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This paper offers a new hybrid probably approximately correct (PAC) reinforcement learning
(RL) algorithm for Markov decision processes (MDPs) that intelligently maintains favorable
features of both model-based and model-free methodologies. The designed algorithm,
referred to as the Dyna-Delayed Q-learning (DDQ) algorithm, combines model-free Delayed
Q-learning and model-based R-max algorithms while outperforming both in most cases.
The paper includes a PAC analysis of the DDQ algorithm and a derivation of its sample
complexity. Numerical results are provided to support the claim regarding the new
algorithm’s sample efficiency compared to its parents as well as the best known PAC

model-free and model-based algorithms in application. A real-world experimental
implementation of DDQ in the context of pediatric motor rehabilitation facilitated by
infant-robot interaction highlights the potential benefits of the reported method.
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1 INTRODUCTION

While several reinforcement learning (RL) algorithms can apply to a dynamical system modeled as a
Markov decision process (MDP), few are probably approximately correct (PAC)—meaning able to
guarantee how soon the algorithm will converge to a near-optimal policy. Existing PAC MDP

algorithms can be broadly divided into two groups: model-based algorithms like (Brafman and
Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and Littman, 2008; Szita and Szepesvári, 2010;
Strehl et al., 2012; Lattimore and Hutter, 2014; Ortner, 2020), and model-free Delayed Q-learning
algorithms (Strehl et al., 2006; Jin et al., 2018; Dong et al., 2019). Each group has its advantages and
disadvantages. The goal here is to capture the advantages of both groups, while preserving PAC

properties.
The property of an RL to have bounded regret is tightly closed to probable approximate

correctness in the sense that it also provides some type of theoretical performance guarantee
(Jin et al., 2018). RL algorithms with bounded regret place a bound on the overall loss during the
learning process, contrasting themselves to the case when the optimal policy is adopted throughout
the whole process. Similar to PAC RL algorithms, existing RL algorithms with bounded regret are either
model-based (Auer and Ortner, 2005; Ortner and Auer, 2007; Jaksch et al., 2010; Azar et al., 2017) or
model-free (Jin et al., 2018), with none that are able to capture advantages of both groups.
Interestingly, while all PAC RL algorithms also have bounded regret, the inverse is not always true
(Jin et al., 2018).

Model-free RL is a powerful approach for learning complex tasks. For many real-world learning
problems, however, the approach is taxing in terms of the size of the necessary body of data—what is
more formally referred to as its sample complexity. The reason is that model-free RL ignores rich
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information from state transitions and only relies on the observed
rewards for learning the optimal policy (Pong et al., 2018). A
popular model-free PAC RL MDP algorithm is known as Delayed
Q-learning (Strehl et al., 2006). The known upper-bound on the
sample complexity of Delayed Q-learning suggests that it
outperforms model-based alternatives only when the state-
space size of the MDP is relatively large (Strehl et al., 2009).

Model-based RL, on the other hand, utilizes all information
from state transitions to learn a model, and then uses that model
to compute an optimal policy. The sample complexity of model-
based RL algorithms are typically lower than that of model-free
ones (Nagabandi et al., 2018); the trade-off comes in the form of
computational effort and possible bias (Pong et al., 2018). A
popular model-based PAC RL MDP algorithm is R-max (Brafman
and Tennenholtz, 2002). The derived upper-bound for the sample
complexity of the R-max algorithm (Kakade, 2003) suggests that
this model-based algorithm shines from the viewpoint of sample
efficiency when the size of the state/action space is relatively
small. This efficiency assessment can typically be generalized to
most model-based algorithms. Overall, R-max and Delayed
Q-learning are incomparable in terms of their bound on the
sample complexity. For instance, for the same sample size, R-max
is bound to return a policy of higher accuracy compared to
Delayed Q-learning, while the latter will converge much faster on
problems with large state spaces.

Typically, model-free algorithms circumvent the model
learning stage of the solution process, a move that by itself
reduces complexity in problems of large size. In many
applications, however, model learning is not the main
complexity bottleneck. Neurophysiologically-inspired
hypotheses (Lee et al., 2014) have suggested that the brain
approach toward complex learning tasks can be model-free
(trial and error) or model-based (deliberate planning and
computation) or even a combination of both, depending on
the amount and reliability of the available information. This
intelligent combination is postulated to contribute to making the
process efficient and fast. The design of the PAC MDP algorithm
presented in this paper is motivated by such observations. Rather
than strictly following one of the two prevailing directions, it
orchestrates a marriage of a model-free (Delayed Q-learning)
with a model-based (R-max) PAC algorithm, in order to give rise
to a new PAC algorithm (Dyna-Delayed Q-learning (DDQ)) that
combines the advantages of both.

The search for a connection between model-free and model-
based RL algorithms begins with the Dyna-Q algorithm (Sutton,
1991), in which synthetic generated experiences based on the
learned model are used to expedite Q-learning. Some other
examples that continued along this thread of research are
partial model back propagation (Heess et al., 2015); training a
goal condition Q function (Parr et al., 2008; Sutton et al., 2011;
Schaul et al., 2015; Andrychowicz et al., 2017); integrating an LQR-
based algorithm into a model-free framework of path integral
policy improvement (Chebotar et al., 2017); and analogies of
model-based solutions for deriving adaptive model-free control
law (Tutsoy et al., 2021). The recently introduced Temporal
Difference Model (TDM) provides a smooth (er) transition
from model-free to model-based, during the learning process

(Pong et al., 2018). What is still missing in the literature, though,
is a PAC combination of model-free and model-based frameworks.

In this paper, the idea behind Dyna-Q is leveraged to combine
two popular PAC algorithms, one model-free and one model-
based, into a new one named DDQ, which is not only PAC like its
parents, but also inherits the best of both worlds: it will
intelligently behave more like a model-free algorithm on large
problems, and operate more like a model-based algorithm on
problems that require high accuracy, being content with the
smallest among the sample sizes required by its parents.
Specifically, the sample complexity of DDQ, in the worst case,
matches the minimum bound between that of R-max and
Delayed Q-learning, and often outperforms both. Note that
the DDQ algorithm is purely online and does not assume access
to a generative model like in (Azar et al., 2013). While the
provable worst case upper bound on the sample complexity of
DDQ algorithm is higher than the best known model-based (Szita
and Szepesvári, 2010) and model-free (Jin et al., 2018; Dong et al.,
2019) algorithms, we can demonstrate (see Section 5) that the
hybrid nature allows for superior performance of the DDQ

algorithm in applications. The availability of a hybrid PAC

algorithm like DDQ in hand obviates the choice between a
model-free and a model-based approach.

