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Evaluating the dexterity of human and robotic hands through appropriate benchmarks,
scores, and metrics is of paramount importance for determining how skillful humans are
and for designing and developing new bioinspired or even biomimetic end-effectors (e.g.,
robotic grippers and hands). Dexterity tests have been used in industrial and medical
settings to assess how dexterous the hands of workers and surgeons are as well as in
robotic rehabilitation settings to determine the improvement or deterioration of the hand
function after a stroke or a surgery. In robotics, having a comprehensive dexterity test can
allow us to evaluate and compare grippers and hands irrespectively of their design
characteristics. However, there is a lack of well defined metrics, benchmarks, and
tests that quantify robot dexterity. Previous work has focused on a number of widely
accepted functional tests that are used for the evaluation of manual dexterity and human
hand function improvement post injury. Each of these tests focuses on a different set of
specific tasks and objects. Deriving from these tests, this work proposes a new modular,
affordable, accessible, open-source dexterity test for both humans and robots. This test
evaluates the grasping and manipulation capabilities by combining the features and best
practices of the aforementioned tests, as well as new task categories specifically designed
to evaluate dexterous manipulation capabilities. The dexterity test and the accompanying
benchmarks allow us to determine the overall hand function recovery and dexterity of
robotic end-effectors with ease. More precisely, a dexterity score that ranges from 0
(simplistic, non-dexterous system) to 1 (human-like system) is calculated using the
weighted sum of the accuracy and task execution speed subscores. It should also be
noted that the dexterity of a robotic system can be evaluated assessing the efficiency of
either the robotic hardware, or the robotic perception system, or both. The test and the
benchmarks proposed in the study have been validated using extensive human and robot
trials. The human trials have been used to determine the baseline scores for the evaluation
system. The results show that the time required to complete the tasks reduces significantly
with trials indicating a clear learning curve in mastering the dexterous manipulation
capabilities associated with the imposed tasks. Finally, the time required to complete
the tasks with restricted tactile feedback is significantly higher indicating its importance.
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1 INTRODUCTION

Over the last decade a plethora of studies have focused on the
development of dexterous robotic grippers and hands. However,
the lack of a standardised definition and methods or tools for
assessing and evaluating dexterity has resulted in researchers
considering increased adherence to human-likeness to also offer
increased dexterity, as discussed in (Liarokapis et al., 2013). This
can be particularly attributed to the lack of appropriate dexterity
metrics that properly define the various aspects of dexterity and
quantify how dexterous specific robotic end-effectors are
(Farrugia and Saliba, 2006). A tool or method for evaluating
dexterity is of paramount necessity not only for designing new
highly capable robotic end-effectors, but also for evaluating the
skillfulness of humans in a variety of settings and application
domains. Examples of such applications include, post injury
rehabilitation assessment and standard skill assessment for
specific professions (e.g., surgeons, pilots, construction
workers etc.).

Human hand dexterity is generally defined as the ability of the
hand to perform a desired motor task precisely and deftly with
ease and skillfulness (Latash and Latash, 1994; Canning et al.,
2000). Various functional evaluation tests have been employed by
researchers over the years to assess and evaluate the dexterity of
the human hand (Poirier, 1988). These tests can quantify the
functional performance of human hands based on the ability of
subjects to complete a wide range of tasks and industry specific
tests. The outcomes of these dexterity tests can also serve as a
valid indication of residual hand function after a severe injury or
stroke in addition to being an evaluation of skillfulness. It is a
common practice in industrial settings to use these dexterity tests
for the purpose of screening and selection by evaluating the
workers’ manual dexterity potential. The degree of improvement
or the deterioration of hand functions during rehabilitation can
also be determined by clinicians and researchers employing such
tests (Chen et al., 2009). However, each of these tests is limited to
a specific object range and task category. Also, most of these tests
rely on stationary platforms and require the task to be completed
in only one specific orientation. It is evident based on the analysis
and discussion of the related work that there are a number of
significant hand assessment tests that evaluate specific aspects of
dexterity. However, there is a lack of comprehensive, holistic tests
that evaluate dexterity as a whole and can be adapted to evaluate
the capabilities of both robotic grippers and hands as well as
human hands.

Robotic dexterity is generally being defined as the “capability
of changing the position and orientation of the manipulated object
from a given reference configuration to a different one” (Bicchi,
2000). The structure of robotic grippers vary widely from simple
two fingered parallel-jaw grippers to highly complex
anthropomorphic hands. Even within a class of grippers the
design parameters vary widely. These variations have resulted
in the lack of a common evaluation platform, benchmarks,

metrics, and scores to evaluate the dexterity of robotic hands.
Hence, there is a need for a dexterity assessment test that can
evaluate the performance of robotic end-effectors, irrespectively
of their design parameters. This need has also been identified in a
roadmap that discusses the measurement science progress in
quantifying robotic dexterity (Falco et al., 2014).

The various factors that contribute to robot dexterity are: 1)
the dexterity and skillfulness of robotic hardware components
and 2) the effectiveness of the perception and control system
employed by the robotic system in the execution of dexterous
tasks. The hardware component dexterity takes into account all
the physical properties of the robotic gripper or hand, such as the
mechanical design, the available degrees of freedom, the force
exertion capabilities, the frictional properties etc., that contribute
directly towards the grasping and manipulation performance of
the system. The perception system on the other hand
encompasses all the data that is captured and analyzed based
on the information collected from the environment/surroundings
of the robot, affecting the performance of the planning and
control schemes of the robotic hardware system. In general,
advanced sensing systems and complex control architectures
have been deemed necessary for the execution of robust grasps
and for the successful manipulation of a wide range of
everyday life objects. However, a number of recent studies
have demonstrated dexterous in-hand manipulation
capabilities by employing underactuated, adaptive robot
hands with minimal sensing and simple control schemes
(Odhner and Dollar, 2015; Liarokapis and Dollar, 2016).
The lack of commonly accepted methodologies to compare
new algorithms and hardware across different robotic
platforms is a topic of discussion in various workshops and
forums organized by the robotic grasping and manipulation
community (Quispe et al., 2018; IROS, 2020a). Our previous
work involved developing a series of tests to evaluate dexterity
of humans and robotic grippers on a static platform
(Elangovan et al., 2020). We have expanded the work to
include a dynamic environment and more complex
manipulation tasks. In particular, in this work, we propose:

• A modular, accessible, open-source dexterity test that
consists of a horizontal and vertical rig on which the
manipulation tasks are to be performed. The rigs are
mounted on a rotating module to simulate assembly task
environments that require the tasks to be performed in
varying orientations or in dynamic situations with varying
obstacle spaces.

