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Humans sometimes attempt to infer an artificial agent’s mental state based on mere
observations of its behavior. From the agent’s perspective, it is important to choose
actions with awareness of how its behavior will be considered by humans. Previous studies
have proposed computational methods to generate such publicly self-aware motion to
allow an agent to convey a certain intention by motions that can lead a human observer to
infer what the agent is aiming to do. However, little consideration has been given to the
effect of information asymmetry between the agent and a human, or to the gaps in their
beliefs due to different observations from their respective perspectives. This paper claims
that information asymmetry is a key factor for conveying intentions with motions. To
validate the claim, we developed a novel method to generate intention-conveying motions
while considering information asymmetry. Our method utilizes a Bayesian public self-
awareness model that effectively simulates the inference of an agent’s mental states as
attributed to the agent by an observer in a partially observable domain. We conducted two
experiments to investigate the effects of information asymmetry when conveying intentions
with motions by comparing the motions from our method with those generated without
considering information asymmetry in a manner similar to previous work. The results
demonstrate that by taking information asymmetry into account, an agent can effectively
convey its intention to human observers.

Keywords: Bayesian theory of mind, public self-awareness, PublicSelf model, human-agent collaboration, legible
motion, reinforcement learning, explainable AI

1 INTRODUCTION

Theory of mind is the ability to infer other people’s mental states, such as their beliefs, desires, and
intentions, from their actions. By attributing mental states to others, people attempt to interpret their
past behavior and predict their future actions (Premack and Woodruff, 1978). The ability to infer
others’ minds in this way serves as a basis for social interaction (Marchesi et al., 2019). In
cooperation, for example, a worker requires mutual understanding of what another worker is
intending to do to decide how to act or whether to help that person in a given situation (Hayes and
Scassellati, 2013). Theory of mind enables workers to quickly understand each other with a reduced
amount of explicit communication.

The targets of theory of mind include not only other humans but sometimes also artifacts (Gergely
et al., 1995; Schellen andWykowska, 2019), regardless of whether they actually possess mental states
similar to those of humans. This phenomenon can be utilized to facilitate natural and efficient
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interactions between humans and artificial agents, such as seeking
human help without verbal cues (Cha and Mataric, 2016),
although it may also have undesirable effects. For example,
humans may make false inferences regarding what an agent is
intending to do based on mere observation of its behavior. Such
misunderstandings can lead to failure of collaboration or even
serious accidents. In this context, autonomous artificial agents
need to act with public self-awareness, or inference of how its
behavior will be considered by its observers (Feningstein, 1975;
Falewicz and Bak, 2015).

Previous studies have proposed computational methods for
enabling autonomous agents to act with awareness of an
observer’s theory of mind. Dragan et al. formalized the
problem of an artificial agent’s inference of the goal attributed
to it by a human observer and proposed a method to generate
motion that conveys a goal-directed agent’s specific intention to a
human observer to either lead or mislead human inference of
what the agent is aiming to do (Dragan and Srinivasa, 2014;
Dragan et al., 2015b). Motion that conveys an agent’s true
intention is specifically called legible motion. Figure 1
illustrates an example. The blue agent intends to retrieve the
apple in the environment. The original motion (Figure 1A) is the
result of an attempt to choose efficient motion to achieve its goal
without considering its observer’s theory of mind. The agent
moves straight and then turns toward the apple just in front of the
observer. The observer cannot judge which fruit the agent intends
to retrieve when the agent is moving straight toward the observer;
thus, it is difficult for the observer to quickly predict the agent’s
intention by observing the agent’s behavior. By contrast, with
legible motion (Figure 1B), the agent moves toward the side
corresponding to the apple from the beginning, excluding the
possibility of interpretation that the agent intends to retrieve the
pear. Although the time required for the agent to retrieve the
apple is increased, the observer can more quickly and correctly
infer that the agent intends to retrieve the apple than in the case of
the original motion. Previous work on legible motion has

successfully demonstrated the effectiveness of endowing an
artificial agent with awareness of human theory-of-mind
inference with respect to its behavior during human-robot
collaboration (Dragan et al., 2015a).

Previous studies assumed simple situations in which both the
agent and its observer can easily share information about the
environment, so they do not have to consider information
asymmetry or differences in what each individual observes.
Figure 2 shows a simple example in which previous method
does not work due to information asymmetry. An apple and a
pear are both present on the right side of the observer
(Figure 2A). If the observer could observe both the apple and
the pear, themotion curved to the apple could be effective because
it prevented the observer frommistaking the agent’s target for the
pear. However, when we see the motion from the perspective of
the observer who cannot observe the pear, the early motionmakes
it appear as though the agent is ignoring the apple (Figure 2B).
This example suggests that legible motion with the false
assumption that the actor and the observer share beliefs about
the environment does not always improve the legibility of an
agent’s behavior and can sometimes even make it more difficult
for an observer to infer the intention that the agent aims to
convey.

Our main claim here is that information asymmetry is a
critical factor in generating motions that convey certain
intentions. To formalize this claim, we developed a novel
method to generate legible motion with awareness of
information asymmetry. This method is based on our
previously proposed PublicSelf model, which is a
computational model of public self-awareness that infers the
mental states attributed to the agent by an observer (Fukuchi
et al., 2018). By explicitly distinguishing the observations and
beliefs of an acting agent and its observer, PublicSelf can
accurately predict a human’s inference of an agent’s mind in
information-asymmetric situations with partial observability, but
it was not applied to generating an agent’s behavior. To validate

FIGURE 1 | An example in which legible motion serves to improve the predictability of an agent’s intention. The blue agent is initially at the far side of the room and
intends to get the apple. The agent’s movements are captured from a fixed observation point. Legible motion reduces ambiguity early on, enabling the observer to infer
the true intention of the agent. (A) Original motion (t = 0, 17, 34, 50). (B) Legible motion (t = 0, 17, 34, 58).
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our claim, we conducted a simulation study and a user study to
compare the legible motion generated with our method,
PublicSelf legible motion, with FalseProjective legible motion,
which does not consider information asymmetry. The results
showed that PublicSelf legible motion improves the predictability
of an agent’s intentions compared with FalseProjective legible
motion, indicating that information asymmetry is a critical
problem when conveying intentions by motions and that our
formalization can effectively address this problem.