The approach in this paper falls under the general category of
tabular reinforcement learning, which basically encompasses
problems where the state-space can admit a tabular
representation. Outside this framework, namely in non-tabular
reinforcement learning, one of the key advantages is the ability to
handle really large state-spaces (Bellemare et al., 2016;
Hollenstein et al., 2019), but this is not the particular focus of
the approach here. Moreover, the emphasis here is on learning in
MDPs with unknown but constant parameters (transition
probabilities and/or reward function). This is also distinct
from another thread of research that addresses uncertainty
and robustness in MDPs whose parameters are randomly (or
even adversely) selected from a set and can vary over the
instances when the same state-action pair is encountered (Lim
et al., 2013).

Our own motivation for developing of this new breed of RL

algorithms comes from application problems in early pediatric
motor rehabilitation, where robots can be used as smart toys to
socially interact and engage with infants in play-based activity
that involves gross motor activity. In this setting, MDP models can
be constructed to abstractly capture the dynamics of the social
interaction between infant and robot, and RL algorithms can guide
the behavior of the robot as it interacts with the infant in order to
achieve the maximum possible rehabilitation outcome—the latter
possibly quantified by the overall length of infant displacement,
or the frequency of infant motor transitions. Some early attempts
at modeling such instances of human-robot interaction (HRI) did
not result in models of particularly large state and action spaces,
but were particularly complicated by the absence of sufficient data
sets for learning (Zehfroosh et al., 2017; Zehfroosh et al., 2018).
This is because every child is different, and the exposure of each
particular infant to the smart robotic toys (during which HRI data
can be collected) is usually limited to a few hours per month.
There is a need, therefore, for reinforcement learning approaches
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that can maintain (or even guarantee) efficiency and accuracy
even when the learning set is particularly small.

The paper starts with some technical preliminaries in Section
2. This section introduces the required properties of a PAC RL

algorithm in the form of a well-known theorem. The DDQ

algorithm is introduced in Section 3, with particular emphasis
given on its update mechanism. Section 4 presents the
mathematical analysis that leads the establishment of the
algorithm’s PAC properties, and the analytic derivation of its
sample complexity. Finally, Section 5 offers numerical data to
support the theoretical sample complexity claims. The data
indicate that DDQ outperforms its parent algorithms as well as
the state-of-the-art model-base and model-free algorithms in
terms of the required samples to learn near-optimal policy.
Experimental results from application of DDQ in the context of
early pediatric motor rehabilitation suggest the algorithm’s
efficacy and its potential as part of a child-robot interface
mechanism that involves autonomous and adaptive robot
decision-making. To enhance this paper’s readability, the
proofs of most of the technical lemmas supporting the proof
of our main result are moved to the paper’s Appendix.

2 TECHNICAL PRELIMINARIES

A finite MDP M is a tuple {S, A, R, T, γ} with elements

S a finite set of states
A a finite set of actions
R: S × A → [0, 1] the reward from executing a at s
T: S × A × S → [0, 1] the transition probabilities
γ ∈ [0, 1) the discount factor

A policy π is a mapping π: S→ A that selects an action a to be
executed at state s. A policy is optimal if it maximizes the expected
sum of discounted rewards; if t indexes the current time step and
at, st denote current action and state, respectively, then this
expected sum is written EM ∑∞

t�0γtR(st, at){ }. The discount
factor γ here reflects the preference of immediate rewards over
future ones. The value of state s under policy π in MDP M is
defined as

vπM(s) � EM R s, π(s)( ) +∑∞
t�1

γtR st, π(st)( )⎧⎨⎩ ⎫⎬⎭
Note that an upper bound for the value at any state is

vmax � 1
1−γ. Similarly defined is the value of state-action pair (s,

a) under policy π:

Qπ
M(s, a) � EM R(s, a) +∑∞

t�1
γtR st, π(st)( )⎧⎨⎩ ⎫⎬⎭ (1)

Every MDP M has at least one optimal policy π* that results in
an optimal value (or state-action value) assignment at all states;
the latter is denoted vpM(s) (or Qp

M(s, a), respectively).
The standard approach to finding the optimal values is

through the search for a fix point of the Bellman equation

vpM(s) � max
a

R(s, a) + γ∑
s′
T(s, s′, a)vpM(s′)

⎧⎨⎩ ⎫⎬⎭
which, after substituting Vp

M(s′) � maxaQp
M(s′, a), can

equivalently be written in terms of state-action values

Qp
M(s, a) � R(s, a) + γ∑

s′
T(s, s′, a)vpM(s′)

Reinforcement learning (RL) is a procedure to obtain an
optimal policy in an MDP, when the actual transition
probabilities and/or reward function are not known. The
procedure involves exploration of the MDP model. An RL

algorithm usually maintains a table of state-action pair value
estimates Q (s, a) that are updated based on the exploration data.
We denoteQt (s, a) the currently stored value for state-action pair
(s, a) at timestep t during the execution of an RL algorithm.
Consequently, vt(s) = maxaQt (s, a). An RL algorithm is greedy if it
at any timestep t, it always executes action at = argmaxa∈AQt (st,
a). The policy in force at time step t is similarly denoted πt. In
what follows, we denote |S| the cardinality of a set S.

Reinforcement learning algorithms have been classified as
model-based or model-free. Although the characterization is
debatable, what is meant by calling an RL algorithm “model-
based,” is that T and/or R are estimated based on online
observations (exploration data), and the resulting estimated
model subsequently informs the computation of the optimal
policy. A model-free RL algorithm, on the other hand, would
skip the construction of an estimated MDP model, and search
directly for an optimal policy over the policy space. An RL

algorithm is expected to converge to the optimal policy,
practically reporting a near-optimal one at termination.

Probably approximately correct (PAC) analysis of RL algorithms
deals with the question of how fast an RL algorithm converges to a
near-optimal policy. An RL algorithm is PAC if there exists a
probabilistic bound on the number of exploration steps that the
algorithm can take before converging to a near-optimal policy.