• A comprehensive set of tasks that evaluate the grasping and
manipulation capabilities, and therefore the dexterity, of
human and robotic hands. The proposed tasks range from
simple pick and place to complex dexterous
manipulation tasks.

• Evaluation protocols that provide quantitative dexterity
metrics based on success rates and speed efficiency.
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• A baseline score based on the analysis of human trials with
and without tactile feedback.

The proposed dexterity test can serve as a valuable evaluation
tool for determining the manual dexterity of human hands and
for measuring the improvement in human hand function post
injury. It can also evaluate the performance of robotic hands
based on their ability to complete a task irrespectively of their
individual design parameters, control systems, and sensing
capabilities. The proposed dexterity test uses well defined
measures of success (ability to complete a task successfully)
and speed efficiency (time taken to perform a set of tasks)
(Quispe et al., 2018), to calculate the overall performance of
the human hand and robotic grippers.

The rest of the paper is organised as follows: Section 2 presents
the related work that focuses on benchmarking dexterity, Section
3 presents the design of the dexterity test, Section 4 introduces
the dexterity metrics used for the formulation of the
benchmarking system, Section 5 discusses the validation of
protocols and the baseline scores generated from human and
robot experiments, while Section 6 concludes the paper and
discusses some potential future directions.

2 RELATED WORK

A plethora of dexterity tests have been proposed in literature to
assess the dexterity and functionality of human hands (Yancosek
and Howell, 2009). The development of such tests has helped in
evaluation of manual dexterity and contribution of various hand
anatomy attributes towards functional performance. These tests
have also been adopted by studies focusing on the development of
anthropomorphic hands to determine the degree of
anthropomorphism and manual dexterity (Farrugia and Saliba,
2006). Each of these dexterity tests require the human hand to use
various strategies for the successful grasping and manipulation of
objects of specific shapes and sizes. The most commonly used
assessment, the functional dexterity test (FDT) requires the hands
to pick up cylindrical pegs placed in holes of a peg board and
invert them. The ability of the user in performing a dynamic
three-jaw chuck prehension is evaluated in (Aaron and Jansen,
2003). This is a common form of a pegboard test. Tests like the
Purdue pegboard test, the Tweezers dexterity test, the Minnesota
manual dexterity test among others are common variations of the
peg board test (Buddenberg and Davis, 2000; Lundergan et al.,
2007; Wang et al., 2011; Wang et al., 2018). All of these tests
involve cylindrical pegs of various sizes ranging from small
cylindrical pins (that need to be manipulated with tweezers) to
huge cylindrical wooden pegs, to be picked, manipulated, and
placed in holes on the peg board. These tests evaluate the speed
and accuracy with which the hands being evaluated can pick,
place, turn, and assemble. Another variation of the pegboard test,
the grooved pegboard test requires the hands to place grooved
metallic pegs into key holes that vary in orientations across the
peg board (Wang et al., 2011). Hence, the hands need to re-orient
the metallic pegs such that the pegs are aligned with the key holes
prior to insertion.

The ASTM international has proposed a grasping dexterity
test that evaluates a manipulator’s dexterity based on its ability to
retrieve various blocks from a confined environment made up of
an alcove composed of three shelves (Jacoff and Messina, 2007).
The overall ability of the manipulator is determined based on the
speed with which it can retrieve objects placed randomly in
orientations that are not necessarily configured for the
manipulator. Roeder manipulative aptitude test is another
dexterity test that focuses on finger dexterity and speed in
manipulating four fine components: rods, caps, bolts, and
washers (Roeder, 1967; Çakıt et al., 2016). The first phase of
the test involves screwing a rod onto the board followed by
screwing a cap onto the rod within a fixed time period. The next
phase of the test requires adding a bolt and washer alternatively to
the T-bar mounted on the board. Furthermore, the hand-tool
dexterity test can be used to evaluate the hands ability to use tools
such as wrenches and screwdrivers (Bennett, 1965). The
apparatus consists of two upright walls with one wall mounted
with nuts, bolts, and washers. The time required by the subject to
successfully move these components from the given wall to the
other determines the tool dexterity score. Each of these tests is
specific to particular object shapes and sizes and hence cannot be
accepted as a generic dexterity score. Moreover, all these tests are
performed on a stationary board/rig that has a fixed orientation
throughout the evaluation. This is far from real world scenarios
where the hands will need to adapt to wide range of orientations.
Hence, in order to successfully evaluate the human hand
function, tasks presented should require the hand to perform
tasks in wide range of hand configurations or even in a dynamic
environment with a dynamic obstacle space. These functionality
evaluation tests have been adopted by studies focusing on
anthropomorphic robots to quantify the dexterity of robotic
grippers, comparing them with their human counterparts
(Farrugia and Saliba, 2006; Saliba et al., 2013). A taxonomy of
robotic manipulation benchmarks derived from the
aforementioned studies has been proposed by Quisepe et al.,
classifying robot dexterity tests with three levels of increasing
complexity: physical, dexterity, and functional tests (Quispe et al.,
2018).

There are also certain evaluation tests developed exclusively
for robotic dexterity evaluation that can be broadly classified into
component benchmarking and system benchmarking. These tests
require the robotic grippers to perform a set of manipulation
tasks with a variety of objects under varying circumstances. As the
name suggests, the component benchmarking focuses on specific
components used for robotic grasping like the perception,
control, mechanical hardware design etc. The system
benchmarking on the other hand evaluates the capability of a
complete robotic system as a whole to successfully execute tasks
and has been the focus of a number of studies. Benchmarking
studies pivot around the reproducability, adaptability, and
scalability of the benchmarking environments and procedures
to various platforms (Bonsignorio and Del Pobil, 2015). Hence,
studies have focused on standardizing the testing platforms,
objects, environments, and software. The YCB benchmarking
system is considered one of the widely accepted benchmarking
systems that facilitates replicable research by providing a varied
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set of standardised objects as well as associated models for
evaluation and standardization of robotic end-effectors (Calli
et al., 2015a). A number of studies have proposed
benchmarking protocols that employ YCB object sets to
evaluate the capabilities of robotic grippers and hands (Calli
et al., 2015b; Yang et al., 2020).

