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Recent experiments indicate that pretraining of end-to-end reinforcement learning neural
networks on general tasks can speed up the training process for specific robotic
applications. However, it remains open if these networks form general feature
extractors and a hierarchical organization that can be reused as in, for example,
convolutional neural networks. In this study, we analyze the intrinsic neuron activation
in networks trained for target reaching of robot manipulators with increasing joint number
and analyze the individual neuron activation distribution within the network. We introduce a
pruning algorithm to increase network information density and depict correlations of
neuron activation patterns. Finally, we search for projections of neuron activation
among networks trained for robot kinematics of different complexity. As a result, we
show that the input and output network layers entail more distinct neuron activation in
contrast to inner layers. Our pruning algorithm reduces the network size significantly and
increases the distance of neuron activation while keeping a high performance in training
and evaluation. Our results demonstrate that robots with small difference in joint number
show higher layer-wise projection accuracy, whereas more distinct robot kinematics reveal
dominant projections to the first layer.
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1 INTRODUCTION

Convolutional neural networks (CNNs) are well known to demonstrate a strong general feature
extraction capability in lower network layers. In these network features, kernels can not only be
visualized but pretrained general feature extractors can also be reused for efficient network learning.
Recent research experiments propose efficient reusability for reinforcement learning (RL) neural
networks as well: networks are pretrained on similar tasks and continued learning for the goal
application.

Reusing (sub) networks that can be re-assembled for an application never seen before can reduce
network training time drastically. A better understanding of uniform or heterogeneous network
structures improves the evaluation of network performance and at the same time unveils
opportunities for the interpretability of networks which is crucial for the application of machine
learning algorithms, for example, in industrial scenarios. Finally, methodologies and metrics
estimating network intrinsic- and inter-correlations in artificial neural networks may also
enhance the understanding of biological learning. Eickenberg et al. (2017) recently demonstrated
that layers serving as feature extractors in CNN could actually be found in the human visual cortex by
correlating artificial networks to biological recordings.

Successful experiments to reuse end-to-end learned networks for similar robotic tasks leave open
whether such networks also self-organize feature extractors or in a dynamical domain motion
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primitives. Here, we analyze neuron activation in networks in
order to investigate activation distribution and mapping between
different networks trained on similar robot reaching tasks.

In this study, we execute target-reaching end-to-end RL
experiments with homogeneous robot manipulators and a
variable number of revolute joints. Our work focuses on robot
kinematics in a vertical plane, with every joint orthogonal to the
previous link, so that subsequent joints are in principle able to
replicate movements of previous joints. We introduce metrics
applied to evaluate individual neuron activation over time and
compare activity within individual networks all-to-all (every
neuron is correlated to any other neurons in the network) and
layer-wise (only corrections between neurons on the same layer
are inspected). These metrics are utilized to set up a pruning
procedure to maximize the information density in learned neural
networks and reduce redundancy as well as unused network
nodes. Exploiting these optimization procedure, we learn various
neural networks with variable dimensions on robot manipulators
with two to four joints, representing two to four degrees of
freedom (DOF), in order to analyze similarities between
network activation patterns. We hereby question whether
network structures learned on a robot manipulator may find
its equivalent in a network for another more or less complex robot
with similar kinematics.

As a result, we demonstrate experimentally that the
introduced pruning process reduces the network size efficiently
keeping performance loss in bounds and hereby builds a valid
basis for network analysis. We show that networks trained and
iteratively pruned on the robot manipulators form distinct
neuron activation. By analyzing neuron activation correlations
between different networks of various sizes, mappings between
neurons trained on different manipulators are found. A layer-
wise interpretation reveals that networks trained for the same
tasks build similar structures, but we can also discover partially
similar structures between networks trained on three- or four-
joint manipulators.

2 RELATED WORK

The capability of feature extraction in CNNs, alongside with a
variety of analysis and visualization tools, serves as a motivation
for this work on training, analysis, and pruning for networks
trained with RL. Analysis methods for CNNs include regional-
based methods, for example, image occlusion (Zeiler and Fergus,
2014), that aim to expose the region of an image most relevant for
classification as well as feature-based methods, for example,
deconvolution (Zeiler and Fergus, 2014) or guided
backpropagation (Selvaraju et al., 2017). Methods combining
the described techniques are, for example, introduced as Grad-
CAM in Springenberg et al. (2014). These networks demonstrate
class discrimination for features of deeper network layers (Zeiler
and Fergus, 2014) as a basis to apply such general feature
extractors to different applications after pretraining. Pretrained
networks such as ResNet (He et al., 2016), which has been trained
on the ImageNet1 data set, speed up training drastically by
initializing CNNs applied for similar tasks. Kopuklu et al.