Definition 1. Consider that an RL algorithm A is executing on
MDP M. Let st be the visited state at time step t andAt denotes the
(non-stationary) policy that the A executes at t. For a given ϵ > 0
and δ > 0, A is a pac RL algorithm if there is an N > 0 such that
with probability at least 1 − δ and for all but N time steps,

vAt
M(st)≥ vpM(st) − ϵ (2)

Eq. 2 is known as the ϵ-optimality condition and N as the
sample complexity of A, which is a function of (|S|, |A|, 1ϵ, 1δ, 1

1−γ).

Definition 2. ConsiderMDPM = {S,A, R, T, γ}which at time t has a
set of state-action value estimates Qt(s, a), and let Kt ⊆ S × A be a set
of state-action pairs labeled known. The known state-action MDP

MKt � S ∪ {zs,a|(s, a) ∉ Kt}, A, TKt, RKt, γ{ }
is anMDP derived fromM and Kt by defining new states zs,a for each
unknown state-action pair (s, a)∉Kt, with self-loops for all actions,
i.e., TKt(zs,a, ·, zs,a) � 1. For all (s, a) ∈ Kt, it is RKt(s, a) � R(s, a)
and TKt(s, a, ·) � T(s, a, ·). When an unknown state-action pair
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(s, a)∉Kt is experienced, RKt(s, a) � Qt(s, a)(1 − γ) and the model
jumps to zs,a with TKt(s, a, zs,a) � 1; subsequently,
RKt(zs,a, ·) � Qt(s, a)(1 − γ).

Let Kt be set of current known state-action pairs of an RL

algorithm A at time t, and allow Kt to be arbitrarily defined as
long as it depends only on the history of exploration data up to t.
Any (s, a)∉Kt experienced at time step t marks an escape event.

Theorem 1. ((Strehl et al., 2009)). Let A be a greedy RL algorithm
for an arbitrary MDP M, and let Kt be the set of current known
state-action pairs, defined based only on the history of the
exploration data up to timestep t. Assume that Kt = Kt+1 unless
an update to some state-action value occurs or an escape event
occurs at timestep t, and that Qt(s, a) ≤ vmax for all (s, a) and t. Let
MKt be the known state-action MDP at timestep t and πt(s) =
argmaxaQt(s, a) denote the greedy policy thatA executes. Suppose
now that for any positive constant ϵ and δ, the following conditions
hold with probability at least 1 − δ for all s, a and t:
optimism: vt(s)≥ vpM(s) − ϵ
accuracy: vt(s) − vπtMKt

(s)≤ ϵ
complexity: sum of number of timesteps with Q-value updates plus
number of timesteps with escape events is bounded by ζ(ϵ, δ) > 0.
Then, executing algorithmA on any MDPMwill result in following
a 4ϵ-optimal policy on all but

O ζ(ϵ, δ)
ϵ(1 − γ)2 ln(1δ) ln( 1

ϵ(1 − γ))( ) ≃ O ζ(ϵ, δ)
ϵ(1 − γ)2( ) (3)

timesteps, with probability at least 1 − 2δ.

3 DDQ ALGORITHM

This section presents Algorithm 1, the one we call DDQ and the
main contribution of this paper. DDQ integrates elements of
R-max and Delayed Q-learning, while preserving the
implementation advantages of both.

Algorithm 1 consists of four main sections: 1) In lines
1–12, the internal variables of the algorithm are initialized; 2)
In lines 13–19, an action is greedily selected in the current
state and the consequent immediate reward and new state are
observed and recorded; 3) The model-free part of the
algorithm is presented in lines 20–37 that resembles the
Delayed Q-learning algorithm (Strehl et al., 2006); 4) Lines
38–56 represent the model-based part of the algorithm that is
similar to R-max algorithm (Brafman and Tennenholtz,
2002) with a modified update mechanism which is needed
for preserving the PAC property of the overall hybrid
algorithm.

We refer to the assignment in line 31 of Algorithm 1 as a type-1
update (model-free update), and to the one on line 52 as a type-2
update (model-based update). The latter offers a way for new
model-related information to be injected into the model-free
learning process. Type-1 updates use the m1 most recent
experiences (occurances) of a state-action pair (s, a) to update
that pair’s value, while a type-2 update is realized through a value
iteration algorithm (lines 43 − 54) and applies to state-action

pairs experienced at least m2 times. The outcome at timestep t of
the value iteration for a type-2 update is denoted Qvl

t (s, a). The
value iteration is set to run for ln(1/(ϵ2(1−γ)))(1−γ) iterations; parameter ϵ2
regulates the desired accuracy on the resulting estimate (Lemma
5). A type-1 update is successful only if the condition on line 30 of
the algorithm is satisfied, and this condition ensures that the type-
1 update necessarily decreases the value estimate by at least ϵ1 =
3ϵ2. Similarly, a type-2 update is successful only if the condition
on line 51 of the algorithm holds. The DDQ algorithm maintains
the following internal variables:

• l (s, a): the number of samples gathered for the update type-
1 of Q (s, a) once l (s, a) = m1.

• U (s, a): the running sum of target values used for a type-1
update ofQ (s, a), once enough samples have been gathered.

• b (s, a): the timestep at which the most recent or ongoing
collection of m1 (s, a) experiences has started.

• learn(s, a): a Boolean flag that indicates whether or not
samples are being gathered for type-1 update ofQ (s, a). The
flag is set to true initially, and is reset to true whenever some
Q-value is updated. It flips to false when no updates to any
Q-values occurs within a time window of m1 experiences of
(s, a) in which attempted updates type-1 of Qi (s, a) fail.

• n (s, a): variable that keeps track of the number of times (s,
a) is experienced.

• n (s, a, s′): variable that keeps track of the number of
transitions to s′ on action a at state s.

• r (s, a): the accumulated rewards by doing a in s.

The execution of the DDQ algorithm is tuned via them1 andm2

parameters. One can practically reduce it to Delayed Q-learning
by setting m2 very large, and to R-max by setting m1 large. The
next section provides a formal proof that DDQ is not only PAC but
also possesses the minimum sample complexity between R-max
and Delayed Q-learning in the worst case—often, it
outperforms both.