A number of open-source simulation suites are available to
compare the control strategies and learning algorithms
irrespectively of their physical restrictions. Examples of such
suites include the Gazebo, ALE (Arcade learning
environment), openAI gym etc. They enable evaluation and
comparison of various learning strategies and control
algorithms independently of any physical restrictions (Koenig
and Howard, 2004; Bellemare et al., 2013; Brockman et al., 2016).
SURREAL is one such robotics suite that provides an accessible,
open-source benchmarking tasks for reproducible manipulation
research (Fan et al., 2018). Taking it further, PyRobot expands the
open-source benchmarking system to include physical robots in
addition to a Gazebo simulation suite thereby enabling the
evaluation of hardware independent APIs (Murali et al., 2019).
Some studies (ROBEL, REPLAB etc.) have also focused on
developing a standardised hardware system for the evaluation
of control strategies and learning algorithms irrespective of
hardware limitations (Ahn et al., 2020; Yang et al., 2019).

In recent years, a number of robotic competitions have been
organized with the intent to holistically evaluate different robotic
platforms based on their ability to perform a set of tasks
sequentially in a given, fixed environment. The DARPA
robotic challenge (DRC) for instance evaluated effective
manipulation as the key element in four of the eight tasks
involved (DARPA, 2020). The Amazon Robotic Challenge
(ARC) evaluates the capabilities of robotic grippers to pick
and stock objects in a semi-structured environment
representative of the shelves in an Amazon warehouse
(Corbato et al., 2018). The benchmarking of robotic systems
in manipulation and human-robot interaction in home
environments is the key focus of the Robocup @ home
competition that is organized by the Robocup initiative
(ROBOCUP, 2020). The competition required the robots to
manipulate objects of daily living positioned at predefined
locations in the Robocup@home arena which is a realistic
representation of an apartment setting consisting of various
configurations like the kitchen, living room etc.(Matamoros
et al., 2019). Similarly, a Robotic Grasping and Manipulation
Competition has been organized continuously as part of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) since 2016 (IROS, 2019; IROS, 2020c). The
competition focuses on the evaluation of the dexterity of
robotic grippers and hands based on benchmarking tasks.
These tasks are performed on a dedicated task board that
incorporates four representative classes of industrial assembly
tasks (IROS, 2020b).

A number of recent studies have proposed dexterity tests
consisting of various object sets with the objective to evaluate
and quantify specific aspects of dexterity. The features of these
tests and how they compare with the test proposed in this paper
are presented in the results section. Gonzalez et al., designed a

Variable Dexterity Test (VDT) that consists of four subtests, each
specifically designed to evaluate a particular type of grasp like the
precision, cylinder, spherical, and extended spherical (Gonzalez
et al., 2015). Another dexterity measurement kit proposed by
(Saraf and Bisht, 2020) focuses on evaluation of pinch grasping
capabilities of the fingers based on insertion, twisting, and locking
tasks on a spring loaded wooden box. A simple and fast dexterity
test for the evaluation of hand function called the peg test was
presented by Noël et al. (2011). More recently a 3D printed
platform that combined the features of multiple dexterity tests
like the Box and Block test (BBT), Nine-Hole Peg test (NHP), and
grooved peg board tests for the evaluation of fine manipulation
and grasping capabilities has been proposed (Wilson et al., 2021).

Despite the plethora of studies focusing on benchmarking
dexterity, there is a lack of commonly accepted evaluation
systems across the robotics community. Given the increasing
interests in the design and development of dexterous robotic
grippers and hands, there is a need for a common benchmarking
platform to quantify dexterity irrespectively of the design
parameters. In our previous work, we had proposed an
evaluation system that encompasses and builds upon
important characteristics from the various commonly accepted
dexterity evaluation methods reviewed (Elangovan et al., 2020).
We further expand this work to include more complex
manipulation tasks involving a dynamic rig that requires the
object orientation to be changed constantly and new set of
objects.

In particular, in this work, we propose a dexterity test that
can evaluate the performance of a plethora of end-effectors
solely on their task completion ability and speed of execution
irrespectively of individual design parameters like number of
fingers, actuators used, or control systems employed. Hence, it
can be used to benchmark different classes and types of
grippers and hands. For example, it can be used to evaluate
the efficiency of devices such as suction grippers, parallel jaw
grippers, two-fingered or three-fingered adaptive end-
effectors, and anthropomorphic robot hands among others.
The proposed dexterity test is equipped with both horizontal
and vertical components that contain regions of specific
manipulation tasks and objects that have been designed as
described in section 3. A key aspect of this test is the ability to
rotate, changing the position and orientation of the slots,
requiring the hand to re-orient and re-position the objects
in order to successfully complete the tasks. This simulates a
dynamic assembly environment. The most important
characteristic of the various benchmarking systems is a set
of standardised objects that is representative of the set of
objects encountered in industrial and home environments.
However, most of the manipulated objects have been
generally found to share similar characteristics (Matheus
and Dollar, 2010). This fact has also been corroborated by
Feix et al. that used video analysis of daily manipulation
activities executed by household workers and machinists.
Most of the objects manipulated by these workers had a
weight of less than 500 g and required a grasp width of less
than 70 mm (Feix et al., 2014). Deriving from these insights, a
set of standardised objects have been proposed for evaluation
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as described in section 3.1. The types of objects used (sizes,
shapes etc.) were chosen from state of the art dexterity tests
that were proposed to evaluate specific aspects of manual/gross
dexterity in rehabilitation and industrial settings. These tests
provide insights on a subject’s ability to perform activities of
daily living based on their performance in handling/
manipulating simple objects like cylindrical pegs, cuboid
blocks etc. For example, the Functional Dexterity Test
(FDT) can assess the subjects capability in executing
functional daily tasks involving any object that requires
three-jaw chuck prehension based on a simple test
performed with cylindrical pegs (Aaron and Jansen, 2003).
Although the simple shapes of the objects may result in simple
to secure grasps, the proposed tasks require the objects to be
manipulated and assembled onto a rig that could also be
moving. This requires the hands to re-orient the objects as
they approach the rig. The designated holes for the examined
objects have low tolerances during assembly. Thus, the
complexity of task and the dexterity required for its
execution are considerable. The complexity increases further
during the execution of fine-manipulation tasks like fastening
nuts onto bolts when they are in motion or performing thrust
and twist motions to screw threaded pins into heat inserts etc.,
Assembly and disassembly of the puzzle tasks also require the
hands to manipulate the outer covers of the puzzle by
navigating them through a complex trajectory track on the
inner block. Hence, this test can evaluate a wide range of
manipulation capabilities using the simple set of objects
proposed.