This paper is structured as follows. Section 2 presents the
background, explains the problem of conveying intentions by
motions, and summarizes previous studies. Section 3 proposes
our method of generating legible motion using PublicSelf. Section
4 describes the implementation of PublicSelf and the generation
of legible motion. Section 5 reports on the two experiments
conducted to evaluate PublicSelf legible motion and discusses the
results. Section 6 discusses directions for future work. Section 7
concludes this paper.

2 BACKGROUND

2.1 Explainability of Intelligent Agents’
Behavior in Human-Agent Collaboration
In this paper, intelligent agents (IAs) refers to an autonomous and
goal-directed artificial agent that utilizes machine learning (ML)
methods such as deep reinforcement learning (DRL) to achieve
certain objectives. With the recent development of ML, IAs have

achieved good performance in complex tasks (Mnih et al., 2015;
Silver et al., 2017), and an increasing number of studies are
focusing on the application of real-world robots (Kahn et al.,
2018; Kalashnikov et al., 2018). Introducing MLmethods can be a
promising approach to realize effective goal-directed human-
agent collaboration.

However, many challenges remain that hinder collaboration
between people and IAs. One of the major difficulties is the lack of
explainability of an agent’s future behavior. Decision-making
modules that utilize modern ML tend to be a black box
(Fukuchi et al., 2017; Hayes and Shah, 2017). In particular, the
DRL model embeds the control logic in high-dimensional
parameter space and usually does not provide human-
comprehensible expressions of the agent’s plans, goals, or
intentions. Therefore, most people cannot understand what an
IA is aiming to do. The ability to understand and predict a human
coworker’s behavior can help robots to effectively collaborate
with people (Lasota and Shah, 2015; Huang and Mutlu, 2016).
Similarly, human agents also should be able to better understand
their coworker agents’ future behavior.

Previous studies have proposed methods to explain diverse
aspects of an IA’s decision making. Saliency maps are commonly
used to explain the reason a deep learning module made a specific
decision based on its input modality, and they are also applied to
an IA’s policy model (Tamagnini et al., 2017; Iyer et al., 2018;
Mott et al., 2019). While many approaches focus on explanations
for AI practitioners, Cruz et al. proposed a method for end users
(Cruz et al., 2021). Their method enables an IA to explain its next

FIGURE 2 | An example in which FalseProjective legible motion, which does not consider information asymmetry, fails to effectively convey the agent’s intention.
FalseProjective legible motion results in showing an unuseful detour because it does not consider the fact that the human does not know where a pear is. (A) Legible
motion in the agent’s belief. (B) FalseProjective legible motion from the human’s limited observation.
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action with the probability of success. Hayes et al. proposed a
natural language question answering system that can handle
some templates of questions about an IA’s policy such as
“when do you {action}?” and “what will you do when {state}?”
(Hayes and Shah, 2017).

2.2 Inference of IA Minds by Humans
Humans sometimes consider an artificial agent to have a mind
and thus to be a valid target for theory-of-mind inference. This
attitude is called the “intentional stance” (Dennett, 1987). Many
studies have investigated which characteristics of an artificial
agent lead people to adopt the intentional stance. Human-
likeness is a factor that leads humans to adopt an intentional
stance (Wimmer and Perner, 1983; Perez-Osorio andWykowska,
2020), but even geometrical figures can be targets of the
intentional stance (Gergely et al., 1995) when they appear to
be goal-directed (Premack and Premack, 1997), rational (Gergely
et al., 1995), self-propelled (Luo and Baillargeon, 2005), or in
violation of Newtonian laws (Scholl and Tremoulet, 2000).

IAs have many of these characteristics, which suggests that
people can adopt an intentional stance toward them. For
example, a rational agent is expected to take actions that
maximize its own utility (Jara-Ettinger et al., 2015), and the
RL framework is designed to address exactly the problem of utility
maximization. The utility function for a general RL agent is
designed to drive that agent to achieve certain goals in an efficient
(or rational) manner; positive rewards encourage the RL agent to
achieve certain tasks, while negative costs urge the agent to choose
more efficient actions.

2.3 Self-Awareness for Explainable IAs
A person can infer another person’s beliefs, goals, or intentions
even without explicit communication. In effect, people can infer
the minds of others simply by observing their behavior (Baker
et al., 2017). However, there is also a risk of misunderstanding or
of forming false beliefs about other people based on such
observations. When a person adopts the intentional stance
with regard to an IA and attempts to infer the agent’s mind,
the same problem can arise.

In this context, objective self-awareness, or the ability of a
person to recognize themselves as an object of attention (Duval
and Wicklund, 1972), becomes an important component for an
IA to help humans correctly understand its behavior. Objective
self-awareness is considered to have two aspects: private self-
awareness and public self-awareness (Feningstein, 1975; Falewicz
and Bak, 2015). A privately self-aware person is self-reflective and
attentive to their own thoughts. A publicly self-aware person, on
the other hand, focuses on the self as a social object and is
attentive to how he or she appears to others. If an IA has a private
self-awareness model, it can reveal ι*, the intention that is going to
be achieved by the agent. A public self-awareness model will also
enable the agent to infer the intention ι that a human observer will
attribute to it based on its behavior. On this basis, the agent can
select an action a that will lead the observer to infer the agent’s
true intention a � argmaxaP(ι � ι*|a). Similarly, an agent can
also select actions that will mislead the observer to infer a
particular false intention.

2.4 Computational Theory of Mind Model
Multiagent systems (MASs) represent one research field that aims
to introduce the concept of theory of mind to artificial agents.
Theory of mind ability enables agents to choose their actions
based on what another agent is going to do, resulting in better
performance in both cooperative and competitive situations
(Zettlemoyer et al., 2009; Raileanu et al., 2018).

One of the major challenges of inferring an other’s mind is
its multiply nested structure. Here, we formalize the nested
inference structure using belief-desire-intention logic (Cohen
and Levesque, 1990). Suppose that there are two agents, an
actor agent that performs actions, and an observer agent that
attempts to infer the actor’s intention based on its actions. Let
us call the latter a first-order inference and denote the inferred
intention ι1:

BEL observer INTEND actor ι1( )( ),

where (BEL i X) means agent i believes X, and (INTEND i ι)
means agent i intends to achieve ι. Actors can also have second-
order beliefs, that is, beliefs about the observer’s belief. For
example,

BEL actor BEL observer INTEND actor ι2( )( )( )

means that the actor believes that “the observer believes that the
actor intends to achieve ι2.” In this paper, a superscript k means
that the corresponding variable represents a k-th order belief. We
can consider an arbitrary order of inference by repeating this
manipulation.