4 PAC ANALYSIS OF DDQ ALGORITHM

In general, the sample complexity of R-max and Delayed Q-
learning is incomparable (Strehl et al., 2009); the former is better
in terms of the accuracy of the resulting policy while the latter is
better in terms of scaling with the size of the state space. The
sample complexity of R-max algorithm is |S|2|A|

ϵ3(1−γ)8 —note the
power on ϵ; the sample complexity of Delayed Q-learning
algorithm is |S‖A|

ϵ4(1−γ)8 —note the linear scaling with |S|. It
appears that DDQ can bring together the best of both worlds;
its sample complexity is

O min O |S|2|A|
ϵ3(1 − γ)8( ),O |S‖A|

ϵ4(1 − γ)8( ){ }( )
Before formally stating the PAC properties of the DDQ algorithm

and proving the bound on its sample complexity, some technical
groundwork needs to be laid. To slightly simplify notation, let
κ ≜|S‖A|(1 + 1

(1−γ)ϵ1). Moreover, subscript t marks the value of a
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Algorithm 1 | The DDQ Algorithm.
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variable at the beginning of timestep t (particularly line 23 of the
algorithm).

Definition 3. An event when learn(s, a) � true and at the same
time l(s, a) = m1 or n(s, a) = m2, is called an attempted update.

Definition 4. At any timestep t in the execution of DDQ algorithm
the set of known state-action pairs is defined as:

Kt � (s, a) | n(s, a)≥m2 or Qt(s, a){

− R(s, a) + γ∑
s′
T(s, a, s′)vt(s′)⎛⎝ ⎞⎠≤ 3ϵ1}

In subsequent analysis, and to distinguish between the
conditions that make a state-action pair (s, a) known, the set
Kt will be partitioned into two subsets:

K1
t � (s, a) | Qt(s, a) − R(s, a) + γ∑

s′
T(s, a, s′)vt(s′)⎛⎝ ⎞⎠≤ 3ϵ1

⎧⎨⎩ ⎫⎬⎭
K2

t � (s, a) | n(s, a)≥m2{ }

Definition 5. In the execution of DDQ algorithm a timestep t is
called a successful timestep if at that step any state-action value is
updated or the number of times that a state-action pair is visited
reaches m2. Moreover, considering a particular state-action pair (s,
a), timestep t is called a successful timestep for (s, a) if at t either
update type-1 happens to Q(s, a) or the number of times that (s, a)
is visited reaches m2.

Recall that a type-1 update necessarily decreases the
Q-value by at least ϵ1. Defining rewards as positive
quantities prevents the Q-values from becoming negative.
At the same time, state-action pairs can initiate update
type-2 only once they are experienced m2 times. Together,
these conditions facilitate the establishment of an upper-
bound on the total number of successful timesteps during
the execution of DDQ:

Lemma 1. The number of successful timesteps for a particular
state-action pair (s, a) in a DDQ algorithm is at most 1 + 1

(1−γ)ϵ1.
Moreover, the total number of successful timesteps is bounded by κ.
Proof. See Supplementary Appendix S1.

Lemma 2. The total number of attempted updates in DDQ

algorithm is bounded by |S‖A|(1 + κ).
Proof. See Supplementary Appendix S2.

Lemma 3. Let M be an MDP with a set of known state-action pairs
Kt. If we assume that for all state-action pairs (s, a)∉Kt we have
Qt(s, a)≤ 1

1−γ, then for all state-action pairs in the known state-
action MDP MKt it holds

Qp
MKt

(s, a)≤ 1
1 − γ

Proof. See Supplementary Appendix S3.

Choosing m1 big enough and applying Hoefding’s inequality
allows the following conclusion (Lemma 4) for all type-1 updates,
and paves the way for establishing the optimism condition of
Theorem 1.

Lemma 4. Suppose that at time t during the execution of DDQ a
state-action pair (s, a) experiences a successful update of type-1
with its value changing from Q(s, a) to Q′(s, a), and that there
exists ∃ϵ2 ∈ (0, ϵ12 ) such that ∀s ∈ S and ∀t′ < t,
vt′(s)≥ vpM(s) − 2ϵ2. If

m1 ≥
ln 8|S‖A|(1+κ)

δ( )
2(ϵ1 − 2ϵ2)2(1 − γ)2 ≃ O ln |S|2 |A|2

δ( )
ϵ21(1 − γ)2

⎛⎝ ⎞⎠ (4)

for κ = |S‖A|(1 + 1/(1 − γ)ϵ1), then Q′(s, a)≥Qp
M(s, a) with

probability at least 1 − δ
8.

Proof. In Supplementary Appendix S4.

The following two lemmas are borrowed from (Strehl et al.,
2009) with very minor modifications, and inform on how to
choose parameter m2, and the number of iterations for the value
iteration part of the DDQ algorithm in order to obtain a desired
accuracy.

Lemma 5. (cf. (Strehl et al., 2009, Proposition 4)) Suppose the
value-iteration algorithm runs on MDP M for ln(1/ϵ2(1−γ))

1−γ iterations,
and each state-action value estimate Q(s, a) is initialized to some
value between 0 and vmax for all states and actions. Let Q′(s, a) be
the state-action value estimate the algorithm yields.
Then maxs,a |Q′(s, a) − Qp

M(s, a)|{ }≤ ϵ2.
Lemma 6. Consider an MDP M with reward function R and
transition probabilities T. Suppose another MDP M̂ has the same
state and action set as M, but maintains a maximum likelihood
(ml) estimate of R and T, with n(s, a) ≥m2, in the form of R̂ and
T̂ respectively. With C a constant and for all state-action pairs,
choosing

m2 ≥C
|S| + ln(8|S‖A|/δ)

ϵ22(1 − γ)4( ) ≃ O
|S| + ln(|S‖A|/δ)

ϵ22(1 − γ)4( )
guarantees

|R(s, a) − R̂(s, a)| ≤Cϵ2(1 − γ)2
‖T(s, a, ·) − T̂(s, a, ·)‖1 ≤Cϵ2(1 − γ)2

with probability at least 1 − δ
8. Moreover, for any policy π and for

all state-action pairs,

|Qπ
M(s, a) − Qπ

M̂(s, a)| ≤ ϵ2|vπM(s) − vπM̂(s)| ≤ ϵ2
with probability at least 1 − δ

8.
Proof. Combine (Strehl et al., 2009, Lemmas 12–15).

Lemma 7. Let t1 < t2 be two timesteps during the execution of the
DDQ algorithm. If

Qt1(s, a)≥Qp
MK2

t1

(s, a) − 2ϵ2 ∀(s, a) ∈ S × A

then with probability at least 1 − δ
8
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Qp
MK2

t1

(s, a)≥Qp
MK2

t2

(s, a) ∀(s, a) ∈ S × A

Proof. See Supplementary Appendix S5.
Lemma 5 and Lemma 6 together have as a consequence the

following Lemma, which contributes to establishing the accuracy
condition of Theorem 1 for the DDQ algorithm.