A set of standard operating procedures for task execution
during the evaluation tests has been prepared so as to ensure the
effectiveness of the benchmarking system. The sequence and

conditions in which the test needs to be carried out, are
presented in section 3.2 to ensure that the tests are organized
under sufficiently similar conditions. Each set of experiment is
repeated 3 times. The results of the three trials are used to
examine the effect of familiarity to the tasks and the effect of
mastering (over time) the manipulation capabilities. The
evaluation method is described in section 4 and the scoring
sheet is also made available. The proposed evaluation system is
validated and baseline scores for the evaluation system are
determined based on human evaluation trials and the results
are presented in section 5.

3 DESIGN OF DEXTERITY BOARD

The dexterity rig, as shown in Figure 1, is made up of a horizontal
plate (450 × 350 mm) that is split into nine manipulation regions
(HA1-HA9) and a vertical plate (350 × 200 mm)made up of three
manipulation areas (VA1-VA3) shown in Figure 2. Each plate
has a thickness of 10 mm. Each part of the regions is specific to a
given set of objects and tests. Corner brackets are used to attach
the vertical plate to the horizontal plate. The assembled test board
is mounted onto a rotating base unit using a gear and lazy Susan
mechanism that enables the entire test board to be rotated. The
base mechanism is equipped with a Dynamixel XM430-W350
motor with a pinion gear mounted on it to drive the gear attached
to the horizontal rig. This allows the test rig to be rotated at
varying speeds in either clockwise or anti-clockwise direction.
The base unit is fixed to a base plate that also has three inverted
caster wheels supporting the horizontal rig plate, enabling
smooth rotation of the rig. The exploded view of the proposed
mechanism showing the various parts comprising the test, is

FIGURE 1 | Prototype of the proposed dexterity test board that is equipped with a rotating basemechanism. The board is developed using plastic parts that are 3D
printed and acrylic parts that are fabricated using laser cutting.
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shown in Figure 3. The various regions of manipulation on the
horizontal and vertical plates are presented in Figure 2.

3.1 Objects
Custom 3D printed objects of varying shapes (cylinders, cuboids,
and grooved pegs) and sizes have been designed for tests MT01 -
MT13. The engraving on one face indicates the top side and is
useful for benchmarking orientation. Tests MT14- MT22 employ
standard threaded screws, washers, bolts, and nuts of three sizes
(small, medium, and large), providing the range over which the
robot hand needs to operate. Custom puzzles consisting of an
inner and outer puzzle are designed for tests MT23 and MT24.
The base of the inner puzzles can be screwed onto the horizontal
plates in HA3 and HA9 regions respectively. A compression
spring and an extension spring between the inner and outer
puzzles are used to examine the capability of the gripper to exert
sufficient forces during assembly and disassembly. Robot grippers
can plan the grasping and manipulation strategies using the 3D
models of the objects that are provided online. Table 1

summarizes the list of objects used, their dimensions, the
specific manipulation region on the horizontal/vertical plate
for the given task, as well as the task number, name, and
detailed description.

3.2 Manipulation Tasks
Twenty four benchmarking tasks have been broadly classified
into five manipulation categories. These tasks are numbered
MT01-MT24.

These tasks have been adapted from existing dexterity tests as
well as challenges designed to provide an insight of the hand
efficiency in assembly, packing, tool and machine operation, and
other jobs. The tasks are as follows:

• Simple Manipulation Tasks (MT01, MT03, MT05, MT07,
MT09, MT11): The initial positions and orientations of the
objects to be manipulated in both industrial settings and
home environments are generally randomized. To render
the testing conditions similar to this, cylindrical and

FIGURE 2 | Exploded view of the proposed dexterity test board.

FIGURE 3 |Manipulation regions/areas grouped based on the object being manipulated on: (A) the horizontal rig (HA1 - HA9) and (B) the vertical rig (VA1 - VA3).
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TABLE 1 | Dexterity test board components, regions, and task description grouped according to the five task categories and annotated with different colours.
Pick and place Re-orientation Fine manipulation Tool task Puzzle manipulation

Objects Object dimensions (mm) Manipulation
region

Task
#

Task name Task description

Small Cylinder 10 × 28 HA1 MT01 Placing Task Perceive, Grasp, Orient (Engraving on top), Position, Place

MT02 Turning Task Grasp, Re-orient vertically (z-axis), Engraving on bottom, Place

Medium Cylinder 20 × 38 HA2 MT03 Placing Task Perceive, Grasp, Orient (Engraving on top), Position, Place

MT04 Turning Task Grasp, Re-orient vertically (z-axis) Engraving on bottom, Place

Large Cylinder 40 × 38 HA3 MT05 Placing Task Perceive, Grasp, Orient (Engraving on top), Position, Place

MT06 Turning Task Grasp, Re-orient vertically (z-axis) Engraving on bottom, Place

Small Square 10 × 10 × 28 HA4 MT07 Placing Task Perceive, Grasp, Orient (Engraving on top), Position, Place

MT08 Turning Task Grasp, Re-orient vertically (z-axis) Engraving on bottom, Place

Medium Square 20 × 20 × 38 HA5 MT09 Placing Task Perceive, Grasp, Orient (Engraving on top), Position, Place

