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This work addresses the problem of reference tracking in autonomously learning robots
with unknown, nonlinear dynamics. Existing solutions require model information or
extensive parameter tuning, and have rarely been validated in real-world experiments.
We propose a learning control scheme that learns to approximate the unknown dynamics
by a Gaussian Process (GP), which is used to optimize and apply a feedforward control
input on each trial. Unlike existing approaches, the proposed method neither requires
knowledge of the system states and their dynamics nor knowledge of an effective
feedback control structure. All algorithm parameters are chosen automatically, i.e. the
learning method works plug and play. The proposed method is validated in extensive
simulations and real-world experiments. In contrast to most existing work, we study
learning dynamics for more than one motion task as well as the robustness of performance
across a large range of learning parameters. The method’s plug and play applicability is
demonstrated by experiments with a balancing robot, in which the proposed method
rapidly learns to track the desired output. Due to its model-agnostic and plug and play
properties, the proposed method is expected to have high potential for application to a
large class of reference tracking problems in systems with unknown, nonlinear dynamics.

Keywords: autonomous systems, Gaussian processes (GP), iterative learning control, nonlinear systems,
reinforcement learning, robot learning

1 INTRODUCTION

Recent developments in robotic technology remarkably contribute to the quality of human live:
Hazardous tasks on rescue missions are handled by mobile robots that rifle through wreckage to
locate people in need of help (Murphy, 2004). Advances in medical robotics strive for minimizing
complications during surgery (Coulson et al., 2008). And the combination of exoskeletons and
control algorithms aims for a future in which people struck by disability can walk again (Harib et al.,
2018). The way to such accomplishments is paved by control techniques that enable robots to
precisely perform agile and dynamic motions.

For example, model predictive control can achieve accurate motion if a precise model of the
dynamics is available (Apgar et al., 2018; Hehn and D’Andrea, 2012; Feng et al., 2014). Requirements
regarding the model’s precision can be relaxed by robust or adaptive control techniques if the
uncertainties comply with preset assumptions (Dong and Kuhnert, 2005; Dydek et al., 2013; Golovin
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and Palis, 2019). Under similar conditions, Iterative Learning
Control (ILC) can overcome model uncertainties and unknown
disturbances by learning from errors of previous trials (Muller
et al., 2012; Seel et al., 2016). However, all of these control
approaches require system-specific prior knowledge to craft a
suited model, controller, or learning configuration. In contrast,
autonomy requires a methodology that self-reliantly learns a
solution to the control problem without requiring any system-
specific prior knowledge. In particular, Reinforcement
Learning (RL) techniques have been employed to solve
complex motion tasks without requiring any prior
information. However, RL solutions typically suffer from
two major drawbacks: First, the vast majority of the results
were obtained in simulated environments (Heess et al., 2017;
Tassa et al., 2018; Tsounis et al., 2020). Second, the few results
obtained in real-world environments required at least multiple
hours of learning, and the resulting controllers can be prone to
failure (Schuitema, 2012; Kalashnikov et al., 2018; Ha et al.,
2020; Zeng et al., 2020). The only exception from this statement
is given by RL methods that exploit task-specific knowledge in
the form of good initial policies and require 60–300 trials for
local policy optimization (Kober and Peters, 2008; Peters and
Schaal, 2008; Kormushev et al., 2013). A major breakthrough
with respect to robustness and data-efficiency was achieved by
hybrid techniques that learn parameter-free models, namely
Gaussian Processes (GP), but also employ system-specific
information such as knowledge of a state vector and an
effective state feedback structure (Deisenroth, 2010). In the
prominent example of PILCO (Deisenroth and Rasmussen,
2011a), experimental data are used to approximate the
unknown dynamics by a GP, which is used to determine the
optimal parameters of a state feedback controller. By this
approach, an inverted pendulum on a cart could be swung
up and stabilized in 12 s of system interaction (Deisenroth and
Rasmussen, 2011a). However, in the context of autonomous
motion learning, GP-based learning methods still suffer from
two drawbacks: First, previously proposed methods only solve
set-point stabilization tasks, which do not enable robots to
perform challenging, dynamic maneuvers. These require
reference tracking. Second, GP-based learning techniques
still require system-specific prior knowledge such as the
configuration of cost functions, a state vector that fully
describes the system dynamics, and a control structure that
is effective with respect to the problem at hand. Hence, the
methods are not suited for plug and play learning of highly
dynamic robotic motions.

The present contribution proposes a GP-based learning
method for autonomously solving highly dynamic reference
tracking tasks in systems with unknown, nonlinear, single-
input/single-output dynamics. The proposed method
autonomously determines all of its necessary parameters
such that plug and play application becomes feasible. The
method’s capability to rapidly learn solutions to various
reference tracking tasks while not requiring any system-
specific prior knowledge is validated by extensive
simulations and real-world experiments using a two-
wheeled inverted pendulum robot, see Figure 1.

