine offering
confidence ratings of agent object identifications to help
operators determine which events require reviewing and which
do not. This may help with complacency issues in veto designs.
Additionally, methods to improve the advice condition are still
needed. In the current study, advice did not lead to significant
improvements in workload, stress, and performance from the
manual condition—even though the advice condition assisted
with a whole additional task of target classification. Participants
enjoyed the extra step that consent took by premarking the
targets. It is possible that based on the type of task and the
riskiness involved, advice may be ideal in some tasks whereas
consent may be ideal in others (i.e., consent for ISR missions, but
advice for missile strike missions; or swapping between the two
during periods of high or low workload; Arciszewski et al., 2009).
As a result, future research should look at methods for improving
the advice condition to bring its mission performance score closer
to those observed for consent in the current study.

Trust Findings
Relative to trust, the current study’s findings are consistent with
previous research, finding no significant differences between
various levels of autonomy. Du et al. (2019) reported similar
results, finding no evidence that autonomous vehicles, which
provided further explanations, led to higher trust ratings. Prior
research has also noted that trust can change regardless of team
performance, so trust in different LOA conditions may be a
construct that is not impacted by the team structure (Mcneese
et al., 2021). Aside from Du et al. (2019)’s findings, impacts of
LOA on trust in an agent have been scarcely explored, a gap that
this effort aimed to address (Beer et al., 2014; Mcneese et al.,
2021). As agents become more prevalent, particularly starting
with advice as the most likely LOA, it is important to note the
impacts of these LOA designs. Participants reported that in the
manual condition, they felt as though they were more “mentally
involved with this mode” and “trusted (themselves) to correctly
identify soldiers.” In this condition, the human is given all
responsibility related to object identification; hence, the
participants also felt as though they were more “involved in
the decision making process,” indicating a stronger sense of
control and trust with the agent team. In the advice condition,
participants reported that there was “slightly less workload” than
in the manual condition, but it was “not as useful” because
although the agent was assisting with target identification, the
participants “still had to perform the task of categorizing each
target which became time consuming.” As a result, participants
reported that they would just “have to trust the drone” if they did
not have the time to double check its advice, indicating a lack of
control in the identification process. Comparable reports were
found in the consent condition, with participants indicating they

“had a similar issue with this condition that (they) had with the
advice condition” in the sense that they “still felt the need to
review all of the pictures.” However, the change in trust observed
in the consent condition could be due to the fact that participants
had “a more relaxed pace” to make the decisions. A few
participants reported that the condition “reduces trust in the
system” by “having to go back and review the decisions of the
agents,” indicating a lack of control and an absence in the decision
making process. A majority of participants reported that the veto
condition aided their ability to “scan and monitor” the UAVs,
allowing for more time to catch any incorrect target
identifications. They also reported a “decrease in workload”
due to an even more relaxed pace. The increased time to scan
and monitor the UAV paths led to the marginally increased trust
reporting over advice and consent. However, it should be noted
that mislabels and missed targets were detected less often in the
veto condition, contrary to participant comments. This
disruption in trust could be due to an interaction between
workload and perceived responsibility by the human
teammate. With the decreased workload and increased ability
to scan for targets, participants also have more time to take
manual pictures. In the manual condition, the level of workload
impacted the participants’ ability to take pictures due to workload
levels. The advice and consent condition offered more time for
the participants to scan and subsequently take pictures. One
would anticipate even more manual pictures in the veto condition
based on this trend. However, in the veto condition, the
automation is responsible for both target detection and
identification; thus, the human is less involved. It is possible,
as a result, that participants became over-trusting and more
complacent as indicated by the performance of missed targets
detected, mislabels corrected, and incorrect routes selected in the
veto condition—which was poorer than the advice and consent
conditions.

Although both advice and consent conditions require the
participant and agent to work in tandem to correctly identify
targets, the diction used in each condition differed. In the advice
condition, the agent reported what it thinks the target should be
labeled (friendly, enemy, or not a target). In the consent
condition, the agent reported that it marked a target (as either
friendly, enemy, or not a target). This difference in diction could
explain the highest level of distrust being for the advice condition.
The advice condition may spark the thought of why? with the
advice condition appearing less transparent, whereas participants
may be more willing to accept the consent condition at face value.
The explainability of an autonomous agent, also known as
explainable AI, is a form of autonomy in which the human
explicitly understands and can easily make sense of the
autonomous agent’s workings (Shin, 2021). It is reliant on the
autonomous agent’s ability to inform the human why it is doing
something, which is a notion that is extremely obvious and
prominent in HHT, but difficult to employ in HATs (Shin,
2021). Therefore, this concept of explainable AI requires the
automation to be transparent in its decision-making process
(Endsley, 2015). Transparency leads to a shared mental model
and awareness between the human and agent, allowing for a more
predictable, dependable, and efficient team dynamic (Endsley,
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2015; Schaefer et al., 2019). In all conditions, the automation
never explains why it chose a certain target, thus leaving the
human out of the loop in its identification processes. The absence
of this transparency within these conditions may explain similar
levels of trust between conditions, as indicated by both subjective
trust ratings as well as by distrust measures. This may be
particularly true for the advice condition in which the agent
teammates stated what it thinks the target is. This condition may
have inadvertently triggered a doubt or questioning in
participants of why it thinks it is a particular target. As
participants had to select the target type itself, many
participants noted second guessing themselves when an agent
made an incorrect suggestion. However, the same participants
noted the consent condition was quicker and more accurate even
though all conditions exhibited the same level of accuracy. As
participants were forced to actively choose to select a target type
against the agent’s suggestions as opposed to changing or
confirming the agent’s automatic decision-making in consent
and veto, there may have been more ruminating on the agent’s
reliability in the advice condition. In the veto condition, where the
automation is completing the identification task in full, we see a
marginal increase in trust. In cases where the LOA is high,
participants may tend to over-trust the automation, leading to
over-reliance in situations where its capabilities are not adequate
(Lee and See, 2004). The effects of too much automation have
been observed previously and is a notion that does not commonly
occur when dealing with solely HHTs (Biros et al., 2004).
However, due to the lack of significant differences in trust
measures found in this study, there is the possibility that trust
is not directly impacted by LOA in this particular setting.