MT10 Turning Task Grasp, Re-orient vertically (z-axis) Engraving on bottom, Place

Large Square 40 × 40 × 38 HA6 MT11 Placing Task Perceive, Grasp, Orient (Engraving on top), Position, Place

MT12 Turning Task Grasp, Re-Orient vertically (z-axis), Engraving on bottom, Place

Grooved Peg 10 × 28 HA7 MT13 Orienting Task Perceive, Grasp, Orient (Engraving on top), Perceive, Re-orient (Key groove aligned to key hole),
Place

Threaded Pins M8 1.25 mm thread, 40 mm HA8 MT14 Thrust and Twist Perceive, Fine grasp, Orient, Position, Place, Thrust and Twist
MT15 Twist and Pull Perceive, Fine grasp, Twist and Pull, Position and Place

Washers and Nuts M6 or higher VA3 MT16 Insertion Task Perceive, Fine grasp, Orient (Concentric to M6 screw), Position, Place

M6 Bolt M6 1 mm thread, 60 mm VA3 MT17 Tool Task (Assemble) Grasp nut (robustly), Orient nut to bolt tip, Manipulate, Re-orient, Manipulate

VA3 MT8 Tool Task (Disassemble) Grasp nut (robustly), Orient, Manipulate, Re-orient, Manipulate

M10 Bolt M10 1.5 mm thread, 60 mm VA2 MT19 Tool Task (Assemble) Grasp nut (robustly), Orient nut to bolt tip, Manipulate, Re-orient, Manipulate

VA2 MT20 Tool Task (Disassemble) Grasp nut (robustly), Orient, Manipulate, Re-orient, Manipulate

M22 Bolt M22 2.5 mm thread, 60 mm VA1 MT21 Tool Task (Assemble) Grasp nut (robustly), Orient nut to bolt tip, Manipulate, Re-orient, Manipulate

VA1 MT22 Tool Task (Disassemble) Grasp tool (robustly), Orient tool tip to nut, Manipulate, Re-orient, Manipulate

Puzzle 1 Puzzle with Compression
Spring

HA9 MT23 Disassemble and
Assemble

Grasp puzzle, Rotate left/right, Lift (Disassemble), Rotate left/right and Push down (Assemble)

Puzzle 2 Puzzle With Extension Spring HA3 MT24 Disassemble and
Assemble

Grasp puzzle, Rotate left/right, Lift (Disassemble), Rotate left/right and Push down (Assemble)
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cuboidal objects of varying sizes are cluttered in random
initial orientation within the reachable workspace of the
robot. The robot gripper or hand is then needs to perceive,
pick these objects from a random initial pose, position them,
and place them in designated holes on the horizontal rig
with a specific orientation. Successful execution of these
tasks evaluates the gripper’s perception capability to identify
the initial position and orientation of the objects, planning
the best approach to grasp, orient the objects such that the
engraving is on top, and sequentially place them into
respective holes.

• Re-orientation Tasks (MT02, MT04, MT06, MT08, MT10,
MT12, MT13): One of the key manipulative skill of the
human hand lies in its ability to re-orient objects along one
or more axes within its workspace. The tasks in this category
examine the capability of the end-effector to grasp an object
from any given orientation, rotate the object along one or
more axes, and place the object in designated holes in a very
specific final orientation. The robot’s ability to successfully
complete the tasks serves as a direct indicator of its
perception of the position and orientation of object and
target hole during the reach to assemble phase, as they must
be aligned before the execution of the insertion task.
Cylindrical and cuboidal objects need to be inverted for
tasks MT02, MT04, MT06, MT08, MT10, and MT12 while
MT13 requires the reorientation and placement of grooved
pegs into key shaped holes.

• Fine Manipulation Tasks (Fine Component Manipulation
Tasks - Set A) (MT14, MT15, MT16): The tasks in these
category evaluate fine manipulation capabilities of fingers
and hands required for assembly and disassembly of fine
components such as washers and nuts. These tasks evaluate
the gripper’s ability to pick up small components (like nuts,
washers), orient them, and screw/fasten them onto other
components to create an assembly. Fine finger movements
like thrust and twist, and twist and pull motions are
evaluated in tests MT14 and MT15. The threaded pins
are placed in random initial orientation in the object
drop area. The gripper needs to grasp one threaded pin
at a time, orient them onto the designated holes with heat
inserts on the horizontal region (HA8), thrust and twist to
screw the pins in. The next task requires unscrewing the
threaded pins one at a time by twist and pull motions and
place them back in the object drop area. The final set of tasks
in this category require the gripper to grasp small
components (washers and nuts) placed in small trays in
the HA9 region of the board and insert them alternatively
onto a screw mounted in the VA3 region of the
vertical plate.

• Tool Tasks (Fine Component Manipulation Tasks - Set B)
(MT17 - MT22): These tasks are an extension of the arm-
hand manipulation tasks described above and require finer
control of small components to be completed. The tasks in
this category evaluate the dexterity associated with picking,
precision placement, assembling, disassembling, and fitting
together parts without any tools. These are complex tasks
that require the end-effector to robustly grasp fine

components such as nuts of varying sizes (small,
medium, and large), place them precisely onto tips of
screws that are mounted on the vertical rig, and tighten
them onto the screws as the rig is rotating. This is followed
by disassembling the nuts from the screws and placing them
back in the trays located in the HA9 region. The
components will have to be grasped robustly, and re-
oriented multiple times for the successful completion of
the task as the rotation of the rig causes the orientation of
the screws to vary continuously. The complexity of tasks in
this category require a high level of dexterity for successful
task execution. Hence, the rate of success and completion
time for this task category can serve as a valid indicator of
the gripper dexterity.

• Puzzle Manipulation Tasks (MT23 - MT24): These tasks
employ two cylindrical puzzles fixed onto horizontal
regions HA3 and HA9. Each puzzle is made up of an
inner and outer puzzle component attached to each other
with a compression spring (puzzle 1) and extension
spring (puzzle 2). Successful completion of the tasks
require the outer component to be grasped and
navigated through the puzzle engraved on the inner
component by manipulating it clockwise and anti-
clockwise, and lifting it all the way up until each
puzzle is completely disassembled. This needs to be
followed by assembling the puzzle back by guiding the
outer component through the puzzle route on the inner
component until the puzzle is completely assembled.