1.1 Related Work
Learning for control has been considered in a large body of
literature that can be categorized by 1) the considered control
problem respectively control strategy, 2) necessary system-specific
prior knowledge, and 3) speed of learning. Reinforcement Learning
(RL) techniques typically do not require any model and only few
learning parameters such as step sizes or weights in cost functions.
Furthermore, general RL approaches such as genetic algorithms
(Moriarty and Miikkulainen, 2007) or policy gradient approaches
(Peters and Schaal, 2006) can be applied to arbitrary control
problems with unknown, nonlinear dynamics, but in turn
require comparatively long periods of learning (Deisenroth and
Rasmussen, 2011a). The speed of learning can be significantly
increased if the technique is targeted towards a specific control
problem and strategy such as stabilization by state feedback
control, see e.g. (Lewis and Vrabie, 2009; Lewis and
Vamvoudakis, 2011). A particularly data-efficient approach are
so called model-based techniques that model the unknown,
nonlinear dynamics by a GP, which is then used to design a
state feedback controller (Deisenroth, 2011). Some successful
applications to real-world examples are the control of a single
inverted pendulum (Deisenroth and Rasmussen, 2011a), double
inverted pendulum (Hesse et al., 2018), and robotic manipulator
(Deisenroth et al., 2012). The concept of GP-based learning control
has been further investigated in a variety of contributions. Stability
of feedback-controlled GPs has been analyzed (Vinogradska et al.,
2017, 2016), the problem of computational and data requirements
has been investigated (Nguyen-Tuong and Peters, 2008; Capone
et al., 2020), and solutions for safely improving an existing feedback
controller have been proposed (Berkenkamp and Schoellig, 2015;
Hewing et al., 2017; Umlauft et al., 2020). In a similar fashion, a
type of lazy learning methods constructs locally weighted models
based on experimental data to design feedback controllers for set-
point stabilization, see (Atkeson et al., 1997), but require problem-
specific knowledge like, e.g., the configuration of cost functions.
While all of these works consider the challenging problem of
efficiently learning control solutions for unknown, respectively
uncertain, nonlinear dynamics, they have focused on the problem
of set-point stabilization of systems, for which an effective feedback
control structure is known. If the control tasks consists in
performing a highly-dynamic motion, the achievable
performance of time-domain feedback control is inherently
limited by phenomena such as unknown delays, measurement
noise, or non-minimum phase dynamics. To overcome the
performance limitations of feedback control, a feedforward
control component is required, see Figure 2.

In contrast to GP-based learning techniques, Iterative Learning
Control (ILC) has focused on reference tracking tasks solved by
feedforward control (Ahn et al., 2007; Arimoto et al., 1984). Model-
based techniques like norm-optimal or H∞ ILC automatically
determine the learning parameters, but require a model of the
linear plant dynamics (Tayebi and Zaremba, 2002; Gunnarsson
andNorrlöf, 2001; Amann et al., 1996). Model-free approaches like
PD-ILC do not require a model but learning parameters that are
typically tuned in experiment (Bristow et al., 2005). The concepts of
PD-type (Shen et al., 2016) and norm-optimal (Lu et al., 2018) ILC
have been extended to the case of nonlinear dynamics, but assume
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the dynamics to be known. To relax requirements with respect to
available model information, recent research has focused on so
called data-driven ILC (DD-ILC) (Hou and Wang, 2013), which
does not require a model of the plant. In the case of nonlinear,
unknown dynamics, DD-ILC methods typically employ dynamic
linearization of the plant dynamics and estimate the gradient of
said linearization (Chi et al., 2015a,b; Ai et al., 2020). Alternatively,
neural networks (NN) have been employed in DD-ILC to model
the unknown dynamics (Ma et al., 2020; Yu et al., 2020). In a
similar fashion, (Petric et al., 2018) propose basis functions for
computing the input trajectory to track a desired reference,
whereby the weights of the basis functions are learned by
weighted linear regression, but the learning requires multiple
hand-tuned parameters including the number of basis functions,
step-sizes, and damping constants. In summary, while existing
DD-ILC and similar methods can solve reference tracking tasks
without requiring a plant model, some system-specific prior
knowledge is required as, e.g., the signs of the dynamic
linearization (Chi et al., 2015a,b; Ai et al., 2020), the layout of a
suited neural network (Ma et al., 2020; Yu et al., 2020), or weights
and step-sizes in update laws (Petric et al., 2018).

In summary, we conclude that reference tracking tasks in
systems with unknown, nonlinear dynamics can be solved by
DD-ILC methods, which, however, require system-specific prior
knowledge such that autonomous plug and play application is
generally not possible. In contrast, set-point stabilization problems
can be solved by GP-based learning methods that assume
comparatively little system-specific prior knowledge. However,
in the context of reference tracking tasks, GP-based learning
methods suffer from the inherent limitations of feedback
control. To the best of our knowledge, there exists no learning
method that autonomously solves reference tracking tasks for
unknown, nonlinear systems, employs feedforward control to
overcome the limitations of feedback control, and does not

require system-specific prior knowledge such that autonomous
plug and play application is enabled.

1.2 Contributions
In this contribution, a GP-based ILC scheme is proposed that
autonomously solves reference tracking tasks in systems with
unknown, nonlinear, single-input/single-output dynamics. The
proposed method includes a procedure to autonomously
determine necessary parameters and enable plug and play
application. Since the method directly models the input/output
dynamics, only the output variable, instead of an entire state
vector, has to be known and measured. To overcome the inherent
limitations of feedback control, the proposed method employs
feedforward control.

The proposed method is first validated by extensive
simulations of a two-wheeled inverted pendulum robot
(TWIPR), in which precise tracking is achieved after a small
number of trials. Unlike existing approaches, the proposed
method is not only verified for a single, well-chosen parameter
configuration but for a wide range of parameter combinations
such that robustness with respect to the autonomously
determined parameters is ensured. In contrast to a variety of
contributions, in which validation was restricted to simulated
environments, the proposed method’s capability of solving real-
world reference tracking tasks in a plug and play manor is
validated by experiments on a TWIPR, see Figure 1.