(2019) demonstrated that even reusing individual layers in the
same network can lead to a performance increase.

Recent advances pushed RL agents to reach super-human
performance in playing Atari video games (Bellemare et al., 2013)
(Mnih et al., 2015), chess (Silver et al., 2017), and Go (Silver et al.,
2016). These results were extended to cope with continuous action
spaces in, for example, Lillicrap et al. (2015) and demonstrated great
performance on highly dynamicmulti-actuated locomotion learning
tasks such as demonstrated in the NIPS 2017 Learning to Run
challenge (Kidziński et al., 2018). Vuong et al. (2019) and Carlo et al.
(2020) demonstrated experimentally that knowledge learned by a
neural network can be reused for other tasks in order to speed up
training and hereby translate modularity concepts fromCNNs to RL
frameworks. Hierarchical reinforcement learning incorporates these
ideas, utilizing the concept of subtask solving into neural networks,
for example, in Jacob et al. (2016) for answering questions. A
successful example of transfer learning to build up a general
knowledge base could be demonstrated with RL in Atari games
in Parisotto et al. (2016). Gaier and Ha (2019) emphasized the
importance of neural architectures that can perform well even
without weight learning.

With the main motivation of improving learning efficiency
and reducing computational requirements, network pruning is
introduced for various network architectures. Early approaches
for pruning weights in artificial neural networks using second-
order derivative information have been introduced in LeCun et al.
(1990) and further improved in Hassibi et al. (1992). Examples
for unit-based pruning by removing neurons based on their
redundancy can be found for deep neural networks in He
et al. (2014) and Srinivas and Babu (2015) as well as for deep
RL in Livne and Cohen (2020). They use a node importance
function, minimize the expected squared difference of
corresponding units, or apply transfer learning techniques. A
review of network compression methods can be found in Ali et al.
(2021) in which additional techniques for node and weight
pruning using quantization and low-rank factorization are
described—all with the goal of reducing computational costs
while maintaining a high level of performance.

Unit-based pruning algorithms assume the existence of
redundant neurons in the network that can be safely removed.
Similar to He et al. (2014) and Srinivas and Babu (2015), we aim
to identify these redundant neurons by analyzing their
characteristics but in contrast to static training tasks
inspecting their weights only does not seem reasonable in the
dynamic case of a robotic trajectory execution. He et al. (2014)
proposed an entropy-based approach based on the neuron
activation. To account for the dynamic motion execution, we
build up on the history of activation values and a clustering
methodology for the identification of redundant neurons. We
provide an alternative approach for network pruning in RL tasks
that is not based on transfer learning.

3 EXPERIMENTAL SETUP

In this study, we focus on a robot manipulator with operation
limited to a vertical plane, a homogeneous kinematic with each
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joint orthogonal to its previous link. A neural network is trained
with end-to-end reinforcement learning in order to reach
predefined locations in 2D space without prior knowledge of
neither robot dynamics nor the environment. Hereby, end-to-end
refers to a mapping from sensory feedback in terms of actual joint
positions in the cartesian space and the desired goal location to
output actions as joint position commands. We apply deep
Q-learning, as proposed in Mnih et al. (2015), to predict
q-values, an action is selected by means of the softmax
exploration policy and gradient descent of the network weights
is handled by the Adam solver (Kingma and Ba, 2015).

For performance reasons, our experiments are executed within a
simplified simulation environment, as shown conceptually in
Figure 1B, but exemplary behaviors have been successfully
transferred to a realistic robotic simulation (Figure 1A) on the
basis of a commonly used industrial robot. We simulate robots
with 2–4 DOF that are implemented as revolute joints restricted to
movements in the vertical space. They are actuated with PID position
controllers. For all experiments, the neural networks originally consist
of six fully connected hidden layers with ReLU activation functions
but may be reduced in the pruning process we introduce.