4 DEXTERITY METRICS

In this section, we introduce metrics based on the successful task
completion (ability) and rate of completion (speed) of the tasks.
The total score is then presented as a weighted average of these
individual scores. The final part of this section presents a ranking
and grading system that would allow easy comparison of grippers
and choose the ideal gripper for a particular set of tasks. The
metrics are as follows.

4.1 Successful Completion Score
Each of the tasks described in section 3.2 is repeated with four
objects sequentially and a point is awarded for each successful
completion. Hence, the score for any given task “i” can vary
between “0” to “4.” And Eq. 1 describes Ss (Successful completion
Score), the ability of the gripper to successfully complete all the
tasks.

Ss � 1
Pmax

∑n
i�1

Pi, (1)

Where n is the total number of tasks (24) and the term Pmax

denotes the maximum possible score that can be achieved by a
gripper completing all the n tasks and can be written as Pmax = 4n.
Pi is the number of objects successfully manipulated for the ith set
of task and can vary between “0” and “4.” The total points
achieved by a gripper ∑n

i�1Pi denotes the total score of
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successful completion and can be replaced by the term as Ptotal.
Eq. 1 can now be rewritten as,

Ss � Ptotal

Pmax
, (2)

Equation 2 provides us with a Successful completion score Ss
that varies between 0 and 1. The lower end of the scale
represents a non-dexterous device incapable of executing any
tasks and the higher end of the scale represents a highly
dexterous device capable of successfully executing all the
manipulation tasks.

4.2 Time Required Score
The metrics introduced in this section can be used to measure the
rate of task completion. Task completion time can vary between
each individual task depending on the objects, the initial
orientation of the objects, grasp planning, approach, and
manipulation strategy employed. Equation 3 provides St
(Time required score), the speed with which the gripper can
complete the tasks.

St � log Tmin( )
log ∑n

i�1Ti( ), (3)

Where Tmin is the minimum time taken for task completion
obtained from the human experiments. We consider human
performance as the baseline. The time required for completion
of ith task is given by Ti. The cumulative time taken for all n tasks
is calculated as∑n

i�1Ti and can be written as Ttotal. Equation 3 can
now be rewritten as,

St � log Tmin( )
log Ttotal( ), (4)

Equation 4 provides us with a time required for task
completion score St that varies between 0 and 1. A higher
time score St indicates the ability of the gripper to complete
the manipulation tasks at a faster rate and thus signifies better
dexterity.

4.3 Total Dexterity Score
The total dexterity score Stotal is calculated from the weighted sum
of successful completion score (Ss) and time required score (St).
This metric provides us with the combination of grippers ability
and speed in completing the various manipulation tasks. To allow
for easy comparison, the total score is presented on a percentage
scale ranging from 0 to 100% as shown in Eq. 5.

Stotal � wsSs + wtSt( ) p 100, (5)
Replacing the values of Ss and St, the equation can be

rewritten as,

Stotal � ws
Ptotal

Pmax
( ) + wt

log Tmin( )
log Ttotal( )( )( ) p 100, (6)

The weight constants for successful completion (ws) and time
(wt) are used to vary the importance of individual sub-score. The
sumof these constantsmust be equal to 1 (ws+wt= 1). If the weights
are assigned an equal value (0.5 each) the equation would distribute

equal importance to the ability and speed of task completion. In case
of evaluating the grippers ability to perform certain complex tasks
irrespective of time taken to complete them, a greater value could be
assigned to ws. The results are presented on a scale ranging from 0
(simplistic, non-dexterous system) to 1 (human-like, dexterous
system). This score represents the capabilities of a gripper or
hand to perform complex grasping and manipulation tasks
compared with the human hand, which is considered to be
Nature’s most effective and dexterous end-effector. If a gripper
can perform all the tasks successfully within the baseline time
determined by human experiments, the gripper is considered to
be highly dexterous exhibiting human-like grasping and
manipulation performance.

4.4 Dexterity Ranks and Grades
In order to classify and compare the robot grippers amongst each
other, a system of ranks and grades is introduced. This grading
system helps decide on the ideal gripper for a given set of tasks. The
ranks for the robot grippers can vary from “0 star” to “5 stars” (one
star corresponding to each task category). A robot gripper is awarded
one star on successful completion of all the tasks in a given task
category. No star is awarded if the gripper fails in executing any of
the tasks. Hence, a robot’s dexterity can be easily verified based on
the number of stars from “0 stars” (non-dexterous) to “5 stars” (most
dexterous). For example, if a hand can accomplish all the tasks in
three of the five task categories, its rank would be “3” stars. To
differentiate between hands that are equally ranked, a grading system
consisting of six grades is provided. If none of the tasks in a task
category can be executed, it is graded as “F” and an “A” is awarded
for grippers capable of completing all the tasks successfully. The
detailed grading system is presented in Table 2. This ranking and
grading system serves as an indicator of the robot’s overall
performance as well as its individual capabilities in successful
execution of various task categories. If the requirement is for a
simple pick and place tasks, an “1” star robotic gripper that has
graded “A” for pick and place task would be well suited rather than a
complex “5” starred gripper. Thus, this ranking and grading system
shall help identify grippers suitable for various needs and task
categories.

5 VALIDATION OF PROTOCOLS AND
BASELINE SCORE OF HUMAN TRIALS

The benchmarking protocols detailed in section 3 were
executed by humans to validate their efficiency and the

TABLE 2 | Grading system for the grippers based on successful task completion
in a given task category.