2 PROBLEM FORMULATION

Consider an autonomous system that can repeatedly attempt a
reference tracking task, as, e.g., a robot trying to perform a desired
maneuver. We assume that the system’s output, e.g., a joint angle
or position, can be influenced by an input signal, e.g., a motor
torque, and that the relation of these variables is deterministic,
causal, and time-invariant. However, we do not assume that a
model of the dynamics is available and we do assume the general
case of nonlinear dynamics.

Formally, consider a discrete-time, single-input, single-output,
repetitive system with a finite trial duration of N ∈ N samples,
and, on trial j ∈ N≥0 and sample n ∈ [1, N], output variable
yj(n) ∈ R, respectively input variable uj(n) ∈ R. The samples are
collected in the so called output trajectory yj ∈ RN, respectively
input trajectory uj ∈ RN, i.e., ∀j ∈ N≥0,

yj ≔ yj 1( ) yj 2( ) . . . yj N( )[ ]T (1)
uj ≔ uj 1( ) uj 2( ) . . . uj N( )[ ]T. (2)

Without loss of generality, the dynamics can be written in the
lifted form

∀j ∈ N≥0, yj � p uj( ), (3)
where p is the unknown, trial-invariant, nonlinear dynamics. The
task consists of updating the input uj from trial to trial such that
the output yj converges to the desired reference trajectory r ∈ RN.
Tracking performance is measured by the error trajectory

FIGURE 1 | (A) A robot with unknown dynamics is meant to track a
reference trajectory leading to a desired, highly dynamic motion. (B) On each
iteration, the proposed learning method determines, based on experimental
data, a Gaussian Process model, which is in turn used to design and
apply a feedforward control input.
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∀j ∈ N≥0, ej ≔ r − yj (4)
and root-mean-squared error (RMSE)

∀j ∈ N, eRMS
j ≔

������∑N
i�1

e[ ]2i
N

√√
. (5)

The problem considered in this work consists in developing a
learning method that updates the input trajectory on each trial
such that the RMSE decreases. Learning performance is judged
based on the progression of the RMSE through trials, and the
RMSE shall decline quickly and monotonically. The learning
method must not require any a priori model information on
the plant dynamics. To support plug and play application,
the method must autonomously determine necessary
parameters. Furthermore, the method must provide a fair
degree of robustness with respect to autonomously determined
parameters.

3 PROPOSED LEARNING METHOD

We address the proposed problem by an iterative learning
scheme, in which each iteration consists of three steps. First, a
parameter-free model of the plant dynamics is identified using the
experimental data of previous trials, see Section 3.1. To
accommodate for possibly nonlinear dynamics, a generic GP

model is employed, which predicts the output trajectory for a
given input trajectory. Second, the updated input trajectory is
determined by solving an optimal feedfoward control problem
based on the GP model, see Section 3.2. Third, the updated input
trajectory is applied to the plant and resulting data is in turn used
to refine the GP model. The structure of the proposed learning
scheme is depicted in Figure 3. To enable plug and play
application, the proposed method autonomously determines
necessary parameters, see Section 3.3.

3.1 Gaussian Process Model
We propose a Gaussian Process (GP) model, formally a function
m: RN ↦ RN, that predicts the plant’s output trajectory ŷ ∈ RN

based on an input trajectory u ∈ RN, where the trial index is
omitted for sake of notational simplicity.

Let f(v): RD ↦ R denote the unknown target function that
depends on the regression vector v ∈ RD. Predictions are based
on K ∈ N observations zk ∈ R stemming from:

∀k ∈ 1, K[ ], zk � f vk( ) + wk | wk ~ N 0, σ2w( ). (6)
The K observation pairs (zk, vk) are collected in the observation
training vector �z ∈ RK and regression training matrix
�V ∈ RD×K, i.e.,

�z ≔ z1 z2 . . . zK[ ]T, (7)
�V ≔ v1 v2 . . . vK[ ]. (8)

FIGURE 2 |Comparison of feedforward (A) and feedback learning control (C) for reference tracking with a system affected by input delay and measurement noise:
Feedforward, unlike feedback control, achieves almost perfect tracking (B). Hence, the learning method proposed in this work employs feedforward control.

FIGURE 3 |Overview of the proposed learning method: First a Gaussian Process (GP) model is identified, which in turn is used to determine an input trajectory via
optimization. The resulting input trajectory is applied in experiment yielding new data to refine the GP model.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 7935124

Meindl et al. Autonomous Motion Learning for Unknown Dynamics

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


The kernel function of two regression vectors v ∈ RD and
v̂ ∈ RD is denoted by kvv̂ ∈ R. The kernel matrix of two
regression matrices V ∈ RD×K, V̂ ∈ RD×K̂, which are assembled
according to (8), is denoted by KVV̂ ∈ RK×K̂ and has entries
[KVV̂]ij � kvi v̂j.

