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The development of new sensory and robotic technologies in recent years and the increase
in the consumption of organic vegetables have allowed the generation of specific
applications around precision agriculture seeking to satisfy market demand. This article
analyzes the use and advantages of specific optical sensory systems for data acquisition
and processing in precision agriculture for Robotic Fertilization process. The SUREVEG
project evaluates the benefits of growing vegetables in rows, using different technological
tools like sensors, embedded systems, and robots, for this purpose. A robotic platform
has been developed consisting of Laser Sick AG LMS100 × 3, Multispectral, RGB sensors,
and a robotic arm equipped with a fertilization system. Tests have been developed with the
robotic platform in cabbage and red cabbage crops, information captured with the
different sensors, allowed to reconstruct rows crops and extract information for
fertilization with the robotic arm. The main advantages of each sensory have been
analyzed with an quantitative comparison, based on information provided by each one;
such as Normalized Difference Vegetation Index index, RGB Histograms, Point Cloud
Clusters). Robot Operating System processes this information to generate trajectory
planning with the robotic arm and apply the individual treatment in plants. Main results
show that the vegetable characterization has been carried out with an efficiency of 93.1%
using Point Cloud processing, while the vegetable detection has obtained an error of 4.6%
through RGB images.
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1 INTRODUCTION

The increase in organic vegetable consumption and the search for more sustainable and
environmentally friendly agriculture have triggered factors to give rise to new technologies to
optimize vegetable cultivation and treatment processes for supplying the constant market demand
(Pachapur et al., 2020; Balkrishna, 2021; Lichtfouse, 2021; Linaza et al., 2021; Singh, 2021). These
processes are mainly focused on the detection, irrigation, fertilization of vegetables and fruits during
their growth and harvest phases (Gonzalez-de Santos et al., 2020; Tang et al., 2020; Wu et al., 2021).

Conventional fertilization systems focus on spraying vast cultivation areas using sophisticated and
expensive irrigation equipment, covering even large hectares. (Abd El-Azeim et al., 2020; Mingotte
et al., 2021). However, these systems do not consider the plants’ specific needs, nor are they eco-
friendly with the soil, which over time can cause its degeneration and erosion. (Tripathi et al., 2020;
Tudi et al., 2021; Kashyap et al., 2021; Fentahun Adametie, 2020).
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The main precision agriculture applications nowadays use
optical sensors such as multispectral cameras, laser-type
sensors, and RGB (Red, Green, and Blue) cameras. (Qiu et al.,
2019; Hemming and Rath, 2001; Puri et al., 2017; Saddik et al.,
2021; Mathew et al., 2021; Tellaeche et al., 2011).

The main developments carried out with multispectral
cameras are based on the vegetative analysis of plant growth,
using NDVI indices, which have been shown to provide relevant
information for making decisions in fertilization applications.
(Paoletti et al., 2019; Cardim Ferreira Lima et al., 2020; Lu et al.,
2020; Zhou et al., 2021).

On the other hand, the main applications of laser-type sensors
are reconstructing vegetative environments for their analysis
using clustering techniques and point cloud processing. (Krus
et al., 2020; Mesas-Carrascosa et al., 2020; Cruz Ulloa et al., 2021;
Schunck et al., 2021).

This work has been developed as part of the Sureveg
project, which uses leading-edge technologies, such as
sensors, robotic systems, and control boards with
embedded processing capacity to improve row crop
production. Sureveg (2020).

A robotic platform equipped with sensory systems and a
robotic actuator has been implemented to validate this proof
of concept. Evaluating the advantages of using these three types of
sensors (RGB, Multispectral, and Laser).

The main contribution of this work focuses on qualitatively
and quantitatively analyzing the use of laser sensors and
multispectral and RGB cameras to influence extracting crop
characteristics, obtaining relevant information (NDVI index,
RGB Histograms, Point Cloud Clusters) about the status of
each plant within the crop row for subsequent decision-
making in a robotic fertilization process.