Lemma 8. During the execution of DDQ, for all t and (s, a) ∈ S × A,
we have:

Qp
MK2

t

(s, a) − 2ϵ2 ≤Qt(s, a)≤Qp
MK2

t

(s, a) + 2ϵ2 (5)
with probability at least 1 − 3δ

8 .

Proof. See Supplementary Appendix S6.
Lemma 1 has already offered a bound on the number of

updates in DDQ; however, for the complexity condition of
Theorem 1 to be satisfied, one needs to show that during the
execution of Algorithm 1 the number of escape events is also
bounded. The following Lemma is the first step: it states that by
picking m1 as in (4), and under specific conditions, an escape
event necessarily results in a successful type-1 update. With the
number of updates bounded, Lemma 9 can be utilized to derive a
bound on the number of escape events.

Lemma 9. With the choice of m1 as in (4), and assuming the DDQ

algorithm at timestep t with (s, a)∉Kt, l(s, a) = 0 and
learn(s, a) � true, we know that an attempted type-1 update of
Q(s, a) will necessarily occur within m1 occurrences of (s, a) after t,
say at timestep tm1. If (s, a) has been visited fewer than m2 till tm1,
then the attempted type-1 update at tm1 will be successful with
probability at least 1 − δ

8.
Proof. See Supplementary Appendix S7.

Lemma 10. Let t be the timestep when (s, a) has been visited for m1

times after the conditions of Lemma 9 were satisfied. If the update
at timestep t is unsuccessful and at timestep t + 1 it is
learn(s, a) � false, then (s, a) ∈ Kt+1.
Proof. See Supplementary Appendix S8.

A bound on the number the escape events of DDQ algorithm
can be derived in a straightforward way. Note that a state-action
pair that is visited m2 times becomes a permanent member of set
Kt. Therefore, the number of escape events is bounded by |S‖A|
m2. On the other hand, Lemma 9 and the learn flag mechanism
(i.e. Lemma 10) suggest another upper bound on escape events.
The following Lemma simply states an upper bound for escape
events in DDQ as the minimum among the two bounds.

Lemma 11.During the execution of DDQ, with the assumption that
Lemma 9 holds, the total number of timesteps with (st, at)∉Kt (i.e.
escape events) is at most min {2m1κ, |S‖A|m2)}.
Proof. See Supplementary Appendix S9.

Next comes the main result of this paper. The statement that
follows establishes the PAC properties of the DDQ algorithm and
provides a bound on its sample complexity.

Theorem 2. Consider an MDP M = {S, A, T, R, γ}, and let
ϵ ∈ (0, 1

1−γ), and δ ∈ (0, 1). There exist m1 �

O(ln(|S|2|A|2/δ)/ϵ21(1 − γ)2) and m2 � O(|S| +
ln(|S‖A|/δ)/ϵ22(1 − γ)4) with 1

ϵ1 � 3
(1−γ)ϵ � O(1/ϵ(1 − γ)) and

ϵ2 � ϵ1
3 , such that if DDQ algorithm is executed, M follows a 4ϵ-

optimal policy with probability at least 1 − 2δ on all but

O min O(|S|2|A|/ϵ3(1 − γ)8),O(|S‖A|/ϵ4(1 − γ)8){ }( )
timesteps (logarithmic factors ignored).
Proof. We intend to apply Theorem 1. To satisfy the optimism
condition, we start by proving that Qt(s, a)≥Qp

M(s, a) − 2ϵ2 by
strong induction for all state-action pairs:

1) At t = 1, the value of all state-action pairs are set to the
maximum possible value in MDP M. This implies
that Q1(s, a)≥Qp

M(s, a)≥Qp
M(s, a) − 2ϵ2, therefore

vt(s)≥ vpM(s) − 2ϵ2. 2) Assume that Qt(s, a)≥Qp
M(s, a) − 2ϵ2

holds for all timesteps before or equal to t = n − 1. 3) At
timestep t = n, all (s, a) ∉ K2

n can only be updated by a type-1
update before or at t = n. For these state-action pairs, Lemma 4
implies that it will be Qn(s, a)≥Qp

M(s, a) with probability 1 − δ
8.

For all (s, a) ∈ K2
n, on the other hand, by Lemma 8 and with

probability 1 − 3δ
8 :

Qn(s, a)≥Qp
MK2n

(s, a) − 2ϵ2 ≥Qp
M(s, a) − 2ϵ2

Note that Qp
MK2n

(s, a)≥Qp
M(s, a) since MK2

n
is similar to M

exept for (s, a) ∉ K2
n which their values are set to be more than or

equal to Qp
M(s, a). Therefore, Qt(s, a)≥Qp

M(s, a) − 2ϵ2 holds for
all timesteps t and all state-action pairs, which directly implies
vt(s)≥ vpM(s) − 2ϵ2 ≥ vpM(s) − ϵ.

To establish the accuracy condition, first write

Qt(s, a) � R(s, a) + γ∑
s′
T(s, a, s′)max

a′
Qt(s′, a′) + β(s, a) (6)

If (s, a) ∈ Kt, there can be two cases: either (s, a) ∈ K1
t or

(s, a) ∈ K2
t . If (s, a) ∈ K1

t , then by Definition 4 β(s, a) ≤ 3ϵ1. If
(s, a) ∈ K2

t , then Lemma 8 (right-hand side inequality) implies
that with probability at least 1 − 3δ

8

2ϵ2 ≥Qt(s, a) − Qp
MK2

t

(s, a) (7)
Meanwhile,

Qp
MK2

t

(s, a) � R(s, a) + γ∑
s′
T(s, a, s′)max

a′
Qp

MK2
t

(s′, a′) (8)

and substituting from (8) and (6) into (7) yields

γ∑
s′
T(s, a, s′) max

a′
Qt(s′, a′) −max

a′
Qp

MK2
t

(s′, a′)( )
+ β(s, a)≤ 2ϵ2 (9)

Let a1 ≔ argmaxa′QMK2
t

(s′, a′) and bound the difference

max
a′

Qt(s′, a′) −max
a′

Qp
MK2

t

(s′, a′) � max
a′

Qt(s′, a′) − Qp
MK2

t

(s′, a1)
≥Qt(s′, a1) − Qp

MK2
t

(s′, a1)

Apply Lemma 8 (left-hand side inequality) to the latter
expression to get
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max
a′