Given F ∈ N test regression vectors assembled in the
regression matrix V ∈ RD×F, the predicted mean μ ∈ RF and
covariance Σ ∈ RF×F are given by:

μ � KV�V K�V�V + σ2
wI[ ]−1�z (9)

Σ � KVV − KV�V K�V�V + σ2wI[ ]−1K�VV (10)
The general GP framework can be employed in different ways

to model the unknown dynamics (Eq. 3), where the model
characteristics are determined by the definition of observation
variable z, regression vector v, and kernel function k. First, we
exploit the dynamics’ time-invariance by employing a single GP
for predicting each output sample. Hence, the observation
variable and regression vector are time dependent, i.e., ∀n ∈
[1, N], zn, vn. Now, the model can be chosen to be one of three
types, namely finite impulse response (FIR), infinite impulse
response (IIR), or state space (SS), which are outlined in the
following. A FIR model is obtained when the regression vector
consists of the current and all previous input samples, i.e.,

∀n ∈ 1, N[ ], vn ≔ u n( ) . . . u 1( ) . . . 0 . . . 0[ ]T. (11)
An IIR model is obtained when the regression vector consists of
the current input and the P ∈ N previous output samples, i.e.,

∀n ∈ 1, N[ ], vn ≔ u n( ) y n − 1( ) . . . y n − P( ) 0 . . . 0[ ]T.
(12)

A SS model is obtained when the regression vector consists of the
current input and the previous state sample, which is denoted by
x ∈ RO, i.e.,

∀n ∈ 1, N[ ], vn ≔ u n( ) xT n − 1( )[ ]T. (13)
The SS model requires multiple GPs with each predicting the
progression of a single state variable (Deisenroth and Rasmussen,
2011b), which not only increases computational complexity, but also
requires measurements of the full state vector. Furthermore, IIR and
SS models require so called roll-out predictions, meaning that the
predictions of previous samples are required for predicting the
current sample (Deisenroth and Rasmussen, 2011b), and, hence,
the matrix KV�V has to be recomputed for each sample in the output
trajectory, which increases the model’s complexity and
computational demands. In contrast, the FIR model only requires
a single prediction according to Eq. 9 and only a single computation
of the matrix KV�V. We, hence, employ a FIR model, and the
regression vector is defined according to Eq. 11 in order to
reduce the computational demands of the learning method.

We further choose difference-predictions, i.e.,

∀n ∈ 1, N[ ], zn ≔ y n( ) − y n − 1( ) | y −1( ) � 0, (14)
which, compared to absolute predictions, increase the model’s
capability of extrapolation, see (Deisenroth and Rasmussen, 2011b).

As kernel function, we employ a squared-exponential
kernel (SEK)

k v, ~v( ) � exp − 1
2l2

v − ~v( )T v − ~v( )( ), (15)

where l ∈ R is a so called length scale.

Remark 1: SEKs allow a GP tomodel arbitrary target functions.
In the context of dynamic systems, a SEK leads to a nonlinear,
time-invariant (NTI) model. Using a squared kernel instead,
as e.g.,

kv~v ≔ vT~v, (16)
results in a linear, time-invariant (LTI) model. If the plant
dynamics are linear, one may employ a squared kernel to
decrease computational complexity in comparison to a NTImodel.

To predict an output trajectory ŷ for an arbitrary input
trajectory u, the latter is used to determine N regression
vectors vn, n ∈ [1, N], according to Eq. 11, which are
assembled in a regression matrix V according to Eq. 8. The
predicted mean vector μ follows from Eq. 9. By Eq. 14, μ contains
difference predictions such that the components of ŷ follow from
the cumulative sum of μ, i.e.

∀n ∈ 1, N[ ], ŷ[ ]n � ∑n
i�1

μ[ ]i. (17)

Mean and covariance predictions require the measurement
variance σ2w and length-scale l, which are so called hyper-
parameters. Typically, hyper-parameters are determined based
on training data, and numerous approaches have been detailed
in the literature (Rasmussen and Williams, 2005). We propose
selecting hyper-parameters by minimizing the so called leave-one-
out squared-mean-error (LOO-SME). For each of the k ∈ [1, K]
available observations zk, the remaining observation pairs are used
to predict zk. The LOO-SME follows from summing the squared
difference between the K leave-one-out predictions and respective
observations zk. Formally, the kth LOO-prediction μ̂k is given by

μ̂k � zk −
K�V�V + σ2

wI( )−1�z[ ]
k

K�V�V + σ2wI( )−1[ ]
kk

(18)

leading to the LOO-SME eLOO

eLOO � ∑K
k�1

zk − μ̂k( )2 (19)

and the hyper-parameters θ ≔ [σ2w l]T follow from

θ � argmin
~θ

eLOO. (20)

The optimization problem (Eq. 20) can be solved efficiently,
because analytic expressions of the gradients are available, see
(Rasmussen and Williams, 2005).

Remark 2: Determining hyper-parameters by LOO-SME
minimization is a rather uncommon choice because the

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 7935125

Meindl et al. Autonomous Motion Learning for Unknown Dynamics

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


variance of the predictions is not taken into account, see
(Rasmussen and Williams, 2005). However, we compared
LOO-SME minimization with the state-of-the-art method
evidence maximiziation, as described in Rasmussen and
Williams (2005), and we found that performance is
superior when using LOO-SME minimization. We assume
that this is due to the proposed learning scheme solely relying
on the GP’s mean prediction.

GP predictions are known to become computational expensive
with increasing amounts of training data (Snelson and
Ghahramani, 2006). To overcome this limitation, various data
selection approaches have been proposed to reduce training data
to a tractable amount, see, e.g., (Seeger et al., 2003; Snelson and
Ghahramani, 2006). In the present work, we simply propose
limiting the training data to the last H ∈ N trials.