Zettlemoyer et al. proposed sparse distributions over sequences
(SDS) filtering (Zettlemoyer et al., 2009), an algorithm to compute
the nested belief. SDS filtering can efficiently solve the problem of
sequential inference about nested beliefs by utilizing a sequence
distribution, which represents the probability distribution of an
agent’s belief about the environment and the other agents’ beliefs
given a set of possible sequences of states.

The computational theory-of-mind model has also been
studied in the field of cognitive science. Baker et al. proposed
the Bayesian theory of mind (BToM) model (Baker et al., 2017).
The BToM describes an observer agent’s first-order inference of
an actor agent’s mental state, such as a belief, desire, or intention,
while observing the actor agent’s behavior. Equation 1 describes
the inference model:

P(b1t+1,d1, ι1t+1|o: t+1)
∝ ∑

o1t+1 ,st+1 ,
st ,at ,b

1
t ,ι

1
t

P(ι1t+1|b1t+1,d1, ι1t ) ·P(b1t+1|b1t ,o1t+1) ·P(o1t+1|st+1) ·P(ot+1|st+1)

·P(st+1|st,at) ·P(at|b1t ,d1, ι1t ) ·P(b1t ,d1, ι1t |o: t), (1)

where a is an action performed by the actor, and belief bt is a
probability distribution representing the probability that the
environmental state is st given past observations o:t, i.e., bt(st)
= P(st|o:t). The observer attributes mental states to the actor at
time t, such as observation o1t , belief b

1
t , desire d

1, and intention ι1t
based on the observer’s observation history o:t from times t = 0, 1,
. . ., t. Experiments demonstrated that BToM accurately captures
human mental state judgments.
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The PublicSelf model extended BToM to an actor’s second-
order belief inference (Fukuchi et al., 2018). We can consider
PublicSelf as a computational model of an actor’s public
self-awareness. PublicSelf can be represented in the form
of a Bayesian network (Figure 3). From the actor’s
observations o:t, the probabilities with which belief b2t , desire
d2, and intention ι2t will be attributed to the actor can be
calculated:

P(b2t+1, d2, ι2t+1|o:t+1)∝ ∑
o2t+1 ,o

1
t+1 ,b

1
t+1 ,

st+1 ,st ,at ,
b2t ,ι

2
t ,b

1
t

P(ι2t+1|b2t+1, d2, ι2t )

· P(b2t+1|b2t , o2t+1) · P(o2t+1|b1t+1) · P(b1t+1|b1t , o1t+1)
· P(o1t+1|st+1) · P(ot+1|st+1) · P(st+1|st, at) · P(at|b2t , d2, ι2t )
·P(b2t , d2, ι2t |o: t). (2)

In PublicSelf, first, a belief about the environment is
constructed based on the actor’s own visual observations. That
is, an observation of an object ot increases the likelihood of the
actor’s belief of possible environment states s in which the
object exists at the observed position. Then, the observer’s
belief about the environment, denoted by b1, is considered,
i.e., b1t(st) � P(st|o1: t), where o1 is an inference concerning the
observer’s observations. From b1, one can then estimate o2 and b2,

the observation and belief attributed to the actor by the observer,
where b2t(st) � P(st|o2t ).

The important point of PublicSelf is that it distinguishes
mental states that are based on an actor agent’s actual
observations, first-level beliefs of an observer’s mental state,
and second-level beliefs attributed to the actor by the observer.
This ability allows PublicSelf to infer the intention the observer
attributes to the actor while considering information asymmetry.
A user study demonstrated that PublicSelf enables an IA to
accurately infer the mental state attributed to it by a human
observer in situations where partial observability causes
information asymmetry between an actor and its observer.
However, previous work on PublicSelf focused only on the
accuracy with which it infers the mental states attributed to an
IA by a human observer, and PublicSelf has not previously been
applied to generating an agent’s actions based on the inference.

2.5 Generating Motions That Convey
Intentions
Dragan et al. proposed a method for generating an artificial
agent’s behavior with awareness of a human observer’s theory
of mind, specifically, behaviors that communicate the agent’s
intention to a human observer. In particular, legible motion aims
to allow an observer to quickly and correctly infer an agent’s
intention (Dragan et al., 2015a). By means of legible motion, an
agent attempts to increase the probability that the intention an
observer attributes to it will match its true intention.

In previous studies on the generation of legible motion, it was
assumed that the environment is limited and that both the human
observer and the artificial agent share complete information
about the environment, such as what exists and where it
exists. However, most actual collaboration scenarios are
subject to uncertainty, and information asymmetry typically
exists between human and artificial agents, meaning that one
agent may possess information that the other does not. Different
observations result in different beliefs, which is important to
consider when modeling human theory of mind. Information
asymmetry is deliberately employed in daily social acts including
deception, and many related psychological experiments, such as
false-belief tasks, have been performed (Wimmer and Perner,
1983). Therefore, this paper claims that an artificial agent needs to
handle information asymmetry between the agent and a human
observer when generating publicly self-aware behavior.

To validate our claim, we compare PublicSelf legible motion that
considers information asymmetry with legible motion that does not
account for information asymmetry, which we call FalseProjective.

With FalseProjective, an actor does not distinguish its own
belief regarding the environment from an observer’s belief and
falsely identifies its own belief with the observer’s one.

The work by Nikolaidis et al. is the most closely related to this
paper’s concept (Nikolaidis et al., 2016). They proposed a method
for generating legible motion considering the effect of a human
observer’s viewpoint. However, their focus was on depth
uncertainty and occlusion of a robot arm and did not target
the differences in beliefs about the world state such as what is
where in the environment.

FIGURE 3 | A graphical representation of PublicSelf. PublicSelf
distinguishes mental states that are based on an actor agent’s actual
observations, first-level beliefs of an observer’s mental state, and second-level
beliefs attributed to the actor by the observer, which makes it possible to
consider information asymmetry.
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3 CONVEYING INTENTIONS BY MOTIONS
WITH AWARENESS OF INFORMATION
ASYMMETRY
The claim of this paper is that we need to consider information
asymmetry to generate motions that convey a certain intention to
other agents. To validate this claim, we develop a method for
generating such motions by extending the PublicSelf model and
compare the generated motions with those that do not consider
information asymmetry in an approach similar to that in
previous work.