Qt(s′, a′) −max
a′

Qp
MK2

t

(s′, a′)≥ − 2ϵ2

which implies for (9) that

2ϵ2 ≥ β(s, a) − 2γϵ2 0 β(s, a)≤ 2(1 + γ)ϵ2 ≤ 3ϵ2
Thus in any case when (s, a) ∈ Kt, β(s, a) ≤ 3ϵ1 with probability

at least 1 − 3δ
8 . In light of this, considering a policy dictating

actions a = πt(s) and mirroring (6)–(8) we write for the values of
states in which (s, πt(s)) ∈ Kt

vπtMKt
(s) � R s, πt(s)( ) + γ∑

s′
T s, πt(s), s′( )vπtMKt

(s′)
vt(s) � R s, πt(s)( ) + γ∑

s′
T s, πt(s), s′( )vt(s′) + β(s, a)

while for those in which (s, πt(s)) ∉ Kt, we already know that

vπtMKt
(s) � Qt s, πt(s)( )

vt(s) � Qt s, πt(s)( )
So now if one denotes

α ≔max
s

vt(s) − vπtMKt
(s)( ) � vt(sp) − vπtMKt

(sp)

then either α = 0 (when (s, πt(s)) ∉ Kt) or it affords an upper
bound

γ∑
s′
T(sp, πt(sp), s′) vt(s′) − vπtMKt

(s′)( ) + β sp, πt(sp)( )

≤ γ∑
s′
T(sp, πt(sp), s′) vt(s′) − vπtMKt

(s′)( ) + 3ϵ1 ≤ γα + 3ϵ1

from which it follows that α≤ γα + 3ϵ1 0 α≤ 3ϵ
1−γ � ϵ.

Finally, to analyze complexity invoke Lemma 1 and Lemma
11 to see that the learning complexity ζ(ϵ, δ) is bounded by κ +
min (2m1κ, |S‖A|m2) with probability 1 − δ

8.
In conclusion, the conditions of Theorem 2 are satisfied

with probability 1 − δ and therefore the DDQ algorithm is PAC.
Substituting ζ(ϵ, δ) into (3) completes the proof.

5 NUMERICAL RESULTS

This section opens with a comparison of the DDQ algorithm to its
parent technologies. It proceeds with additional comparisons to the
state-of-the-art in both model-based (Szita and Szepesvá ri, 2010) as
well as model-free (Dong et al., 2019) RL algorithms. For this
comparison, the algorithms with the currently best sample
complexity are implemented on a type of MDP which has been
proposed and used in literature as a model which is objectively
difficult to learn (Strehl et al., 2009). Experimental implementation
and performance evaluation for DDQ deployed in the context of the
motivating pediatric rehabilitation application is also presented,
illustrating the possible advantages of DDQ over direct human
control in real-world applications.

5.1 Comparison of DDQ With Its Parent
Methodologies
The first round of comparisons start with R-max, Delayed
Q-learning, and DDQ being implemented on a small-scale grid-

world example (Figure 1). This example test case has nine states,
with the initial state being the one labeled 1, and the terminal
(goal) state labeled 9. Each state is assigned a reward of 0 except
for the terminal state which has 1. For this example, γ: = 0.8. In all
states but the terminal one, the system has four primitive actions
available: down (d), left (l), up (u), and right (r). The grid-world
of Figure 1 includes cells with two types of boundaries: the
boundaries marked with a single-line afford transition
probabilities of 0.9 through them; the boundaries marked with
a double line afford transitions through them at probability 0.1.
The optimal policy for this grid-world example is shown in
Figure 2.

Initializing the three PAC algorithms with parameters m1 = 65,
m2 = 175 and ε = 0.06, yields the performance metrics shown in
Table 1, which are measured in terms of the number of samples
needed to reach at 4ε optimality, averaged over 10 algorithm runs.
Parameters m1 and m2 are intentionally chosen to enable a fair
comparison, in the sense that the sample complexity of the
model-free Delayed Q-learning, and the model-based R-max
algorithms are almost identical. In this case, and with these
same tuning parameters, DDQ yields a modest but notable
sample complexity improvement.

5.2 Comparison of DDQ to the Best Known
PAC RL Algorithms
The lowest known bound on the sample complexity of a model-
based RL algorithm on a infinite-horizon MDP is |S‖A|/ϵ2 (1 − γ)6

(by the Mormax algorithm (Szita and Szepesvári, 2010)). For the
model-free case (again on a infinite-horizon MDP), the lowest
bound on the sample complexity is |S‖A|/ϵ2 (1 − γ)7, achieved by
UCB Q-learning (Dong et al., 2019) (the extended version of (Jin
et al., 2018) which is for finite-horizon MDP).

To perform a fair and meaningful comparison of these
algorithms to DDQ, consider a family of “difficult-to-learn” MDP

as Figure 3. The MDP hasN + 2 states as S = {1, 2, . . .,N, +, − }, and
A different actions. Transitions from each state i ∈ {1, . . ., N} are
the same, so only transitions from state 1 are shown. One of the
actions (marked by solid line) deterministically transports the
agent to state + with reward 0.5 + ϵ′ (with ϵ′ > 0). Let a be any of
the other A− 1 actions (represented by dashed lines). From any
state i ∈ {1, . . ., N}, taking action a will trigger a transition to
state + with reward 1 and probability pia, or to state −with reward
0 and probability 1 − pia, where pia ∈ {0.5, 0.5 + 2ϵ′} are numbers

FIGURE 1 | The grid-world example.
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very close to 0.5 + ϵ′. For each state i ∈ {1, . . ., N}, there is at most
one a such that pia = 0.5 + 2ϵ′. Transitions from states + and − are
identical; they simply reset the agent to one of the states {1, . . .,N}
uniformly at random.

For an MDP such as the one shown in Figure 3, the optimal
action in any state i ∈ {1, . . .,N} is independent of the other states;
specifically, it is the action marked by the solid arrow if pia = 0.5
for all dashed actions a, or the action marked by the dashed arrow
for which pia = 0.5 + 2ϵ′, otherwise. Intuitively, this MDP is hard to
learn for exactly the same reason that a biased coin is hard to be
recongized as such if its bias (say, the probability of landing on
heads) is close to 0.5 (Strehl et al., 2009).