3.2 Optimal Feedforward Control
After the GP model has been identified, it is used to determine an
input trajectory that leads to a smaller difference between
reference and output trajectory than the input trajectories of
previous trials. We propose an optimal control design, where the
input is chosen to minimize a quadratic cost criterion. The latter
not only considers the predicted tracking error, but also the
change of the input trajectory to avoid model inversion and,
hence, increase robustness with respect to the uncertainty of the
current trial’s model. Formally, the cost criterion is given by

∀j ∈ N≥0, J uj+1( ) � q r − ŷ uj+1( )����� �����22 + s uj+1 − uj

���� ����22, (21)
where q, s ∈ R>0 are scalar weights. On each trial, the updated
input trajectory uj+1 is chosen to minimize the cost criterion, i.e.,

∀j ∈ N≥0, uj+1 � argmin
~u

J uj+1( ) (22)

The optimization problem (Eq. 22) can be solved efficiently since
analytic expressions of the cost’s gradient with respect to the
input variable can be obtained (Deisenroth and Rasmussen,
2011a).

Remark 3: (Learning to Track Multiple Reference Trajectories).
In this paper, we have only considered learning to track a single
reference trajectory. This is particularly relevant to applications,
in which a robotic system has to repetitively solve a single
task, as for example in manufacturing. However, in some
applications, a robot has to track a variety of different
reference trajectories. In order to accelerate learning in such
multi-reference problems, the proposed method can be extended
to train a GP model based on all previous input/output
trajectory pairs, which is then used to determine an optimal
initial input trajectory u0 for any new reference.

3.3 Autonomous Parameterization
Ideally, autonomous learning methods should require neither a
priori model information nor manual tuning of parameters. In
contrary to previous contributions, the proposed method
automatically determines necessary parameters by the

procedure outlined in this section, and, as a result, plug and
play application is enabled, see Figure 4.

First, we consider the choice of the initial data set I that is used
to determine the first GP model and consists of I ∈ N trajectory
pairs (yi, ui), i.e.,

I ≔ yi, ui( ) | i ∈ 1, I[ ]{ }. (23)
For this purpose, we first determine the largest significant
frequency fO of the reference trajectory. The frequency fO is
used to design a zero-phase low-pass filter fLP. The low-pass
filter fLP is applied to a zero mean normal distribution with
covariance σ2I I, and the initial input trajectories are drawn from
the resulting distribution, i.e.,

∀i ∈ 1, I[ ], ui ~ f LP N 0, σ2
I I( )( ). (24)

The input variance σ2I is iteratively increased until an input
trajectory drawn according to Eq. 24 leads to an output
trajectory, whose maximum roughly equals the maximum of
the reference, i.e.,

u ~ f LP N 0, σ2I I( )( ) such that eI ≔ r‖ ‖∞ − p u( )��� ���
∞ ≈ 0.

(25)
In autonomous parameterization, the number of initial trials is
chosen as one, i.e., I = 1, to decrease the number of total trials
required for the learning. Note that a larger number of initial
trials reduces the variance of the convergence speed, i.e., in safety-
critical applications a larger number of initial trials may be
recommendable. However, using only one initial trial, the
proposed method already provides a remarkably safe
convergence, as will be demonstrated in Section 4.3. Hence,
the autonomous parameterization employs I = 1.

Once the parameters fO, σ2I , and I have been determined, the
initial trials are performed, and the weights q and s are chosen
based on the experimental data. The scalar q, which weights the
error trajectory, is without loss of generality chosen as unity, i.e.,

q � 1. (26)
The scalar s, which weighs the change in input variable, is chosen
as the average squared ratio of output to input maxima over the I
initial trials, i.e.,

s � 1
I
∑I
i�1

yi
���� ����2∞
ui‖ ‖2∞

. (27)

The purpose of the weight selection in Eqs 26–27 is to normalize
the cost function (Eq. 21), i.e., we would like the weighted change
in the input trajectory to have an impact on the cost function that
is equal to impact to the weighted next-trial error trajectory. To
achieve this normalization, we employ the squared ratio of the
initial trials’ input and output trajectories as described in Eq. 27.
Note that the normalization of the cost function only depends on
the ratio of the weights q and s but does not depend on their
absolute values, hence the choice q = 1 is arbitrary and without
loss of generality.

The procedure described in this section automatically
determines all the necessary parameters without requiring any

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 7935126

Meindl et al. Autonomous Motion Learning for Unknown Dynamics

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


a priori information on the plant. The following simulations are
going to demonstrate that the automatically determined
parameters lead to the desired learning performance and that
the method provides a fair degree of robustness with respect to
the automatically determined parameters.

Remark 4: Note that the proposed autonomous
parameterization method aims at successful learning for
unknown, nonlinear dynamics and different reference
trajectories without requiring any manual adjustment of the
parameters. Beyond this aspect, the method may be extended
to automatically determine parameters that yield optimal
performance in some to-be-defined sense.

4 VALIDATION BY SIMULATION

In this section, the proposed learning method is validated by
simulation of a two-wheeled inverted pendulum robot (TWIPR)
that is meant to perform challenging maneuvers, see Figure 5.
The TWIPR and automatic determination of learning parameters
are presented in Section 4.1. Afterwards, the learning
performance for three representative references is investigated
in Section 4.2, and the proposed method’s robustness with

respect to learning parameters is verified in Section 4.3.
Lastly, the effect of the weight s on the learning characteristics
is studied in Section 4.4.