A brief description of our method is as follows: By extracting
specific probabilities under the conditions of each action at in the
summation of Eq. 2, we can calculate P(b2, d2, ι2|o, a), the
probability that a human observer will attribute mental states
(b2, d2, ι2) to an actor given that actor’s specific action a. On this
basis, we can select the action that will most effectively express the
actor’s mental state:

a � argmaxaP(b2, d2, ι2|o, a). (3)
In particular, by marginalizing over b2 and d2, we can obtain

the action that will most effectively express the agent’s
intention, or the most legible action. Because PublicSelf
captures the differences in observations (o, o1, o2) and
beliefs (b, b1, b2) between an actor and an observer agent,
we can generate motions while considering information
asymmetry.

Algorithm 1 presents the procedure for generating legible
motion with PublicSelf. Here, π(a|s) is a probability distribution
of taking the actions a given a state s, which corresponds to a
typical formulation of an actor’s decision-making model in
reinforcement learning. We do not simply choose an action
based on Eq. 3. In other words, we do not adopt actions that
are unlikely to be chosen under the actor’s original policy.
Instead, we calculate the increase in the probability that an
observer will infer the actor’s true intention that is achieved
by changing the actor’s original action to the action identified by
PublicSelf as the most legible; we do not change the actor’s action
if the legible action does not increase the probability sufficiently
to balance the cost of taking that legible action. In the situation
presented in Figure 1, for example, the actor would perform quite
a wide turn and take a long time to achieve the original goal if all
actions were selected strictly in accordance with Eq. 3.

4 FETCHFRUIT TASK AND
IMPLEMENTATION

4.1 Environment of the FetchFruit Task
We developed the FetchFruit task in a simulated environment
(Figures 1, 2) and implemented our method of generating legible
motions for an IA in this simulated environment. The environment
is a square room containing an apple, a pear, an actor, and a human
observer. The initial positions of the actor and the observer are fixed.

The actor’s actions are driven by a policy for the retrieval of an
apple or a pear. Our method is independent of the
implementation of the policy model as long as the probability
of the actor taking each action can be calculated. In this paper, we
use the asynchronous advantage actor-critic (A3C) algorithm
(Mnih et al., 2016), which is one of the most representative
algorithms for DRL. Every 0.5 s, the actor selects an action from
the action space A, which is composed of three discrete actions:
accelerate forward, turn clockwise, and turn counterclockwise.

The environmental state st is composed of the locations of the
apple and pear, the area that is within the observer’s sight, and the
actor’s state, which includes the actor’s location, velocity, and
direction as well as the area within the actor’s sight. In this paper,
only the actor’s state changes over time.

The human observer does not move and observes the
environment from a fixed viewpoint. The observer can acquire
only information that is in his/her field of view. That is, the
observer can know where a fruit is only if s/he can see it. Similarly,
the actor’s location, velocity, and direction are provided when the
observer can see the actor, but none of the above is provided when
the actor is out of the observer’s field of view.

4.2 PublicSelf Model
Algorithm 2 shows how Eq. 2 is calculated in our
implementation. There are infinite possible environmental
states because st consists of continuous values and is subject to
uncertainty due to partial observability. We solve the problem by
sampling possible states to simplify the state space, which is
analogous to the sequential Monte Carlo method (Doucet et al.,
2001). We first randomly sample n states s0,0, s0,1, . . ., s0,n−1 from
among the possible states. The implementation of PublicSelf is
based on the SDS filtering concept (see Section 2.4). PublicSelf
includes four filters for inferring the beliefs and desires that the
observer will attribute to the actor:

Φ0
t(s:t) ∝ b0(s:t),

Φ1
t(s:t′ , s:t) ∝ ∑

b1t

b1t(s:t′ ) · δ(b1t , Bobs(s:t)),

Φ2
t(s:t′ , s:t) ∝ ∑

b2t

b2t(s:t′ ) · δ(b2t , Bact(s:t)),

Ψ2
t(d2, s:t) ∝ P(d2|s:t).

The delta function δ(α, β) returns a value of 1 when α = β and a
value of 0 otherwise. Bobs(s:t) and Bact(s:t) return the observer’s
and actor’s beliefs, respectively, given the history of the
environmental states. Here, for simplicity, we will suppose that
the transitioning of the environmental state is a Markov process
and s:t can be denoted as st. Φ0

t(st) denotes the actor’s belief

Algorithm 1 | Generating PublicSelf legible motion.

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 9 | Article 7838636

Fukuchi et al. Intention-Conveying Motions and Information Asymmetry

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


regarding the environment. Φ1
t(st′, st) is the probability that the

observer will believe that the environmental state is st′ when the
actual environmental state is st. Φ2

t(st′, st) is the probability that
the observer will infer that the actor believes that the
environmental state is st′ when the actual state is st. Ψ2

t(d2, st)
represents the probability with which desire d2 will be attributed
to the actor by the observer given state st. These filters are
initialized as uniform distributions.

Based on the actor’s observation ot, Φ0
t(st) is updated by

multiplying it by the observation probability P(ot|st) because P(st|
ot) ∝ P(st|ot−1) · P(ot|st). We can similarly update Φ1

t(st′, st) and
Φ2

t(st′, st) by estimating the actor’s and observer’s observations o1

and o2 under each st and multiplying them by the observation
probabilities P(o1t |st′) and P(o2t |st′):

Φ0
t(st) ← Φ0

t(st) · P(ot|st),
Φ1

t(st′, st) ← Φ1
t(st′, st) ·∑

o1t

P(o1t |st′) · δ(o1t , Oobs(st)),

Φ2
t(st′, st) ← Φ2

t(st′, st) ·∑
o2t

P(o2t |st′) · δ(o2t , Oact(st)),

where Oobs(st) and Oact(st) return the observer’s and actor’s
observations, respectively, under st.

During the update process, an s ∈ St may appear such that
∑b2b

2(s) � 0, which means that the observer no longer thinks
that the actor holds any belief about s at all. We resample St by
removing such states swith zero probability andmaking branches
of samples with high probability.