The network input vector x encodes actual robot joint angles θ̂i
for n joints as their sine and cosine contribution for every control
step t (control cycle time of 50 ms) as well as the desired goal
position in Cartesian coordinates [xp, yp] as:

x t( ) �

sin θ̂
t( )
1( )

cos θ̂
t( )
1( )

. . .

sin θ̂
t( )
n( )

cos θ̂
t( )
n( )

xp

yp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The output layer contains 3n neurons as the action of every
individual joint i is quantized into the three change of motion
states {1, −1, 0} as forward, backward, and no motion for each
joint with joint angle changes of ±0.05rad. The goal state of an
agent is a randomly instantiated 2D location to be reached with
the robot fingertip in maximum 60 control steps, each
representing 50ms. The distance between the goal position p*
and the tip p̂ is mapped into [0, 1] and squared to serve as the
reward function r(ti) ≔ ( 1

|p̂(ti)−p*|L2+1)2. All network results that
are presented passed a validation test consisting of 300 test
episodes. This test also serves as the pruning baseline: the
probability of a type two error for reaching the final reward
threshold �r � 0.9 with an accuracy �ρ � 0.9 lies below significance
α = 0.05 on the test data.

4 NEURON ACTIVATION ANALYSIS

We first analyze individual neuron activation inside multiple
neural networks trained on the introduced target reaching a
robotic manipulator. This initial analysis serves as baseline for
pruning and projection evaluation; therefore, we study only
three-joint robotic manipulators in depth before we investigate
a comparison of different kinematic structures.

We define a distance metric between neurons that is based on
the neuron activation history in scope of every episode in order to
account for the dynamics in motion trajectory learning. All
neuron activation values over the course of an episode are
collected in a vector z(E)ni

for every neuron ni of the network in
episode E. Utilizing the linearity of applied ReLU activation
functions, we normalize this activation in the range [0, 1] in
reference to the maximum value attained. For a set of sample
episodes E, representing a set of potential robot actions, we define
the distance of neurons ni and nj as:

FIGURE 1 | Neuron activity is analyzed in neural networks trained for target reaching of multi-joint robotic manipulators utilizing end-to-end deep Q-Learning. We
train the network in a simplified environment of a robot with 2–4 controllable joints operating in a vertical plane [(A), initial configuration with joints θi]. The transferability to a
robotic simulation (B) has been demonstrated with movements restricted to a vertical space.
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d ni, nj( ) ≔ 1
|E| ∑

E∈E

z E( )
ni

Zni

− z E( )
nj

Znj

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣L2, (2)

with z(E)ni
∈ RT

≥0 denoting the vector containing activation series
of neuron ni in episode E and Zni ∈ R>0 the maximum activation
of ni in all episodes E. For a layer-wise analysis Eq. 2 is adapted
accordingly, only considering distances to neurons that belong to
the same layer. The upper triangular matrix of a distancematrixD
holds all values d(ni, nj) with i ≥ j. The density distribution of
neuron distances can be approximated by collecting all values in
the upper triangular matrices of D.

In addition, hierarchical clustering as described in Hastie et al.
(2009) is applied to individual network layers in order to reveal
neuron groups that show similar activation behavior. We form
groups that minimize the mean cluster distance D(Cl) of neurons
involved as:

D Cl( ) ≔ 1
Cl| | Cl| | − 1( ) ∑

nil∈Cl

∑
njl∈Cl\{nil}

d nil, njl( ), (3)

for neuron cluster C of layer l. We conduct an experiment with a
set of M = 20 networks and 48 neurons per hidden layer, for the
three-joint manipulation task. A reference set of untrained

FIGURE 2 | Neuron activation analysis for randomly initialized, trained, and pruned networks on a three-joint manipulator (averages over 500 sample episodes and
20 trained agents). Distance measured between all-to-all (all neurons in a network are correlated among each other, left) neurons and layer-wise (for every neuron only
neurons on this layer are considered for correlation, right) indicate a bell-shaped distribution with higher mean in the first and last layer. Pruning sharpens the bell shape,
increasing the mean, but reducing very high distance scores.
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networks with identical structure is initialized by Xavier
initialization (Glorot and Bengio, 2010). Neuron distances are
averaged from a set of m = 500 sample episodes.