We thus try to learn such an MDPM with N = 2, A = 2, and ϵ′ =
0.04. The accuracy that the learned policy should satisfy is set to
ϵ = 0.002 5, and the probability of failure is set to δ = 0.01. Results
are averaged over 50 runs of each algorithm running on MDP M.

We empirically fine-tune the parameters of Mormax and UCB
Q-learning algorithms to maximize their performance on
learning the near optimal (4ϵ-optimal) policy of M in terms of
the required samples. As expected, the required samples decrease
(almost linearly) inm (Figure 4) until the necessary condition for
the convergence of the algorithm is violated (at aroundm = 600).
For that reason, we capm at 600 which requires 7,770 samples on
average for Mormax to learn the optimal policy. Yet another
important performance metric to record for a model-based RL

algorithm is the number of times it needs resolve the learned
model through value-iteration, since the associated
computational effort is highly dependent on this number. For
Mormax, the average number of times it performs model
resolution is 12.06.

The performance of the UCB Q-learning algorithm appears to
be very sensitive to its c2 parameter. The value of 4

�
2

√
that has

been suggested for c2 (Dong et al., 2019) proved very conservative,
with the algorithm sometimes requiring millions of data for
converging to the optimal policy on M. The reason is that
values of c2 that high cause the effective updates to start when

the learning rate has already become very small, thus slowing
down the convergence speed. We therefore tune the UCB
Q-learning algorithm to achieve maximum performance on M
by setting its parameter c2 = 1/50 (see Figure 5); with this setting,
the algorithm requires 8,097 samples to learn the optimal policy
on average. Setting c2 < 1/50 may cause the algorithm to lie
outside the upper confidence interval, and as a result, the
algorithm either requires an actual higher number of samples
or it fails to convege altogether to the optimal policy after 106

samples.
We compare the best performance we could achieve with

Mormax and UCB Q-learning with that of DDQ which we tune
with m1 = 150 and m2 = 750. The average required samples
required by DDQ for learning the 4ϵ-optimal policy on M is 5662,

FIGURE 2 | The actual optimal policy in the grid-world example.

TABLE 1 | Average # of samples for reaching 4ε optimality.

Algorithms # Of samples

Delayed Q-learning 6622
R-max 6727
DDQ 5960

FIGURE 3 | A family of difficult-to-learn MDPs (Strehl et al., 2009).

FIGURE 4 | The number of samples required by the Mormax algorithm.
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while the number of times that the R-max component of the
algorithm resolves the model through value-iteration part is 3.76
on average.

Thus, although the provable worst-case bound on the sample
complexity of DDQ algorithm appears higher than that of Mormax
and UCB Q-learning (cf. (Jaksch et al., 2010) for a slightly worse
bound), DDQ can outperform both algorithms in terms of the
required data samples, especially in difficult learning tasks. What
is more, the hybrid nature of DDQ algorithm enables significant
savings in terms of computational effort—the latter captured by
the number of times when the algorithm resorts to model
resolution—compared to model-based algorithms like
Mormax. Table 2 summarizes the results of this comparison.

5.3 Experimental Results
Early development in humans is highly dependent to the ability of
infants to explore their surrounding physical environment and use
the exploration experiences to learn (Campos et al., 2000; Clearfield,
2004; Walle and Campos, 2014; Adolph, 2015). With this given,
children with motor delay and disability (such as, for example those
diagnosedwithDown syndrome (Palisano et al., 2001; Cardoso et al.,
2015)) have significantly fewer opportunities for self-initiated
environment exploration, but also social interactions with their
peers which are also expected to occur and develop within this
environment. This is presumably why a portion of the research on
pediatric rehabilitation has considered HRI as a way to partially
compensate for the dearth of social interaction and a means for
improvement of social skills in infants who face communication
challenges (Feil-Seifer and Mataric, 2009; Scassellati et al., 2012;
Sartorato et al., 2017). These studies suggest, for example, that
children with autism may socially engage in play activities with
interactive robots, and even sometimes prefer this type of interaction
over that with adults or computer games (Kim et al., 2013). Within
the pediatric rehabilitation paradigm, HRI scenarios are designed by
considering infants’ abilities and interests based on their age and
level of impairment (Prosser et al., 2012; Pereira et al., 2013; Adolph,
2015). While many interesting aspects of the HRI problem in the

context of pediatric rehabilitation can be considered, one driving
objective behind the work presented in this paper is to design
automated decision-making algorithms for robots when they
socially interact with children, in order to keep them interested
and engaged in the type of activities and behavior that are
considered beneficial for the purposes of rehabilitation.

As mentioned in Section 1, the motivating application behind the
particular approach described in this paper is that of (early) pediatric
motor rehabilitation that leverages social child-robot interaction
within play-based activities. In principle, the objective of these
targeted activities is to encourage and sustain goal-driven physical
activity, i.e., mobility, on the part of the child, with the understanding
that such mobility will help the infant explore not only her
environment, but also the latent capabilities of her own body. In
this area, robot automation can serve by reducing the stress, cognitive
load, and dedicated time requirements of human caregivers by
allowing the robots to become more independent children
playmates. To gain autonomy, a purposeful robot playmate needs
an automated decision-making algorithm that will allow it to learn
what to do to sustain and extend playtime. This is particularly
challenging for a whole range of reasons. First, this is not a “one-
size-fits-all” solution—every human playmate is behaviorally different
from another, necessitating an ability on the part of the robot to adapt
and personalize its own behavior and response to the child it is
interacting with. In addition, especially when it comes to algorithms
learning from data and particularly because every human subject is
fundamentally different in terms of social interaction preferences, the
data pool will invariably be very small and sparse (Zehfroosh et al.,
2017; Kokkoni et al., 2020). There will always be little prior
information about the infant’s preferences, and the usually limited
time of infant’s rehabilitation sessions hardly provides sufficient data
for machine learning algorithms. Methods that are able to better
handle sparsity in training data are therefore expected to perform
better than alternatives.

In terms of the mathematical model of HRI, partially observable
Markov decision process (POMDP) is the most common
Markovian model because some internal parameters of the
human partners such as intent are not directly observable
(Broz et al., 2013; Ognibene and Demiris, 2013; Mavridis,
2015). Dealing with POMDP is computationally demanding and
it usually requires large amounts of data for learning (Bernstein
et al., 2002). This is the reason that whenever a particular HRI

application allows for some legitimate simplifying assumptions,
researchers have tried to stick to less complex Markovian models
such as a mixed observability Markov decision process (MOMDP)
(Bandyopadhyay et al., 2013; Nikolaidis et al., 2014) or an MDP

(Keizer et al., 2013; McGhan et al., 2015). For the motivating
application of this paper (i.e. pediatric rehabilitation) an MDP

appears to be a more appropriate choice since it possesses

FIGURE 5 | The required samples by UCB Q-learning algorithm.