The actor’s state branches depending on the actor’s choice of
action. Let Satt+1 be a set of predicted environmental states to which
the actor’s action atwill lead from s ∈ St, and let St+1 be the union of
the states predicted under each action,⋃aS

a
t+1. The function Pred :

St × A → St+1 returns the states at time t + 1 to which the
environment transitions with each action from St. In this study, we
trained a model for Pred bymeans of supervised learning. The new
values of the filters Φt+1 are inherited from the previous values:

Φ0
t+1(Pred(st, a)) ← Φ0

t(st),
Φ1

t+1(Pred(st′, a′), Pred(st, a)) ← Φ1
t(st′, st) · δ(a′, a),

Φ2
t+1(Pred(st′, a′), Pred(st, a)) ← Φ2

t(st′, st) · δ(a′, a).
We assume that the actor can have only two intentions,

namely, ιa and ιp, which are the intention to retrieve an apple
and that to retrieve a pear, respectively. We also consider that the
desire to retrieve a fruit directly generates the intention to retrieve it,
that is, P(ι2 � ιa|d2 � da) � P(ι2 � ιp|d2 � d2p) � 1, where da and

dp are the utility functions when the actor’s target is an apple and a
pear, respectively. Then, P(a|s2, d2a, ι2a) simplifies to P(a|s2, d2a),
which can be estimated with a model-free RL algorithm.

Ψ2
t+1(d2, Pred(st, a)) ← Ψ2

t(st) · P(a|st, d2)
To generate legible motion, we need to determine P(ι2|a), the

probability that the observer will attribute an intention ι2 to the
actor given action a. In our implementation, we equate ι2 with d2

and calculate P(d2|a) instead of P(ι2|a). P(d2|a) can be obtained
from the four filters as follows:

P(d2|a)
� ∑

s∈St+1
Ψ2(s, d2) ∑

s′∈St+1
Φ2(s′, s) ∑

s″∈Sat+1

Φ1(s″, s′) ·Φ0(s″).

4.3 Generating FalseProjective Legible
Motion
Since the PublicSelf model infers the actor’s own belief b0,
PublicSelf can also be used to generate FalseProjective legible
motion. A filter Ψ0

t(s, d0), which represents the probability of an
actor’s own desire d0 estimated independently of the observer,
enables us to generate FalseProjective legible motion in a manner
similar to the generation of PublicSelf legible motion.

4.4 Generated Motion
Here, we present the motion generated in the example FetchFruit
scenarios. We consider five example scenarios: Center, Side-
Visible, Side-Invisible, Blind-Inside, and Blind-Outside. Table
?? summarizes the settings for these scenarios, which cover all
2 × 2 possibilities with regard to whether the observer can see the
actor’s target and/or the nontarget objects. In every scenario, the
target and nontarget objects are adjacent to each other. The actor
is assumed to observe the positions of both fruits from its initial
position; consequently, the actor does not need to explore the
environment but simply moves to its target. We generated three
types of motion in each of the example scenarios: the original
motion, the FalseProjective legible motion, and the PublicSelf
legible motion.

In the Center scenario (Figure 4), the apple and pear are
immediately in front of the observer. It is difficult to quickly infer
the actor’s intention from the original motion because the actor
first moves straight to the point between the apple and the pear
(Figure 4A), whereas the FalseProjective motion enables the
observer to infer the actor’s intention more quickly because of
the agent’s curvedmovement toward its actual target (Figure 4B).
The PublicSelf legible motion follows the same route as the
FalseProjective motion.

In the Side-Visible scenario (Figure 5), the human observer
can observe only the apple. With the original motion trajectory,
the actor moves directly to the apple. Because the observer cannot
see the pear next to the apple, the original motion presents much
less ambiguity than in the Center scenario. Here, PublicSelf
generates the same trajectory as that for the original motion.
The FalseProjective motion, on the other hand, follows a different
trajectory; the actor first moves forward toward the observer and

Algorithm 2 | Updating the PublicSelf model.
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then follows a curved trajectory toward the apple. This motion
would avoid ambiguity if the observer knew the location of the
pear; however, due to the observer’s limited view, this motion
may instead lead the observer to believe that the actor’s target is
behind him or her; thus, the actor’s intention is less clear in this
case than it would be if the actor moved directly to the apple.

Figure 6 shows the results in the Side-invisible scenario. With
the original motion trajectory, the actor first begins to move to the
space between the apple and pear and then shows a gently curved
motion. Early motion could mislead the observer into thinking

that the actor intends to retrieve the pear, whereas through the
PublicSelf legible motion, the actor can convey that the pear is less
likely to be its target by making a detour to avoid causing the
observer to misunderstand the actor’s intention. Here, the
PublicSelf legible motion is the same as the FalseProjective
motion.

In the two Blind scenarios (Figures 7, 8), the actor’s motion
does not convey any information to the observer, who does not
know the location of either the apple or the pear; therefore, the
FalseProjective motion merely introduces a detour and increases

FIGURE 4 |Motion in the Center scenario. Blue: Original. Orange: FalseProjective. Green: PublicSelf. FalseProjective and PublicSelf let the observer correctly infer
the actor’s target by showing the curved movement from the beginning. (A)Original motion. (B)FalseProjective/PublicSelf. (C)Bird’s-eye view.

FIGURE 5 |Motion in the Side-Visible scenario. FalseProjective shows a curvedmovement to avoid being considered that the actor intends to retrieve the pear, but
is less effective than the straightforward movement of original and PublicSelf due to the observer’s limited view. (A)Original motion/PublicSelf. (B)FalseProjective. (C)
Bird’s-eye view.

FIGURE 6 |Motion in the Side-Invisible scenario. FalseProjective and PublicSelf motion trajectories successfully avoid misleading the observer into considering that
the actor is moving toward the pear. (A)Original motion. (B)FalseProjective/PublicSelf. (C)Bird’s-eye view.
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the time required to retrieve the apple. By contrast, the PublicSelf
legible motion does not change the actor’s actions because
PublicSelf can infer that changing the motion would have no
effect on the observer’s inference.