The tests carried out to validate the proposed method have
been executed at ETSIAAB-UPM, different rows have been
planted with cabbage and red cabbage. The tests have been
carried out during different stages of plant growth to collect
data. The main results show that the information provided by
these sensors and their combination allows optimizing the
selective process of vegetables that require the application of
fertilizer.

This work is structured as follows: in materials and methods,
Section 2, the experimental fields, and the hardware and software
are introduced in detail, followed by the results in Section 3.
Finally, the conclusions in Section 4 summarize the main
findings.

2 MATERIALS AND METHODS

2.1 Hardware and Field Test
The different components used in this work are shown in Table 1.
The components have been assembled on the platform shown in
Figure 1 (platform on a row of cabbage).

The robotic platform (Figure 1) was assembled using
Aluminum profiles (40x40), with four wheels to move along
the crop field. The platform consists of an actuation system
(Robot Igus CPR 5DOF + nozzle) and a sensory system
capable of acquiring data from the cultures through a lidar
system, RGB camera, and Multispectral camera (green
(550 nm), red (660 nm), red edge (735 nm), near-infrared
(790 nm), RGB (1,280 × 960 pixels)). The kinematic rig
configuration is based on a four-wheel differential model.

Sensory processing has been carried out using the Jetson
Xavier card and the control of actuation systems through the
Jetson Nano card. The data processing and information gathering
algorithms have been executed through ROS.

Field test were developed in the crops of ETSIAAB - UPM
(40°26′38.9″N 3°44′19.3″W). Where rows have been grown
with cabbage and red cabbage, different studies related to
the Sureveg project have been previously developed
focused on:

TABLE 1 | Mobile platform components.

Number Component Amount Description

1 Robotic Arm Igus CPR 5DOF 1 Actuator
2 Parrot Sequoia 1 Multi-spectral camera
3 daA4200-30mci-NVJET-NVDK 1 RGB Camera
4 Fertilizer deposit, pump and nozzle 1 Fertilization system
5 PC, Jetson Nano and Jetson Xavier 3 ROS Control System
6 Control box 1 Electrical system
7 Lidar (SICK AG LMS100) 3 2D Laser Sensor
8 Wheelded Aluminum Structure 1 Mobile platform

FIGURE 1 | Mobile robotic platform in a cabbage row.
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• Application of multispectral images to develop fertilization
strategies and monitoring the state of vegetables in Cardim
Ferreira Lima et al. (2020).

• Reconstruction and analysis of multispectral images in crop
rows in Krus et al. (2021).

• Acquisition of vegetable characteristics in cultivation rows
through a lidar system in Krus et al. (2020).

• The platform location system within the crop using a point
cloud processing based system described in Cruz Ulloa et al.
(2021).

2.2 Methods
The different crop rows have been reconstructed using the three
types of sensors: laser (point clouds), RGB camera, and
Multispectral camera (mosaics). This reconstruction has
developed by moving the platform along the entire row at a
speed of 0.1 m/s. Figure 2A shows the laser sensors arrangement
on the platform and coverage range for the point cloud
acquisition process of a row (cabbage). The data captured by
each sensor are integrated as a function platform advance,
measured by an encoder. Figure 2B shows a partial section of
the row crop captured.

The information captured has been processed using the
strategies described below, extracting relevant information
from each information source.

Lidar System fulfils is to help with the location within the
environment, since although the plants do not have a complex
morphology, the process of location outdoors is complex.
Specially in areas with denied GPS.

2.2.1 Crop Row Reconstruction and Point Cloud
Analysis
Laser data from Sick sensors has been captured with a
resolution of 1 mm during the advancement of the platform,
supported with the use of an encoder to measure the platform
advance. Figure 3A shows a reconstructed cabbage culture row
using this method.

From the point cloud of the row, the individual clusters (point
cloud of each floor) have been extracted. These individual clusters
allow us to know their centroid characteristics, height, width,
length, and location in the crop row. Figure 3B, shows one of the
clusters extracted from the row.