The distance distribution in randomized networks forms a
bell-shaped distribution globally as well as layer-wise (Figure 2).
However, the all-to-all distribution of trained networks primarily
indicates a lower standard deviation and mean than that of
random networks, with a slight distortion at high distances.
The layer-wise analysis reveals that these higher distance
scores occur increasingly on network layers closer to the
output, in particular in the second half of layers. In contrast,
lower layers demonstrate close to normal distributions.
Clustering reveals a variety of distances for all layers in
untrained randomly initialized networks (Figure 3) which is
kept on the first layer only in trained networks, especially in
middle layers, we observe clusters with low distances that have
emerged during training.

An intrinsic network analysis reveals that a successful training
changes visibly the neuron activation characteristics, highly
depending on the neuron position in the network.

5 HEURISTIC NETWORK PRUNING

Non-uniform density distributions and low cluster differences in
the inspected neuron activation indicate potential for network
pruning. Dense information representation is a requirement for
the comparison of different networks. For this purpose, we
propose a pruning procedure that iteratively unifies neurons
with similar activation, identified as small cluster distances,
and retrains the network. Hereby, a trade-off between reduced
network size and maintaining high-performance learning is
aspired.

We apply Breadth First Search on the resulting cluster tree of
every network layer. The first encountered clusters with distance
Eq. 3 below threshold �dτ , which is defined as a fraction τ of the
maximum cluster distance, are selected to form the layer
segmentation C. Based on this neuron segmentation C(l) of
layer l, a reduced network is constructed that represents every
cluster as a single neuron. Original network weights are reused for
the initialization of the reduced network. We exploit the linearity
of ReLU activation functions and assume identical neuron
behavior which is altered only by linear scaling inside all
clusters. Without loss of generality cluster activation, ζC is
defined such that scaling factors γn > 0 (normalized
magnitude of total cluster activation) of contained neurons
sum to one and ∀n ∈ C: ζC � zn

γn
, with zn denoting the

activation of neuron n, holds. For cluster C ∈ C(l) and
arbitrary neuron n ∈ C, the forward propagation of zn can be
rearranged to form the forward propagation of the cluster
activation as:

ζC � ReLU ∑
D∈C l−1( )

ζD
1
γn

∑
m∈D

wnmγm
⎡⎢⎢⎣ ⎤⎥⎥⎦, (4)

withwnm denoting the weight from neuronm to n. Eq. 4 acts as an
approximation that in practice is only achieved by clusters of
silent neurons that are not activated at all. Therefore, in order to
improve stability all neurons of a cluster contribute to the reduced
network weights ω as ωCD � 1

γn
∑m∈Dwnmγm. Scaling factors γn are

generated from the maximum activation Zn of Eq. 2 of the
respective neuron n.

In order to evaluate the introduced pruning procedure, we
conduct experiments with a set of M = 20 neural networks (six
hidden layers and 48 neurons each) trained for the three-joint
manipulation task. Network reduction is applied with a set ofm =

FIGURE 3 | Clustering dendrograms are generated based on the distance measures for an exemplary trained network. Untrained networks show very similar
clusters, trained network highlights cluster groups, and pruning reduces neurons while increasing cluster distance. The first layer generally keeps the most distinct
clusters, and the penultimate layer shows the strongest neuron reduction.
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300 sample episodes, and presented results are averaged over the
set of networks which reached sufficient performance.

Results presented in Figure 4A show a nearly linear correlation
between cluster threshold and resulting pruned network size if
networks had an identical initial layer size of 48 neurons. In case
of τ = 0 only silent neurons are reduced, which does not affect the
performance of the network, though reduces the network size
significantly (initial size of all networks: 323 neurons). For values
of τ ∈ (0, 0.1], the network is reduced, but no strong effect is apparent
on initial accuracy [%] and training duration (number of episodes
executed until the validation set is passed). We observe interesting
behavior in range of τ ∈ (0.1, 0.22], as the initial accuracy decreases
significantly, whereas the duration for retraining the networks barely
increases. This implicates that the main processes in the network

remain intact after reduction, whereas for τ > 0.2 a strong increase in
training duration indicates a loss of relevant information. As a trade-
off between minimal network size and efficient training τ = 0.2 has
been selected as cluster threshold and was applied in all further
experiments. As the pruning process highly depends on the initial
network size, we analyze networks of initial hidden layer sizes of 32,
48, 128, 256, and 512 within the same test setup. The results shown
in Figure 4B emphasize the first reduction step as the most
dominant. Noticeably, large networks of initial layer neuron
count of 128, 256, and 512 reach the similarly pruned network
size already in the first iteration step. For subsequent reduction steps,
the network size plateaus. Inspection of neuron-per-layer counts
reveal that small initial networks (32, 48) taper with depth, compared
to bigger initial networks that form an hourglass shape. The average