5 EXPERIMENTS

5.1 Simulation Study
5.1.1 Overview
The simulation study aimed to investigate the scalability of
PublicSelf legible motions. We prepared additional FetchFruit
scenarios beyond the examples in Section 4.4, and compared the
legibility of the three motion types using artificial observers that
were trained to classify an actor’s intentions from observations of
its motion. We also analyzed the effects of information
asymmetry on generating legible motions to investigate
whether PublicSelf legible motion could effectively handle
information asymmetry.

5.1.2 Procedure
We built two FetchFruit datasets for 1) training the artificial
observers and 2) evaluating PublicSelf legible motion. Both are
composed of the captured motions of an actor agent from the
observer’s viewpoint and ground-truth labels of the object that
the actor intended to retrieve. An apple and a pear were randomly

spawned within the field of view of the actor agent, but they were
not necessarily within the observer’s field of view. The datasets do
not include conditions in which both an apple and a pear are in
the observer’s field of view because an observer cannot distinguish
an actor’s intention in such conditions. We prepared all three
motion patterns for each fruit’s position conditions. For the
training datasets, we used only trials in which all three types
of motions were completely identical to eliminate bias with regard
to the motion type; 1,847 conditions satisfied this requirement.
For the evaluation of PublicSelf, we excluded conditions in which
the three motion patterns were all identical to focus on the
differences between the motions. We acquired 695 conditions
for the evaluation dataset.

The artificial observers were deep-learning classification
models that were composed of convolutional layers, a long
short-term memory layer, and fully connected layers. They
were trained to infer whether the actor’s target was the apple
or pear based on sequences of captured images as a supervised
learning problem using the training dataset.

We used the average probability of the inference of five
classification models as the score for the legibility of each
trajectory. The interrater reliability of the classification models
was 0.936 (ICC(3, k)).

Depending on the trajectories, the lengths of different trials
could be different even when the initial positions were the same.
Therefore, to compare different motion types under the same

FIGURE 7 | Motion in the Blind-Inside scenario. Because the observer cannot see any target candidates, the detour of FalseProjective provides no information
about the actor’s target. (A)Original motion/PublicSelf. (B)FalseProjective. (C)Bird’s-eye view.

FIGURE 8 | Motion in the Blind-Outside scenario. (A)Original motion/PublicSelf. (B)FalseProjective. (C)Bird’s-eye view.
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condition, we aligned the lengths of all trials with the same initial
position by truncating them at the time when the shortest
trial ended.

5.1.3 Hypotheses
We expected that PublicSelf legible motions could adaptively
handle various scenarios and thus the artificial observers would
be able to infer the actor’s intentions more accurately from
PublicSelf than from other motion types:

H1 Legibility scores of PublicSelf are higher than those of the
other motions.

In particular, we expected that PublicSelf would show better
performance than FalseProjective in situations with information
asymmetry but not in symmetric situations if the differences in
observations and beliefs between the actor and the observer are a
key factor for generating legible motion in situations with
information asymmetry, and PublicSelf could successfully
capture it.

H2 Legibility scores of PublicSelf are higher than those of
FalseProjective in situations with information asymmetry but
show no differences in situations without information
asymmetry.

Here, in the FetchFruit task, information asymmetry refers to
the situation in which the observer does not know the locations of
both an apple and a pear while the actor does.

5.1.4 Results
R1 Figure 9 shows the averaged legibility scores for each motion
type. Overall, PublicSelf legible motion showed higher scores than
the other motions (3 ≤ t) except for time step t = 1, 2, where
original motion scored the highest. For statistical analysis, we
conducted Friedman test to compare the motion types for each
time step. Because multiple testing inflates the type I error rate, p
values were adjusted with the Holm-Sidak method. The results
showed statistical significances in motion type at 3 ≤ t ≤ 12 (p =
0.036 at t = 3 and p < 0.01 at 4 ≤ t). As post hoc analysis, we
conducted multiple comparisons among the three motions for
each time step using Wilcoxon signed-rank tests with the Holm-
Sidak adjustments. Figure 9 shows the results of the post hoc
comparisons. Both FalseProjective and PublicSelf recorded
significantly higher scores than the original motion at 4 ≤ t ≤
12, and the scores of PublicSelf were significantly higher than
those of FalseProjective at 6 ≤ t ≤ 10 and marginally significant at
t = 5. The maximum effect sizes of the Wilcoxon signed-rank test

r was 0.23 at t = 12 between original and FalseProjective, 0.29 at
t = 12 between original and PublicSelf, and 0.17 at t = 9 between
FalseProjective and PublicSelf. From these results, we considered
that we can accept H1.

R2We further investigated the effect of information asymmetry
on the results. Figures 10, 11 illustrate the differences in scores
between FalseProjective and PublicSelf in situations with and
without information asymmetry. In situations with information
asymmetry, PublicSelf recorded better scores than FalseProjective,
andWilcoxon signed-rank tests revealed that there were significant
differences in 5 ≤ t ≤ 10. However, there was little difference
in situations without information asymmetry. We found no
significant differences between the two motions. These results
support our hypothesis H2.

FIGURE 9 | Changes in scores for each motion. Left: Original, Center: FalseProjective, Right: PublicSelf. X marks indicate the mean values. The symbols represent
the results of multiple paired t-tests (**: p < 0.01, *: p < 0.05, †: p < 0.1). On average, PublicSelf scored higher than the other motions.

FIGURE 10 | Legibility scores of FalseProjective and PublicSelf
in situations with information asymmetry. Left: FalseProjective, Right:
PublicSelf.

FIGURE 11 | Legibility scores of FalseProjective and PublicSelf
in situations without information asymmetry. No significant difference was
found between FalseProjective and PublicSelf.
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5.1.5 Summary of Simulation Study
The first results (R1) demonstrated that PublicSelf scored higher
than the other two motions for the large dataset. This result
supports H1 and suggests that PublicSelf legible motion could
work robustly even in scenarios other than the examples. In
addition, the second results (R2) supported H2. We found
significant improvements from PublicSelf compared to
FalseProjective in situations with information asymmetry but
did not in situations without information asymmetry. From this
result, we conclude that information asymmetry is a critical factor
when conveying intentions with motions and that we can
successfully address it by explicitly introducing the differences
between the observations and beliefs of the actor and those of the
observer to the model.

5.2 User Study
5.2.1 Overview
In a user study, we investigated human inference of an actor
agent’s mind against the three motion types to verify that
PublicSelf legible motion is effective for human observers. We
compared the accuracy of the inferences among the three motion
types. We also looked into the participants’ psychological
perceptions of each motion type with a simple questionnaire.