The following iterative method has been applied to obtain the
individual clusters, which comprises different stages such as:

• Soil elimination through thresholding of heights.
• Outliers extraction.
• Application of the unsupervised learning method
(K-means) for clustering described according to
Equation (1) (Qi et al., 2017). Segmenting the

FIGURE 2 | (A) Arrange laser sensors on the platform and coverage range for the point cloud acquisition process (B) Partial reconstruction of a crop row according
to the advance of the robotic platform.

FIGURE 3 | (A) Reconstruction of a cabbage crop row (B) Individual cluster of a cabbage plant.
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resulting data, grouping them in clusters and defining
their centroids, for the subsequent treatment in the
fertilization phase.

The first part of the K-means iterative method, takes the rows
and assigns them to the nearest centroid based on the Euclidean
square distance. The second part consists of recalculating the
centroids of each group, based on each cluster mean assigned in
the previous iteration.

This process is executed cyclically until it detects if there are no
changes in the newly assigned groups, if several iterations are met
or the minimizing sum of squared error SSE criterion is met,
given by Equation (1).

SSE � ∑
k

j�1
∑
n

i�1
δij pi −mj

����
����2 (1)

Where, k is the number of clusters, n the clusters number of
points (j), ‖ii −mj‖ the distance between pi the analyzed point
and mj the center of the cluster.

The method’s effectiveness has been evaluated based on the
mean error obtained from the parameters obtained by each
cluster’s algorithm (radius and height) concerning the values
quantified with field measurement instruments (graduated pole).

2.2.2 RGB Mosaic Analysis
Figure 4 shows the reconstruction of the cabbage and red cabbage
rows for both RGB images (Figure 4A,C,E) and corresponding
Multispectrals (Figure 4B,D,F). The methodology for RGB and
Multispectral row reconstruction mosaic has been previously
developed in (Krus et al., 2021).

RGB images make it possible to automatically detect the
vegetables within the crop row through computer vision

FIGURE 4 | Rgb (A,C,E) and Multispectral (B,D,F) crop row mosaics.
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techniques and, above all, based on the information provided by
the histograms of the Green color channel.

Depending on the extracted color channel, dynamic
thresholds have been established in the histogram, considering
the area that covers the highest concentration of channel
information within the histogram. 70% of the histogram
information has been taken around the zone of maximum
concentration. Values outside this range have been considered
to correspond to weeds, so they have been discarded.

Classical vision techniques have been applied for
processing, such as erosion-expansion filters, thresholding,
segmentation, and edge detection. Finally, a mask is
obtained with the detected vegetables, applied to the
original image to show the detection results. The error of
the number of vegetables detected in each row, concerning
the total number of vegetables counted, has been analyzed to
evaluate the efficiency of the detection.

2.2.3 Multispectral Analysis of Crop Rows
The multispectral images will be used to evaluate if the plants
need the application of fertilizer based on the NDVI (Normalized
Difference Vegetation Index) analysis. They are measuring green
vegetation through a normalized ratio ranging from -1 to 1.
(Paoletti et al., 2019; Moriarty et al., 2019).

This parameter is calculated based on Eq. (2) (Cardim Ferreira
Lima et al., 2020). Where the indices NIR(Near-InfraRed), RED
(Red Edge) are involved.

NDVI � NIR − RED

NIR + RED
(2)

Depending on the plants detected in the previous section, the
same mask can be established (used to detect plants within the
row), separating each plant from the mosaic, to obtain an average
value of the NDVI index for each plant.

The value of this parameter allows defining whether or not
each plant requires the application of fertilizer. Plants with values
lower than the range [0.33–0.66] are considered moderately
healthy. If the value is in the range [0–0.33], the application of
fertilizer is required (Brown, 2015; System, 2019).

3 EXPERIMENTS AND RESULTS

This section shows the main contributions and results from the
proposed methodology applied to the data captured in the
cultivation fields through different sensory sources.