FIGURE 4 | Evaluation of heuristic cluster-based network pruning on the example of a three-joint manipulator. (A) Even though the initial network accuracy
decreases rapidly, the training duration (number of episodes executed until the validation set is passed) only increases significantly with cluster thresholds larger than 0.3.
As a trade-off between minimal network size after pruning and efficient training τ = 0.2 has been picked as the optimal cluster threshold and was applied for all further
experiments. (B) The first reduction step shows the strongest reduction for all networks. They have been initialized with a different neuron count per layer. Layers
with more than 128 neurons are reduced to a very similar neuron count in the first pruning step.
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network shape of 256 and 512 neuron networks after three reduction
steps turns out as �s � [ 51.6 21. 15.9 12.6 10.2 16.7 ]. Network
intrinsic neuron distance densities of pruned networks (Figure 2)
implicate an increased homogeneous information representation
compared to networks trained straight away. The bell-shaped
distribution with higher mean shows lower variance. In addition,
outliers with high distance scores are reduced.While clusters remain
rather similar on the first and last layer, in particular the cluster
distances on middle layers are drastically increased along with the
reduced cluster number. Overall, we find that our pruning process
reduces network size efficiently and hereby shows a visible effect on
neuron activation toward a rather uniform distribution and distinct
cluster structure.

6 CORRELATIONS IN NETWORKS
TRAINED FOR MULTI-JOINT ROBOTS

Based on both, the analysis of individual neuron activation and
the heuristic network pruning, we investigate mappings of
neuron activation between different networks learned on robot
manipulators with 2–4 joints. Here, the goal is to estimate
whether activation patterns are similar in networks trained for
the different robot kinematics. For this purpose, we construct a
unidirectional linear projection between source and target
network and analyze its accuracy and structure. Based on the
source network neuron activation b ∈ RK

≥0, resulting from input x,
a prediction â � bTP of the target activation a ∈ RM

≥0 for the same
input x is given by the projection matrix P ∈ RK×M

≥0 (Figure 5).
The projection is constructed based on a set ofN training inputsX
that yield activation matrices A ∈ RN×M

≥0 and B ∈ RN×K
≥0 of the

target and source network, respectively. In order to obtain a
procedure invariant to neuron scaling, individual columns of A
and B are normalized to the interval [0, 1] dividing by the
maximal values contained. The resulting projection �P can be
adjusted to fit the original training data by Pkm � αm

βk
�Pkm.

Two approaches for projection construction are considered.
Greedy mapping predicts each target neuron from the source
neuron withminimal distance Eq. 2, and every entry of the greedy
projection matrix �Pg

km is 1 if k = argmini∈[K]{d(m, i)} and 0
otherwise. Linear mapping incorporates all source neurons
into the prediction of a target neuron by linear combination.
Projection vectors pm, predicting the behavior of neuron m, are

given by the solution of quadratic optimization with linear
boundary constraints for each target neuron individually.
Hereby, the mean squared error plus lasso regularization, to
enforce sparsity of solution vectors, is minimized finding the
best projection p, that is,

minimize
1
2
�Bp − a↓m

αm

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

L2

+ λ|p|L1,
subject to p≥ 0

(5)

where �B denotes the matrix of source activations scaled by βk, am
the target activations, and λ ∈ R≥0 the regularization strength. As
mapping of two networks should be invariant to neuron scaling,
all individual neuron activations are projected into the interval [0,
1] with neuron specific scaling factors βk and αm for the source
and target network neurons, respectively. The solution vectors �pm*
are stacked to form the linear projection matrix
�Pl ≔ [ �p1* . . . �pM* ]. Input samples X are deduced from a set
of sample episodes of the target network without duplicates. Input
vectors of robot manipulators with different joint count are
transformed by either duplicating best aligning joints or
unspecified joints being set to zero, for a more or less complex
source network, respectively (Figure 6 middle right).