5.2.2 Procedure
Twelve undergraduate and graduate students (6 female and 6
male; aged 20–24, M = 22.6, SD = 1.83) were recruited with
compensation of 750 JPY and asked to predict whether an actor
would reach an apple or a pear while observing its movement. A
user interface displayed the actor’s motion at ten frames per
second, and the participants observed the actor and pushed the F
key or the J key to, respectively, indicate whether they believed
that the actor intended to retrieve the apple or the pear. The
participants could also express that they could not determine
which fruit the actor intended to retrieve by pushing neither key.
The correspondence between the keys and the answers was
randomly chosen for each participant.

Before the experiment, we instructed the participants that
there would always be one apple and one pear at random
locations in the room, while the initial positions of the
observer and actor would be fixed. We also told them that the
goal of the actor would be determined randomly for each scenario
and that the actor might intend to retrieve either fruit.

After familiarization, the participants were presented with
nine scenarios for each motion type: original, FalseProjective,
and PublicSelf. The order effect was fully counterbalanced. These
nine scenarios included the example scenarios presented in
Figures 4–8, and the other scenarios were fake scenarios in
which the locations of the apple and pear were randomized.

We included these fake scenarios to decrease the possibility that
the participants would notice that they were being presented with
the same scenarios for each motion type.

We collected subjective measures by means of a simple
questionnaire after the inference session by asking three
Likert-scale questions:

Q1. It was easy to predict which fruit the agent was going to
retrieve (Legibility 1).

Q2. The agent moved in amanner that made its intention clear
(Legibility 2).

Q3. The agent’s behavior was consistent (Consistency).
Q1 and Q2 were questions adopted in a previous legible

motion study (Dragan et al., 2015a) to ask participants
whether they thought the actor’s motion was legible. We
added the question about the consistency of the agent’s
behavior to investigate the observers’ perceptions of the
unique behavior of FalseProjective legible motions in Side-
Visible because we hypothesized that FalseProjective’s
roundabout behavior would be perceived as inconstant from
the observer’s perspective.

5.2.3 Hypotheses
We investigated the results for the human inferences using two
metrics: rapidity and accuracy. Higher rapidity means that the
motion presents less ambiguity, thus the participants required less
time to infer the actor’s true intention. Higher accuracy means
that the motion resulted in fewer incorrect inferences.

Tables 1, 2 summarize our hypotheses on human inferences. In
the Center scenario, we hypothesized that FalseProjective and
PublicSelf legible motions will result in better performance in
the rapidity metrics because they present much less ambiguity
than original motion does. On the other hand, we felt that there
would be no difference in the accuracy metrics because none of the
motions would mislead observers to make wrong inferences. In the
Side-Visible scenario, we considered that FalseProjective, which
acted with extra consideration of the actor and the non-target
object, would be less rapid than the original and PublicSelf legible
motions, which showed straightforward movements to the actor’s
target object. In addition, we expected that FalseProjectivemotion’s
earlymovement wouldmislead the observers to think that the actor
was ignoring the target object and therefore would result in lower
accuracy. A similar hypothesis about the accuracy metrics was
formulated for Side-Invisible, in which the original motion could
lead to incorrect inferences. We also considered that
FalseProjective and PublicSelf legible motion would enable
observers to rapidly infer the actor’s correct intention by
exaggerating that the object in the actor’s view was not the target.

In terms of the subjective metrics, we expected that the
PublicSelf legible motion would earn the best legibility scores

TABLE 1 | Hypothses on the rapidity measure.

Original FalseProjective PublicSelf

Center 7 ✓ ✓
Side-Visible ✓ 7 ✓
Side-Invisible 7 ✓ ✓

TABLE 2 | Hypothses on the accuracy measure.

Original FalseProjective PublicSelf

Center ✓ ✓ ✓
Side-Visible ✓ 7 ✓
Side-Invisible 7 ✓ ✓
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among the three motion types. We assumed that original motion
would earn the worst legibility because of its ambiguous nature.
The FalseProjective legible motion was expected to be better than
the original motion from the perspective of ambiguity but worse
than the PublicSelf legible motion due to the unnecessary detours
in the Side-Invisible and Blind-Inside scenarios. We also
considered that FalseProjective legible motion would earn
worse consistency scores than the others because the detours
that mislead participants for wrong inferences could be perceived
as inconstant from the observer’s perspective. We did not expect
that participants would sense inconsistency in original motion
because it provided only ambiguity and did not mislead
observers.

5.2.4 Results
Figure 12 shows the results for the participants’ inferences in
the Center, Side-Visible, and Side-Invisible scenarios. Here, we
adopted the number of correct answers as the measure of
rapidity, and the number of wrong answers as the measure of
accuracy. Tables 3, 4 summarize the results for our
hypotheses.

Let us first focus on the rapidity measures. The results for the
Center scenario were consistent with our expectations. The
FalseProjective and PublicSelf legible motion trajectories could
lead the participants to rapidly comprehend the actor’s true
intention, while for the original motion, it was not until the

actor turned toward its target that the participants comprehended
the actor’s intention. The results in Side-Visible also supported
our hypothesis. The FalseProjective legible motion failed to let
participants infer the actor’s intention rapidly, while participants
identified correct intentions more rapidly when provided original
and PublicSelf motions. In Side-Invisible, PublicSelf allowed
more rapid inference than original, but unexpectedly,
FalseProjective could not improve rapidity. A possible
explanation of this result is that participants became careful

FIGURE 12 | Participants’ inference. The upper lines show the percentages of participants whose answers were correct and indicate the rapidity of their inference.
The lower shows incorrect cases, indicating the accuracy measure. PublicSelf enabled participants to both correctly and rapidly infer the actor’s intentions in the three
episodes.(A)Center. (B)Side-Visible. (C)Side-Invisible.

TABLE 3 | Results for the rapidity measure.

Original FalseProjective PublicSelf

Center 7 ✓ ✓
Side-Visible ✓ 7 ✓
Side-Invisible 7 7 ✓

TABLE 4 | Results for the accuracy measure.