4.1 The Learning Problem
Consider the TWIPR and three desired maneuvers depicted in
Figure 5. The corresponding pitch angle reference trajectories are
denoted by r1 ∈ R25, r2 ∈ R50, and r3 ∈ R71 and formal definitions
are given in Supplementary Appendix S1.2. The robot consists of a
pendulum body housing main electronics including a
microcomputer, inertial measurement units, motors and
accumulator. Wheels are mounted onto the motors such that the
robot can drive while balancing its chassis. In order to validate the
proposedmethod via simulations, a detailed, nonlinearmodel of the
TWIPR dynamics, see Kim and Kwon, 2015, is implemented.
However, the simulation model is completely unknown to the
learning method, which can only interact with the simulation by
applying an input trajectory and receiving the corresponding output
trajectory. Only an approximate, linear model of the dynamics at
the upright equilibrium has been obtained, which merely suffices to
design a stabilizing feedback controller, see Supplementary
Appendix S1.3. Due to the imprecise model, the feedback
controller can not track the references precisely, and we instead
employ the proposed learning method.

FIGURE 4 | Learning methods typically require some learning parameters. If no procedure for determining the parameters is provided, iterative tuning has to be
carried out manually in experiment. If a procedure for determining reliable parameters is available, plug and play application without iterative manual tuning is possible.

FIGURE 5 | The learning problem: A TWIPR (A) is meant to perform three challenging maneuvers (B). The corresponding pitch angle references (C) differ in length,
amplitude, and frequencies.
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Instead of a state vector, the learning method only requires
knowledge of the output variable, which is given by the pitch
angle, i.e.,

∀n ∈ N≥0, y n( ) ≔ Θ n( ). (28)
The input variable is given by the motor torque, ∀n ∈ [1, N],
uL(n) ∈ R.

Application of the proposed learning method requires
learning parameters that are automatically determined by the
procedure outlined in Section 3.3. We aim at tracking pitch
trajectories with a maximum of approximately 75° and spectral
content roughly below 5 Hz, i.e.,

r‖ ‖∞ ≈ 75 ° fO ≈ 5 Hz. (29)
Based on the frequency fO, a forward-backward, second order
Butterworth filter fLP is designed, which is used for drawing initial
input trajectories, see Eq. 24. To determine the input variance σ2I ,
the method automatically applies test input trajectories with

successively increasing amplitudes to the nonlinear system as
described in Section 3.3. A coarse grid
σ2I ∈ {0.005, 0.05, 1, 25, 225} is chosen, and the algorithm
obtains eI = [75, 75, 71, 20, −280] and thus selects σ2I � 25, see
Eq. 25 and Figure 6. Note that an even larger and finer grid as
well as more sophisticated selection methods could be used, but
this simple approach is sufficient because the proposed algorithm
exhibits great robustness with respect to the choice of the input
variance, as detailed in Section 4.3.

Next, the weights s and q of the cost function are determined.
According to Eq. 26, q = 1 is selected. To determine the weight s,
one initial trial with the previously determined input variance is
performed. As detailed in Figure 7, the value of s directly results
from Eq. 27 and the experimental data, i.e.,

s � yI
���� ����2∞
uI‖ ‖2∞

≈
0.42

42
� 10−2. (30)

To demonstrate the data-efficiency of the proposed learning
method, the training data are limited to the last five trials,
i.e., H = 5.

4.2 Learning Performance
First, learning performance for the desired references r1, r2, and r3 is
investigated. The parameters are chosen according to the previous
section and only one initial trial I = 1 is used. In Figure 8,
progressions of the output trajectories and error norms over the
trials are depicted. For all three references, the proposed method
achieves precise tracking after roughly 15 trials. The respective
RMSEs rapidly decline over the first trials and converge to a small
value close to zero. In case of the references r2 and r3, the RMSE
decreases monotonically. The simulations demonstrate that, by
using the automatically determined parameters, the proposed
method rapidly learns to track three different reference
trajectories without requiring any system-specific prior knowledge.

Lastly, Figure 8 also depicts the performance of a pure
reinforcement learning method, namely a policy-gradient
scheme, applied to the same learning task to serve as a
baseline for comparison. Details of the policy-gradient

0
0

FIGURE 6 | Determination of the input variance σ2I : Five different values, of which only three are presented, are used to draw random input trajectories that are
applied to the plant. The input variance σ2I � 1 hardly excites the system. In contrary, the input variance σ2I � 225 leads to an output trajectory that significantly exceeds
the reference’s maximum. The input variance σ2I � 25 is selected, because the corresponding output trajectory has the same order of magnitude as the reference.

FIGURE 7 |Determination of the weight s: Based on the maxima of input
and output trajectory in an initial trial, the weight s is chosen according to (27).
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algorithm are presented in Supplementary Appendix S1.4 and
(Peters and Schaal, 2006). Here, we see that the RMSE declines at
a rate that is by magnitudes slower compared to the learning
speed of the proposed method. These results are of little surprise
because the policy-gradient algorithm is a generic scheme that is
not tailored towards the specific task of learning an input
trajectory to track a desired reference trajectory. In contrast,
the proposed approach leverages the fact that in reference
tracking tasks the input/output dynamics of a nonlinear
system can be effectively modelled by a FIR GP-model.