Tasks completed Grades

No tasks completed F
Tasks <1/3 (Ttotal) D
1/3 (Ttotal)<Tasks <2/3 (Ttotal) C
Tasks >2/3 (Ttotal) B
All tasks completed A
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results were calculated using Eqs 1, 3, 6 to obtain a dexterity
score. The average of these human hand experimental results
is used as a baseline score for comparison and evaluation of
human hand dexterity, as well for comparing the dexterity of
other robotic grippers and hands. This study recruited ten
healthy subjects whose arm lengths were 76.15 ± 4.48 cm. The
University of Auckland Human Participants Ethics
Committee approved this study study (reference number
#019043), and all participants gave informed consent. The
subjects sat in a comfortable position for the entire duration
of the experiments, with the forearm placed to the right of the
dexterity test as an initial configuration. Three sets of
experiments were performed by the subjects as shown in
Figure 4. Each subject repeated the tasks MT01 - MT24
sequentially for three trials for the first set of experiments
without gloves. The experiments were then repeated with a
padded palm, high grip glove for three trials to determine the
effect of reduced tactile sensing on dexterous manipulation
capabilities. For both the sets of experiments, the dexterity rig

was rotating at a constant speed of 3 RPM to examine the
subjects ability to adapt to a dynamic test environment in
terms of perception, planning, and manipulation capability.
A third set of experiments involved performing the tasks on a
stationary rig for three trials in order to determine the effect
of static against dynamic environments on the performance
of the participants. The detailed evaluation protocol with
explanatory images and scoring sheets, as well as the open-
source CAD files of the proposed dexterity test are provided
and can be downloaded from the following website: http://
www.newdexterity.org/dexteritytest

The particular website will also serve as a repository of the
scores and evaluations of various robotic hands and grippers.

5.1 Results and Discussion
The various features being evaluated in this study and how they
compare with other existing dexterity tests is shown in Table 3.
Figure 5 presents a visual representation of the tasks and the
results of the experimental trials corresponding to each of the five

FIGURE 4 | A subject performing experiments executing tasks of the dexterity test. The subfigures show: (A) the initial position of the hand and objects, (B) a
placing task, (C) a tool task, (D) a puzzle task. As shown in the images the orientation of the dexterity board constantly changes requiring the arm-hand system to adapt
to various orientations to complete the tasks successfully.
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TABLE 3 | Table comparing the test environment, object sets, and features being evaluated across various dexterity tests proposed in recent literature.

Studies Designed for Test
environment

Object
set

Task categories Obstacle

Humans Robots PP RO FM TT PT

Noël et al. (2011) ✓ vertical planes Plastic pegs ✓ N/A
Gonzalez et al. (2015) ✓ Two wooden Boards Custom made plastic objects (four sets) ✓ N/A
DARPA (2015) ✓ Four sequential courses Manipulation tasks of varying complexity (four

tasks)
✓ ✓ Stationary

ARC (2016), Corbato
et al. (2018)

✓ Shelving unit structured in 12
bins

Objects Representative of objects handled in
amazon warehouse (39 objects)

✓ ✓ Stationary

Saraf and Bisht (2020) ✓ Single holed, spring loaded
wooden box

3D printed Pegs ✓ ✓ ✓ N/A

IROS (2020d) ✓ Dedicated taskboard Objects Representing different classes of
Industrial assembly (four sets)

✓ ✓ ✓ ✓ Stationary

ROBOCUP (2020) ✓ Home Environment arena with
structured rooms

Categorized Objects (30 objects) ✓ ✓ Stationary

Wilson et al. (2021) ✓ 3D printed Platform 3D printed pegs ✓ ✓ Stationary
This study ✓ ✓ Dynamic board 3D printable Objects and standard bolts/nuts

(14 sets)
✓ ✓ ✓ ✓ ✓ Dynamic

The task categories are abbreviated as PP, Pick and Place, RO, Re-Orientation, FM, Fine Manipulation, TT, Tool Task, PM, Puzzle Manipulation.

FIGURE 5 | The time taken by 10 subjects to complete various manipulation tasks across three trials with and without gloves is presented for: (A) all tasks
combined, (B) simplemanipulation tasks, (C) re-orientation tasks, (D) finemanipulation tasks, (E) tool manipulation tasks, and (F) puzzle tasks. The figure also presents a
visual representation of the tasks from each of the five different task category.
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different task category. In order to determine the degree of
variation, we calculated the percentage co-efficient of variation
(%CV) for each of the completion time for each given task
category and the overall completion time using

%CVt � σt
μt
p100, (7)

Where, σt and μt are the standard deviation andmean for a given task
category t. The %CVt for the overall completion time for all the
participants across three trials was 13%. The %CV for all the
individual task categories were less than 20%. These values of %
CV signify low dispersion time across various subjects and trials and
helps in validating the efficiency of the experimental protocols across
various subjects. Hence, the values derived from these experiments
could be used as baseline score for human and robot dexterity
evaluation experiments. There was no significant correlation
between the arm length of the subjects and the performance for
the task categories examined in this study. It can also be noted from
the plots that the average time taken by the subjects to complete the
tests in each of the individual task category was significantly lower
than the time taken in the previous trial. The results are validated
using ANOVA to determine the statistical significance between the

trials. A p-value of 0.013 (less than the alpha value of significance,
0.05) for the total time taken to complete the tasks across the three
trials indicates that the time taken for successive trials decreases
significantly. This could be attributed to the subjects familiarity to the
tasks and hence indicates that dexterity improves with repetition.
Dexterity could then be considered a learned attribute that can be
improved by exercising specific sets of tasks.

In order to determine the effect of tactile sensing on the
dexterous manipulation capabilities, the experiments were
repeated with gloves on and the results are presented in
Figure 5. This had varying effects for various task categories,
as shown in Figure 6. The time taken to complete the pick and
place task category was identical with the gloves on and off. The
effect was most pronounced for finemanipulation tasks where the
average completion time was higher by 30% when performed
with the gloves. On the other hand, the puzzles could be solved
12% faster with the gloves on. Similar to the first set of
experiments, the tasks were completed faster when the trials
were repeated indicating the learning curve is effective in
improving dexterous manipulation even with the gloves on.
ANOVA resulted in a p-value of 0.0066 which is less than the
alpha value of significance (0.05) and one would reject the null

FIGURE 6 | Percentage change in manipulation time with gloves on for the various task category: Pick and Place (PP), Reorientation (RO), Fine Component
Manipulation (FC), Tool Task (TT), Puzzle Task (PT) and Total Time (TT).

TABLE 4 | Table presenting the baseline scores for the dexterity tests performed by a human with a glove and without a glove.