Original FalseProjective PublicSelf

Center ✓ ✓ ✓
Side-Visible ✓ ✓ ✓
Side-Invisible 7 △ △
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and held their judgments while watching FalseProjective motions.
Two participants reported that they felt FalseProjective motions
were somehow roundabout, while no participant mentioned
PublicSelf detours. Such perception can delay a participant’s
presentation of their judgment, resulting in less rapidity. In
summary, 1) PublicSelf enabled human participants to rapidly
infer the actor’s intention by considering information asymmetry
between the actor and observer. 2) FalseProjective motion’s
roundabout behavior seemed to make participants delay
presentation of their judgments.

From the perspective of accuracy, few answers were wrong in
the Center and Side-Visible scenarios for each motion type, and
we find very few wrong answers for FalseProjective. This result is
against our prior hypothesis but supports suggestion 2) in the last
paragraph. That is, participants avoided wrong answers by
delaying presentation of their judgment. In Side-Invisible, the
original motion led to incorrect inferences, and all participants
presented wrong judgments in 2,000 ms. On the other hand, the
FalseProjective and PublicSelf motion trajectories did reduce the
number of incorrect answers compared to the original motion,
although some participants still had wrong answers. In summary,
3) FalseProjective and PublicSelf could reduce the number of
wrong inferences compared to the original motion. 4) In terms of
the accuracy of human observers’ inferences, we did not find
differences between FalseProjective and PublicSelf.

Figure 13 shows the results for the subjective measures. The
one-way repeated measures ANOVA showed that there were
significant differences between the motion types for Q1 (F(2, 22)
= 4.52, p < 0.05, η2 = 0.21) and Q2 (F(2, 22) = 4.83, p < 0.05, η2 =
0.26). For Q1 and Q2, post hoc Tukey tests revealed that the
FalseProjective and PublicSelf legible motion trajectories were
rated significantly higher than the original motion trajectories
(p < 0.05). Two participants reported that the original motion in
the Center scenario gave a strongly negative impression due to its
illegibility. Contrary to our expectations, we did not find a
significant difference between the FalseProjective and
PublicSelf trajectories. Although two participants provided
negative comments on FalseProjective’s roundabout behaviors
in the Side-Invisible and Blind scenarios, it seems that their effects
were limited compared to FalseProjective’s successful behavior in
Center and Side-Visible. Similarly, the results did not show that

the participants thought FalseProjective was inconsistent
compared to the other motions. As a result, the subjective
measures demonstrated participants’ positive perceptions
toward both FalseProjective and PublicSelf motions.

5.2.5 Summary of User Study
We found that legible motion generated with awareness of
information asymmetry between an actor and an observer
could successfully allow human observers to rapidly infer the
actor’s intention compared to original motion, which does not
consider human inference of the actor agent’s mind, and
FalseProjective legible motion, which ignores information
asymmetry. We did not find that FalseProjective motion
misled human observers to wrong inferences, but the results
suggest that FalseProjective’s roundabout behavior made the
participants more cautious, which delayed their judgments.

6 FUTURE WORK

The legible motion generated with PublicSelf has been shown to
be effective in the simple situations presented here, which
indicates that given awareness of the information asymmetry
between an artificial agent and a human observer, PublicSelf can
successfully convey an actor’s certain intention. However, further
evaluation is required to discuss the robustness of PublicSelf
legible motion. Although the simulation study over 2,500
conditions is complementary to the user study with a small
number of conditions, the data-driven artificial observers have
an inference structure different from people, which can yield
different results. For example, in our previous study (Fukuchi
et al., 2018), people occasionally doubted the assumption that the
actor intends to get either an apple or a pear and lost confidence
on their answers, which never happens in simulation. Moreover,
people can be affected by former trials while the artificial
observers does not change after training phase. In this paper,
we controlled such effect by randomizing the order of episodes
and providing a small number of episodes, but to build an agent
that can develop a long-term relationship with users, we need
continuous experiments with more episodes. The small number
and limited demographic variety of participants are also
limitaions of the user study.

In addition, extensions of our method will be required for
practical applications. One possible challenge is the calculations
in PublicSelf. In this paper, we assumed the observer to be doing
nothing other than observing the actor’s behavior. However, in
an actual human-agent cooperation scenario, the humans
involved also move, perform actions, and affect the
environment, thereby making predictions of human
observations and environmental transitions much more
difficult. Another problem is the assumption of initial
knowledge. The actor agent was assumed to always know the
locations of the apple and pear, but in actuality, the actor, as well
as the observer, will typically be subject to uncertainty. Although
PublicSelf theoretically should also work in such situations, the
strategy for exhibiting publicly self-aware behavior becomes
more complex. For example, the actor must judge whether

FIGURE 13 | Subjective measures. The error bars indicate standard
errors. Both FalseProjective and PublicSelf earned higher scores in the
legibility measures, but no statistical difference was found between
FalseProjective and PublicSelf.
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generating publicly self-aware behavior is possible in a given
situation. Placing obstacles in an actor’s path can highlight
interesing aspects of the strategy. It dramatically increases
the complexity of an observer’s expectations about the
environment or agents such as the area that an agent can
perceive or possible paths that an actor can choose. An actor
may need feedbacks to know such expectations or
communication to align them. Tuning the thresholds for
balancing the improvement of legibility and the pursuit of an
actor’s true goal (Algorithm 1) was done by hand in this paper.
However, it will be a problem because the best threshold can
differ depending on the situation or the importance of
conveying an intention against pursuing it. Reinforcement
learning can be a promising approach to enable an actor to
balance them automatically.

7 CONCLUSION

This paper focused on conveying an artificial agent’s certain
intentions by motions. The main claim of this paper was that it
is important to handle information asymmetry between an actor
and its observer. To formalize this idea, we developed a method for
generating motions that convey an agent’s intention with the
awareness of information asymmetry using our previously
proposed PublicSelf model. We conducted a simulation study
and a user study to validate our claim. In both experiments, we
focused on legible motion, which conveys an actor’s true intention
to its observer. We compared PublicSelf’s legible motion with
FalseProjective motion, which was generated without considering
information asymmetry in an approach similar to those taken in
previous studies. As a result, PublicSelf legible motion could
successfully allow observers to quickly infer an actor’s intentions
while FalseProjective sometimes compromised an observer’s

predictions of an actor’s intentions in situations with
information asymmetry. This result suggests that by considering
information asymmetry, an agent can more effectively convey
intentions with motions.
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