4.3 Robustness Analysis
The previous simulations have validated the method’s capability of
achieving satisfying tracking performance when using the
automatically determined parameters. However, as discussed
above, presenting results for a single parameterization is of little
value. Instead, a learning control method should, ideally, not only
achieve satisfying performance for a single parameter configuration,
but for a wide parameter space. This is a crucial prerequisite for a
method that performs well on different systems for different
reference trajectories without any manual adjustments.

To address this question, the proposedmethod’s robustness with
respect to the automatically determined parameters is validated in
the following study, where we aim at tracking reference r1. We

consider two different scenarios, namely, the greedy case of one
initial trial, I = 1, and the conservative case of five initial trials, I = 5.
Recall the two parameters s and σ2I , which are the weight in the
optimal control problem and the initial input variance.

In the case of I = 1, the weight s is chosen from the set S1 that
consists of ten logarithmically spaced values and the initial input
variance σ2I is chosen from the set V1 that consists of ten
quadratically spaced values, i.e., for I = 1.

S1 � 10−1, . . . , 10−3{ } |S1| � 10, (31)
V1 � 32, . . . , 62{ } |V| � 10, (32)

s, σ2
I( ) ∈ P1 ≔ S1 × V1 |P1| � 100. (33)

For each of the 100 parameter pairs in P1, 50 runs are performed.
A run r consists of choosing a parameter pair (s, σ2I )k from PI,
producing I initial input trajectories, and executing the proposed
learning method for an additional 50 trials such that a
progression of the RMSE throughout trials is obtained, which
we denote by

eRMS
j,k,r , (34)

where j ∈ [0, I + N] is the trial index, k ∈ [1, 100] is the parameter
index, and r ∈ [1, 50] is the run index.

FIGURE 8 | The proposed learning method is employed to track the three desired references. Despite varying lengths, amplitudes and frequencies of the
references, satisfying tracking performance is achieved within 10–15 trials. The RMSE is monotonically declining for two of the references and converges to a small value
close to zero in all three scenarios. To provide an additional baseline, the dashed lines in the RMSE plot show the performance of a generic reinforcement learning
method, which learns magnitudes slower.
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The same procedure is applied in the case of I = 5, but the
parameters are chosen from larger sets, i.e., for I = 5.

S5 � 10−1, . . . , 10−4{ } |S5| � 10, (35)
V5 � 32, . . . , 72{ } |V5| � 10, (36)

s, σ2
I( ) ∈ P1 ≔ S1 × V5 |P1| � 100. (37)

To evaluate performance, the maximum emax
j ∈ R, 99th

percentile eP99j ∈ R, 75th percentile eP75j ∈ R, and median
emed
j ∈ R of the RMSE over parameters and runs are
considered. Formally,

∀j ∈ N≥0, emax
j ≔ max

k∈ 1,100[ ],r∈ 1,50[ ]
eRMSE
j,k,r( ), (38)

and eP99j , eP75j , emed
j are defined accordingly. Results depicted in

Figure 9 show that, for both I = 1 and I = 5, the maximum of the
RMSE converges to a value that is a roughly ten times smaller
than the initial value such that the method’s robustness is
validated. The RMSE’s 99th percentile is monotonically
decreasing, which implies that, besides single outliers, the
method achieves the desired form of convergence as defined in
Section 2. This means that the proposed method yields desirable
performance for a large range of values of the weight s and the
initial input variance σ2I . Furthermore, the RMSE’s median
declines below a value of five degrees within 25 trials meaning
that satisfying tracking performance is achieved. Lastly, it should
be noted that a wider parameter space could be considered in the
case of I = 5 meaning that, by increasing the amount of initial
data, the robustness of the method can be further increased. We,
hence, conclude that the simple approach proposed to
autonomously determine the weight s and the input variance
σ2I is more than sufficient and can be expected to suffice for more
complex systems.

4.4 Effects of Weights
The previous analysis has shown that themethod rapidly learns to
track a desired reference while also being robust with respect to
the automatically determined parameters. Next to the use case of
automatic plug and play application, the method can also be

tuned to meet the needs of a specific application. Hence, we next
investigate how the choice of the weight s affects learning
characteristics, namely the rate of convergence and robustness
with respect to initial data. For this purpose, we consider the
weights

s ∈ 100, 10−2, 10−4, 10−6{ }. (39)
The remaining learning parameters are chosen as one initial trial
I = 1 and an initial input variance σ2I � 25. For each weight, 50
runs with differing initial data are performed and performance is
judged based on the RMSE’s 90th percentile and median over the
50 runs.

Results depicted in Figure 10 show that for a comparatively
large value of s = 100, the RMSE monotonically declines at a slow
pace. Furthermore, there is hardly any difference betweenmedian

FIGURE 9 | The proposed learning method is run for a total of 5,000 different combinations of parameters and initial data. The RMSE’s maximum over all runs
converges to a value significantly lower than the initial. Hence, robust learning is guaranteed for a large parameter space.

FIGURE 10 | Investigation of the effect of weight s on the learning
characteristics: Large values of s lead to slow learning with small performance
variance. Increasing the value leads to faster learning but also a larger variance
in performance. Excessively small values of s may lead to a RMSE that
diverges for some initial data.
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and 90th percentile performance. Decreasing the value to s = 10–2

leads to a significant increase in speed of convergence. Speed of
median convergence can be further increased by lowering the
value of the weight to s = 10–4, which, however, comes at the price
of larger 90th percentile RMSEs, which imply an increase in
performance variance. If the weight is lowered to an even
smaller value, s = 10–6, median performance is not further
increased, but the 90th percentile RMSE does no longer
converge meaning that learning fails in a significant portion of
runs. In summary, the study indicates that the weight s may be
used to tune learning behavior, whereby comparatively large
values of s lead to slow learning that is robust with respect to
initial data. Decreasing the value of s can increase the speed of
learning, but may come at the price of sensitivity with respect to
initial data.