Task category No glove With glove

Average Time(s) Standard deviation Coefficient of
variance

Average time
(s)

Standard deviation Coeffecient of
variance

Total Time 452.10 57.65 12.67 500.31 64.46 12.72
Pick and Place 63.49 7.04 11.07 68.28 7.41 10.54
Reorientation 62.28 5.05 8.08 71.33 7.64 10.39
Fine Manipulation 51.20 5.61 7.55 66.04 5.84 6.24
Tool 253.51 44.76 17.52 275.21 43.55 15.72
Puzzle 20.72 4.55 21.95 19.44 3.31 14.71
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hypothesis, as there is strong evidence that the values between
trials differ. The percentage co-efficient of variation (%CV) for all
the individual tasks as well as the combined total time was under

20%. The results obtained from these two set of human
experiments is presented in Table 4. These results serve as the
baseline scores for the dexterity tests.

FIGURE 7 | Subfigure (A) presents a comparison of time taken by the subjects to complete various task category in seconds when the rig was static and in motion
(rotating). Subfigure (B) presents the percentage increase in completion time for the various task category when the rig was in motion. The task categories are: Pick and
Place (PP), Re-Orientation (RO), Fine Component Manipulation (FC), Tool Task (TT), Puzzle Task (PT), and Total Time (TT).

FIGURE 8 | A subject performing the experiments on the dexterity test board with a palm mounted interface to control a Multi Modal Parallel jaw gripper,
performing: (A) a placing task of a medium cylinder, (B) a placing task of a large cylinder, (C) a re-orientation task of a grooved peg.

FIGURE 9 | The comparison of time taken by the Multi Modal Parallel jaw gripper to complete tasks for objects of varying shapes and sizes, is presented. C, S, and
P stand for Cylinders, Squares and Pegs respectively. The subscripts s, m, l, g, denote small, medium, large, and grooved parts respectively.
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Further, a third set of experiments was performed for three
trials on a stationary rig to investigate how much dexterous
manipulation capability improved on a fixed rig as opposed to
when one in motion was used. The co-efficient of variation
for all the task categories was well under 13% indicating a
closer dispersion time across subjects in completing the tasks
on a stationary rig. The result of this experiment is presented
in Figure 7. It is clear from the plots that the task completion
time was faster on a stationary rig for all the task categories.
This effect was most prominent for the puzzle task which
took 40% more time when the rig was moving. As opposed to
this the fine manipulation task category was slower only by
7%. As with the previous set of experiments, the task
completion time decreased across the trials further
confirming the effects of learning curve on the execution
of dexterous manipulation tasks. The experiments were also
performed with a multi modal parallel gripper mounted on a
palm interface as shown in Figure 8 to determine the
dexterous manipulation capabilities of the gripper and to
investigate the effect of learning on manipulation capabilities
across trials. The gripper was unable to complete all the task
categories as it lacked the complex in-hand manipulation
capabilities required for successful task completion in these
categories. However, task completion time reduced
significantly with each consecutive trial for all the tasks
that could be successfully completed, as presented in
Figure 9. This further supports the argument that
dexterity can be learned and improved by performing a
particular set of tasks repeatedly. Figure 10 presents the
pie chart comparing the percentage of time taken by
human hand to complete the various tasks against the time
taken by the robotic gripper. As seen from the pie chart, the
human hands can complete the tasks in a very small fraction
of the time taken by the robotic grippers. This shows that
there is a huge room for improvement of robotic devices.

6 CONCLUSION

In this paper, we proposed a new modular, affordable, accessible
open-source dexterity test that evaluates the grasping and
manipulation capabilities of humans and robotic hands and

other end effectors by combining the features of multiple
human dexterity tests as well as new task categories
specifically designed for robots. These tests help quantify the
manual dexterity of humans apart from evaluating the human
hand function improvement post injury. The features frommany
existing hand function tests, along with new features such as the
rotating module and the dexterity puzzles make this test one of
the most comprehensive dexterity evaluation systems. Apart
from this, the test also involves benchmarking tasks that
evaluate key robotic manipulation capabilities identified from
literature and robotic challenges. A set of dexterity metrics have
also been proposed that quantify the dexterity of robot grippers
and hands by evaluating their ability to complete these tasks on a
scale ranging from 0 (simplistic, non-dexterous system) to 1
(human-like, dexterous system). The scores are based on the
hands’ ability to complete the tasks successfully with accuracy
and precision, as well as the speed at which the tasks can be
executed. The weighted sum of the successful completion and
speed of completion is used to obtain the final dexterity score.
Further alternative measures in the form of dexterity ranks and
grades enable comparison of various grippers and their
manipulation capability in an intuitive manner irrespectively
of their individual design parameters. Thus, the proposed
dexterity test and metrics provide researchers around the
world with benchmarking methods and tools that can be
easily replicated to quantify the ability of robotic end-effectors
to perform complex tasks effectively, allowing the comparison
of their grippers against various classes of grippers. The
accompanying website shall serve as an open access
repository of dexterity scores for robot hands and grippers
as well as an open-source initiative for the dissemination of
the dexterity test designs. The various evaluation methods
proposed in the study have been validated using human
trials. The output of these trials has been used to quantify
dexterity based on the scoring methodology proposed. The
importance of tactile feedback in performing these
evaluations is also examined by performing the tasks with
a padded glove and the results are presented. From the
results, it is clearly evident that the task completion time
decreases with trials for both set of experiments, indicating
that a clear learning curve exists and that humans perform
better after practising. The subjects took significantly longer

FIGURE 10 | This pie chart presents a comparison of the time taken by the robotic grippers against human hands for executing tasks with objects of varying shapes
and sizes. C, S and P stand for Cylinders, Squares and Pegs respectively. The Subscripts s, m, l, g denote small, medium, large, and grooved objects respectively.
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to complete the tasks with the padded gloves. This clearly
shows the importance of tactile feedback in performing
dexterous manipulation. It is also clear from the robot
gripper experiments that the human hands can complete
the tasks in a very small fraction of the time taken by the
robotic grippers indicating that there is a huge room for
improvement of robotic devices.
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