TABLE 2 | The best possible performance on learning MDP M.

Algorithms # Of samples # Of model resolution

Mormax 7770 12.06
UCB Q-learning 8097 0 (model-free)
DDQ 5662 3.76
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fewer parameters and hence presumably requires smaller bodies
of data in order to train (Zehfroosh et al., 2017).

In terms of the learning algorithm itself, it needs to be
particularly efficient in its data utilization, and preferably be
able to guarantee some level of performance even when the
training dataset is small. The presented hybrid RL algorithm
DDQ seems a good fit for the application described above as its
hybrid structure promotes data efficiency and its performance is
also backed up with theoretical guarantee.

This section presents some outcomes related to the performance
of DDQ in a pediatric rehabilitation session like the one described
above. Figure 6 shows a robot-assisted motor rehabilitation
environment for infants involving two robots (NAO and Dash)
engaged in free-play activities with an infant.

The proposed MDP model for the case of a simple chasing game
is shown in Figure 7. In this MDP, the state set is
S � {NL, L,T/A,M}, where NL represents the state where the
child is not looking at the robot, L is expressed with the state when
the infant is looking at the robot but not chasing it, T/A denotes
circumstances when the child is touching the robot or showing
some form of excitement (e.g., clapping, laughing, squealing etc),
andM stands for the situation when the child is chasing the robot.
The action set for the robot is A � {cd, s/tu, id}. Here, cd stands
for the robot closing its distance to the infant, s/tu corresponds to
the robot preserving its distance to the infant while, say, standing
still or rotating around her, and id represents the case where the
robot is increasing its distance to the child. Transitions in the
graph of Figure 7 can be labeled by one of the aforementioned
actions, and annotated with the transition probabilities associated
with each action (Note that in practice these robot actions
generally have nondeterministic outcomes.) In the described
MDP model, transitions are expressing the infant’s reactions to
the robot’s action. With respect to the overarching rehabilitation
objectives for the social interaction between infant and robot, the
favorable states to reach in this game are T/A andM. These states
are assigned a high (er) reward of 0.5 and 1, respectively. The
reward for all other states is set to 0.

The chasing game is played with Dash as (a small) part of six
1-h infant-robot social interaction sessions with a 10 month
old subject, and data in the form of video are collected and
annotated. In the six sessions the robot was remotely
controlled and its actions were chosen by a human operator
who was observing the interaction. The DDQ algorithm was
trained on the data from these six sessions and produced an
optimal policy for the robot for its interaction with the child in
this game. The computed optimal policy was subsequently
used for two sessions of the chase game with the same subject.
Note that whereas DDQ is greedy in choosing actions during the
learning process, the data obtained from the interaction with
the human operator did not necessarily follow that rule, which

TABLE 3 | Accumulated rewards for the Dash robot. The “in” condition
corresponds to the infant wearing the full-body-weight support mechanism
(see Figure 6) and the “out” condition represents completely unassisted infant
motion. The last two highlighted rows give outcomes on the reward obtained
through the optimal policy learned by DDQ. The 95% confidence interval for the
accumulated rewards is [0.02893.4197] with a P-value of 0.047 7.

Session # “In” condition “Out” condition

1 1.081 0 5.063 2
2 2.142 8 1.836 7
3 2.043 3 1.793 4
4 2.663 5 2.468 3
5 4.258 0 5.938 5
6 3.458 6 2.544 1
7 3.296 7 6.243 6
8 8.495 5 7.522 3

FIGURE 6 | Instance of play-based child-robot social interaction. Two
robots are visible in the scene: a small humanoid NAO, and a differential-drive
small mobile robot toy DASH.

FIGURE 7 | MDP model for the game of chase between a mobile robot
and an infant.
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marks a minor departure from what would have been
considered a nominal DDQ implementation. Table 3 shows
the accumulated rewards for all eight sessions, normalized by
the time of the interaction.

To put the figures of Table 3 in proper technical context, we
define a metric I which is a random variable that indicates the
improvement as a result of using DDQ optimal policy and is
expressed as I � mDDQ −mhuman, where mDDQ denotes the
mean of the normalized accumulated rewards when the
learned policy by DDQ algorithm is used (as it was in last
two rehabilitation sessions), andmhuman expresses the mean of
the normalized accumulated rewards when the human
operator decides the actions for the robot (which happened
throughout the first six sessions). Here we are dealing with two
small (accumulated reward) datasets that have very different
standard deviations (one is more than twice of the other), and
statistical comparisons necessitate the use of a t-test with
releasing the constraint of equal standard deviation for the
two group (Agresti and Finlay, 2009) in order to compute
confidence interval for the random variable I. As it turns out,
the 95% confidence interval is [0.0289, 3.4197] with a P-value
of 0.0477. Since the confidence interval only includes positive
numbers, and the P-value of the test is in an acceptable range
(below 0.05), one can confidently attest that it is possible that a
DDQ policy can outperform a human-driven social interaction
strategy.

6 CONCLUSION

The design and implementation of an RL algorithm that captures
favorable features of both model-based and model-free learning
and most importantly preserves the PAC property can not only
alleviate the cognitive load and time commitment of human
caregivers when socially interacting in play-based activities with
infants who have motor delays, but potentially also improve
motor rehabilitation outcomes. One such algorithm which has
been implemented and pilot-tested within an enriched robot-
assisted infant motor rehabilitation environment is the DDQ. The
DDQ algorithm leverages the idea of earlier Dyna-Q algorithms to

combine two existing PAC algorithms, namely the model-based
R-max and the model-free Delayed Q-learning, in a way that
achieves the best (complexity results) of both. Theoretical analysis
establishes that DDQ enjoys a sample complexity that is at worst as
high as the smallest of its constituent technologies; yet, in
practice, as the numerical example included suggests, DDQ can
outperform them both. Numerical examples comparing DDQ to
the state of the art in model-based and model free RL indicate
advantages in practical implementations, and experimental
implementation and testing of DDQ as it regulates a robot’s
social interaction with an infant in a game of chase hints at
possible advantages in rehabilitation outcomes compared to a
reactive yet still goal-oriented human strategy.
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