5 VALIDATION BY EXPERIMENT

To demonstrate the plug and play applicability of the proposed
learning method, it is applied to a real-world TWIPR, which has
been previously used to validate learning control methods
(Meindl et al., 2020). The robot is meant to dive beneath an
obstacle as depicted in Figure 2 with the corresponding reference
trajectory r ∈ R75, ∀n ∈ [1, 75],

r[ ]n �
80 sin πTn( ) n≤ 25

80 25< n≤ 50
80 sin πT n − 25( )( ) 50< n

⎧⎪⎨⎪⎩ °[ ]. (40)

First, the proposed method determines the learning parameters
yielding I = 1, σ2I � 2, and s = 0.1. The initial input trajectory is
drawn according to (Eq. 24) and applied to the TWIPR. The
corresponding output trajectory significantly differs from the
reference with a RMSE of roughly 75°, see Figure 11. From
here onwards, the method iteratively determines a GP model,
updates the input trajectory, and performs an experimental trial.
Once learning begins, the RMSE rapidly declines, the RMSE
drops below 20° on the fourth trial, and a RMSE of less than 10° is
reached on the eighth trial. Sufficiently precise tracking precision
for diving beneath the obstacle is achieved on the seventh trial

and a RMSE close to zero is achieved on the 10th trial. Note, that
the RMSE slightly increases on some of the trials, which is likely
due to the initial conditions varying from trial to trial.

In summary, the experiments validate that the proposed
method enables a real-world robot with unknown, nonlinear
dynamics to learn a challenging maneuver. Not only did learning
require a small number of trials (≈ 10) but the method could also
be applied in a plug and play manor without iterative tuning of
parameters.

6 DISCUSSION AND CONCLUSION

In this work, a GP-based learning control scheme has been
proposed that autonomously solves reference tracking tasks in
systems with unknown, nonlinear dynamics. On each iteration,
the unknown dynamics are approximated by a Gaussian Process
(GP), which is then used to determine and apply an optimal
feedforward control input. The method is completely plug and
play, since all required algorithms parameters are determined
automatically and manual tuning is avoided. The effectiveness
and efficiency of the method were demonstrated by simulations
and experiments using the example of a two-wheeled inverted
pendulum robot that rapidly learns to perform several
challenging maneuvers without any manual tuning or system-
specific prior knowledge.

In contrast to previous GP-based learning control approaches,
the proposed method overcomes the inherent limitations of time-
domain feedback control; it neither assumes knowledge of an
effective feedback control structure, nor does it assume the entire
state vector to be known. Instead, the proposed method directly
adjusts the input based on the measured output. It is therefore as
model-agnostic and independent of system-specific prior
knowledge as pure reinforcement learning schemes.

While reinforcement learning approaches typically require
hundreds of trials for convergence and are therefore unsuitable
for experimental validation, the proposed learning control
method solves reference tracking problems in a small two-digit
number of trials and was successfully validated in real-world
experiments.

FIGURE 11 | Experimental results of the TWIPR learning to dive beneath an obstacle. Starting from an initial RMSE of roughly 75°, the tracking error rapidly declines
over the following trials and sufficiently precise tracking for diving beneath the obstacle is achieved on the seventh trial.
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While the vast majority of previous contributions either
validate methods only in simulations or provide only a single
results for one carefully chosen parameterization and one specific
motion, the present validation has proven effectiveness of the
proposed method for several different motions and a large range
of algorithm parameterizations. We thereby demonstrated
robustness with respect to the automatically determined
parameters, and we further investigated the effect of the
learning weights on the trade-off between speed of learning
and robustness.

We believe that the proposed method is highly suitable for use
in kinematic systems that must perform challenging, highly
dynamic maneuvers. Beyond the use case of rigid robotics, we
expect the proposed method to have a major impact on the
development of soft robotics, exoskeletons, and neuroprosthetics,
and will therefore contribute to the evolution of autonomous
robotic systems that rapidly learn to perform complex, dynamic
motions under unknown conditions.

Despite these achievements, the proposed method is subject to
remaining limitations. First, only learning to track a single
reference trajectory was considered, and future research is
going to extend the method to multi-reference tracking tasks.
This can either be achieved by the concept outlined in Remark 3
or by combining the proposed method with model-free feeback
controller learning to handle trial-varying references and
disturbances. Second, the proposed method requires a feasible
reference trajectory which might not be directly available in some
applications. If the reference is only specified at a subset of the
trial’s samples, the proposed method might be extended by well-
established P2P-ILC concepts, see (Freeman and Tan, 2013;
Janssens et al., 2013; Huo et al., 2020). And in cases in which
the motion task is formulated only via goal states and constraints,
a prior planning step might be required. Third, future research is
going to extend the method to be applicable to multi-input/multi-
output systems by implementing multiple GP models with each
predicting the progression of one of the respective output

variables. This may require adjustments like, e.g., sparse GP
models, see (Rasmussen and Williams, 2005), in order to
reduce the computational demands to a tractable amount.
Fourth, the proposed method was validated on one real-world
application, and future research will be concerned with applying
the method to other, complex real-world applications.
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