6.1 Evaluation Metrics
Projections are evaluated with regard to their goodness to fit a set
of validation samples XV and according to heuristic metrics that
directly analyze a projection structure. The mean absolute
prediction error is normalized by the prediction error of the
zero projection P0 ∈ {0}K×M to construct the normalized error E(P,
X) that is invariant to weight scaling and adding silent neurons:

�E P,X( ) ≔ E P,X( )
E P0, X( ) �

1
A| |1 ∑M

m�1
a↓m − Bpm
∣∣∣∣ ∣∣∣∣1. (6)

The entropy of a target neuron’s projection pm is referred to as
the saturation of neuron m and projection P is the mean of all
neuron saturations. A low saturation implies that few neurons
suffice to describe the behavior of m. We calculate the overall
projection saturation S(P) according to Eq. 7:

S P( ) ≔ − 1
M

∑M
m�1

∑K
k�1

Pkm logK Pkm( ) ∈ 0, 1[ ]. (7)

The usage of source network neurons to describe the target
network is indicated by the coverage C. It is defined as the entropy
of the stochastic process that picks a target neuronm uniformly at
random and passes it on to the source network according to the
distribution pm

|pm|L1. A low coverage value implies low utilization of
the source network.

C P( ) ≔ − 1
K

∑K
k�1

κk logK κk( ),

with κk � 1
M

∑M
m�1

Pkm

|pm|L1
.

(8)

The same statistical process is applied to construct a layer-wise
projectionPij. It describes the probability of reaching the ith layer

FIGURE 5 | Analysis of inter network mappings. Sets of two networks
are trained on robots with different number of joints. A projection matrix P that
reflects the network similarity is calculated to compute â from the source
network neuron activation b with minimal difference to a.
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FIGURE 6 | Projection of neuron activation between networks trained for variable joint robot manipulators (data averaged with five networks each and three pruning
steps). (A) Benchmark of mapping technique and evaluation metrics: on the example of multiple three-joint manipulator networks, we find linear mapping with λ = 50, the
superior mapping approach in contrast to greedy mapping. In particular, coverage and normalized errors indicate mapping quality well in comparison to untrained
networks. (B)Neuron activation correlations of networks trained on robots with different joint count (2–4 refers to amapping from networks trained for a two-joint to
a four-joint robotic arm): the mapping error gets higher with increased difference in joint numbers, and the coverage accordingly decreases. Mapping a network with
higher complexity into lower complex ones performs slightly better than vice versa. In this study, the mappings 4-2 are closest to the performance of the native 3-3
mappings. This mapping is influenced by a proper transformation of sensory inputs to the increased number of input neurons on the first layer (bottom right). The results
are demonstrated for balancedmapping in (D2) as θ1′ = θ1, θ2′ = θ3, θ2 = 0, θ4 = 0 which outperform the naive mapping θ1′ = θ1, θ2′ = θ2, θ3 = 0, θ4 = 0 depicted in (D1). All
results are the mean of 25 mappings. (C) A layer-wise linear mapping with λ = 50 is not optimal, but strongest correlations can be found between corresponding layers.
This is represented in the higher diagonal values in the table of normalized average layer distances on bottom left. Here, layers 1 and 6 show best mapping (initialization
with six layers each 256 neurons before pruning and random nets with average pruned network size of s = [46 22 16 13 8 20] neurons per layer).
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L(K)i of the source network when starting in some uniformly
random neuron in the jth layer L(M)

j of the target network.

Pij ≔
1

|L M( )
j | ∑

k∈L K( )
i

∑
m∈L M( )

j

Pkm

|pm|L1
. (9)

6.2 Results
For each robot manipulator with two, three, and four joints and
M = 5 networks are first trained and then pruned in three steps
before we analyze all possible mappings “a-b” between the
respective sets. A set of validation inputs XV is generated for
m = 300 sample episodes of the target network and metrics
evaluated. As a baseline, we map all three joint manipulator agent
networks with an initial neuron count of 256 for each of the six
hidden fully connected layers, among each other. As expected, as
baseline mappings of networks to themselves (referred to as
reflexive mapping) show zero error and saturation and
coverage of 1 (Figure 6). However, greedy mapping shows a
high normalized error and low coverage when compared to the
linear mapping and thus is considered an inferior approach. In
this baseline, we extract linear mapping with regularization
strength of λ = 50 as the best metric as it indicates coverage
and normalized error most significant on trained in contrast to
random networks. Layer-wise linear projection (λ = 50) is not
optimal, but we observe the best mapping to the respective layers,
shown on the diagonal axis in the table of Figure 6 (middle left).
Here, layers one and six show the strongest correlation

presumably due to increasingly specialized neurons at the
input and output of the network.