For trust, future research should focus on developing
explainable advanced intelligence (AI) within each or some of
the conditions to gain a better understanding of how the level of
transparency impacts a human’s trust in different LOAs. Future
work should also take into consideration the diction used within
each condition, as the wording of the agent’s decision making can
impact a person’s understanding or perceptions of how the agent
identified targets. These design improvements could lead to a
method that allows the agent to decide when to employ
explanations to the human teammate and the correct way to do
so, which could lead to an increase in overall trust. Considering
advice is the most logical starting point as agents make the pivot
from tool to teammate, it is clear that many improvements are
needed to make advice a viable option for warfighter agents.
Furthermore, a more in-depth qualitative analysis focusing
solely on the dimensions of trust (competency, responsibility,
reliability, faith, predictability, and dependability) in different
LOAs could lead to a better understanding of how to design an
agent that is trustworthy in a HAT domain.

Team Effectiveness Findings
In the current study, it was found that the consent condition
offered the sweet spot of human involvement and performance
gains. This was reflected in consent receiving the highest
effectiveness ratings. One participant noted “Consent was the
most effective. The dropdown choice was already selected which
saved a lot of time and attention.” Meanwhile, for the other

conditions, the participant noted “the manual required a lot more
time and attention,” “the advice was not any more effective than
manual,” and “the veto condition felt rushed...need to go back and
confirm.” Ultimately, the participant stated they “like consent
where the human participant is still involved in the decision
before it is made.”Other participants noted that consent was “the
perfect balance of teamwork between the operator and the agent.”
However, variations in perceived team coordination were not
demonstrated in the current study. Very little research has been
done related to the perception of camaraderie and the sense of
“team” in HAT. It is possible that the interaction method utilized
in the current study still felt more “tool-like” than “teammate-
like” to participants. Additionally, this measure had between 10
and 20%missing data per condition. This was not the case for any
other question in the study and could indicate some inability to
rate their perceptions of team coordination potentially due to it
not being a construct they felt was occurring in the team
structure. Additionally, it could be possible that the single
item measure was not diagnostic of team coordination.

For team effectiveness, future research is needed to explore the
impacts of different interaction methods (adaptive and adjustable
automation), conversational methods (the way agent decision
making assistance is worded), and interactions (the way the
human supervises and interacts with agents), particularly, the
effect of each of these designs over time and the subsequent
changes in the perception of the team in HATs. These methods
may allow for more variation in perceptions of team coordination
than the method utilized in the current study. The current
measure also consisted of only one measure that exhibited a
high level of skipped responses. It is possible that measures of
HHT coordination are not sufficient as measures of HAT
coordination and more effective measures of HAT team
perceptions are needed.

CONCLUSION

The evolution of multi-HAT operations has unveiled areas in
need of improvement in agent design. This study addressed
current research questions in regards to HAT performance as
agents traverse the LOA continuum and the associated challenges
humans experience. The impact of LOA in UAV teammates on
team effectiveness, team coordination, trust, decision making,
stress, and workload revealed the need for trustworthy system
design strategies to improve multi-UAV teams for future HAT
operations. Participant’s performance, stress, and workload
scores indicated that the two higher levels of autonomy
resulted in lower levels of stress and workload, and thus
overall better performance. However, decision making and
detection of agent mistakes in the veto condition indicated
issues with automation complacency and out-of-the-loop
challenges. The same can be said for team effectiveness, with
the second-highest LOA possessing the highest-rated
effectiveness scores, potentially due to the human and agent
responsibilities being balanced to alleviate workload while still
keeping the human informed. Although no significant differences
were found in trust scores between the LOAs, the study identified
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key areas of trust characteristics that require further investigation
in order to establish a trustworthy multi-UAV HAT. As the
intelligence of automated teammates increases, redesigning
agents to better support humans will aid in improving HAT in
the multi-HAT domain.
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