Linear mapping (λ = 50) has been applied between sets of two-,
three-, and four-joint robot manipulators (Figure 6middle right);
random networks are initialized by the average network size of
the respective joint count as evaluated with pruning. Scenarios 3-
4 and 4-3 show similar prediction errors but indicate a higher
mean error than 4-2 mappings. Latter mapping performs similar
to the baseline, which might be induced by the fact that we
transform inputs in a balanced way so that the four-joint arm can
act like a two-joint arm (figure on the right, we choose the
transformation 4b). It shows lower coverage of the source
network, which is partially related to the fixed input channels
for the source networks after input transformation. The worst
performance in terms of prediction error results from scenario 2-
4 where the two-joint manipulator networks are barely able to
replicate the behavior of the four joint networks. Generally, the
more distinct the robots the worse the mapping, except input
transformation is implemented in a meaningful way. More
complex networks map slightly better into less complex one,
as compared to the opposite way round.

A deeper insight into how the source network is used can be
drawn from mean layer-wise projections (Figure 7). The baseline
scenario 3-3 shows more significant correlation to its respective
layer, the closer it is to the input or output. The first layers of 3-4 and
4-3 mappings seem to follow the behavior of the baseline, whereas
the deeper layers show no significant correlation. Contrary to the
performance of the overall metrics, scenario 4-2 shows no strong

FIGURE 7 |Mean layer-to-layer projections: networks trained for robots with similar degrees of freedom show better layer-to-layer mappings. The first layer of the
source network shows high utilization for mappings to all other layers, and the penultimate layer is the most unlikely to be utilized. The middle layer maps reasonably well
for 4-3 and 3-4 mappings, and more distinct robots as 4-2 and strongest in 2-4 mostly utilize first layer neurons only.
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layer-wise correlation, which is even worse in the inverted 2-4
mapping. If layers do not map well, all target layers tend to map
to the lower layers, especially the first layer (most prominent in 2-4
mappings) of the source network; only a small tendency is visible of
the output layer mapping to other output layers. We hypothesize
that this phenomenon is credited to first layers having the highest
neuron count and activation variance. Overall, we do find that a
goodmapping correlation when the source network is able to imitate
the behavior of the target network, a suitable input transformation
turned out to be crucial here. 4-2 mappings showed the lowest error,
but networks trained on three- and four-joint networks map better
into their respective layer.

7 CONCLUSION

In this study, we analyzed individual neuron activation within and
correlations between neural networks trained for goal reaching of
vertical space robot manipulators with two, three, and four joints.
We analyzed and classified the activation in order to implement a
pruning algorithm that removes redundant neurons and increases
information density in the network. Finally, we analyzed correlations
between the overall and layer-wise neuron activation of networks
trained on robots with different joint number by projection
mapping. Our results demonstrate that networks develop distinct
activation patterns on individual neuron layers with bell-shaped
distribution of activation densities. This distribution is compressed
by our pruning algorithm that merges similar neuron activation
classes mostly on the inner network layers. Networks trained for
robots with only small joint number difference show a good layer-
wise correlation of neuron activation. The more distinct the robot
kinematic is in terms of joint number, the more important is a
proper input transformation that fits the different network input
layers. Here, mapping among equivalent network layers turns out
less strong and instead dominant mapping to the first network layer
is revealed. All experiments are benchmarked by comparison against
untrained networks and self-correlations for multiple networks
trained for the same task. Our results help to improve
explainability of reinforcement learning in neural networks for

robot motion learning and highlight network structures that can
be reused on similar tasks after pretraining. The experiments
conducted are limited to robot manipulators of 2–4 joints acting
in a vertical plane, and as mapping quality is decreasing with greater
joint distance number, we would expect worse mapping quality
when additional joints are added. However, the underlying
methodologies and workflow we present incorporating network
pruning and mapping could be transferred to other
reinforcement learning tasks and other robotic configuration
setups as well. Analysis of neuron activation has been introduced
in other contexts before; here, we utilize it for the analysis of the
specific use case of vertical space robotmanipulation. In future work,
our pruning algorithm will be extended to also reduce the overall
number of layers, and we will analyze additional network parameters
and examine experimentally the reuse of network structures with
good correlation. While our work focuses on homogeneous robot
kinematics, we may also extend and evaluate the introduced
mapping procedure to non-homogeneous kinematics.
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