3.1 Plants Characterization Using Point
Clouds
This subsection shows the result of applying clustering processing
to a cabbage crop row. The different geometric parameters have
been calculated based on an automatic algorithm process, the
algorithm first part, groups the point cloud in “n” small point
clouds using K-means Clustering Algorithm (the parameter “n” is
defined by the user). The second part takes each cluster maximum

and minimum values to define the centroid and radium for each
plant. The parameter “n” is variable and depends on the plants’
number in the crop row. For Figure 5, this parameter is 10. The
parameter “n” is entered as input data of the algorithm, since a
criterion is required to be able to generate the clusters.

Figure 5B shows the clustering of the plants, identified by
different colors from a top view, the outer edges and the centroids
with a pink point have been marked with boxes. The parameters
of each cluster (Centroid (x, y), Radius R, height h) are detailed in
Figure 5A.

Figure 6 shows the representation of the relationship between
the radio and heights for each cluster of Figure 5B. These data
will later be used to generate the baking trays of the robotic arm.
The efficacy of the method has been estimated, obtaining an
average efficacy of the 93.1%.

A good elimination of outliers and scattered points that can
generate conflict in clustering must be previously developed for
having a high accuracy index in recognising the number of
plants.

3.2 Vegetable Identification Using RGB
Information
The process developed in this section allows the vegetables to be
detected automatically in the RGB mosaic, creating a layer with
the vegetables extracted from the crop row. The development of
this method is based on the application of histograms extracted
from the Green color channel, which provides the most
significant amount of information in crop processing
applications.

Figures 7A-C shows the histograms of the Green channel,
corresponding to the mosaics of Figure 4A,E,C. Two indicators
have been automatically placed in the histograms, corresponding
to the minimum and maximum values of the threshold values.
These values contain approximately 70% of the colour channel
relevant information concerning the vegetables in the rows. The
rest of the information has been discarded since it corresponds to
weeds and noise.

Figure 7B shows two abnormal peaks, which may have
their origin in the processing and capturing of the image. The
first peak that originates around the value of 40 is probably
due to unfiltered noise in the image. However, the second
peak may have its origin in the saturation of the green colour
channel used, due to a high concentration of pixels with
values around 240, in the centre of the plant, which is not a
problem for the proposed method since the selective
segmentation applied has shown to be functional in the
individual plants recognition.

Based on these ranges, thresholding is applied. Figure 8A,C,E,
show the degenerate layers, which have made it possible to
separate the plants from the mosaics. Figure 8B,D,F shows
the final identification of the plants superimposed on the
original mosaic image. Figure 8B,F, the presence of small
weeds can be noticed, which the system has been able to
discriminate, segmenting the plants.

The application of histograms has great importance since it
allows identifying essential characteristics of the image based on
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the analysis of histogram pixel concentration areas, which
provide relevant information during the detection. The RGB
processing method has been evaluated, obtaining an error of
6.4% in detecting vegetables in crop rows.

3.3 NDVI Analysis for Decision-Making of
Fertilizer Application
One of the main advantages of using NDVI indices lies in the
provision of quantitative information on the health status of the
plants and the differentiation from the rest of the field. It allows taking
actions on specific plants that require fertilization in a crop row.

The detection carried out in the previous section is also used in
multispectral mosaics to separate the plants from the rest of the
reconstructed scene and later calculate the NDVI indices. To
determine those plants that require or do not require fertilizer.

Table 2 shows the mean NDVI indices (x0.01) of the culture
rows of Figure 4B,D,F. Based on the definition of the state of the
plants [0, −,0.33] Unhealthy plants and [0.33–0.66] Moderately
Healthy Plants, it has been possible to determine those that need
the application of treatment through the robotic system.

The value of the NDVIx0.01 indices of the plants that need the
treatment application has been highlighted in red.

In Row 1 and 2, three plants require treatment. However, in
Row 3, there is seven small cabbage that requires fertilization. The
increase in the number of plants that must be taken care of in this
crop row is since the vegetables are in the growth stage and need
more nutrients.

3.4 Field Fertilization Strategy
The collection and processing of data captured by the three
sensory systems proposed in this article have allowed
obtaining valuable information on the crop rows, from
characteristic-spatial information to vegetative indices, to take

FIGURE 5 | Point clouds quantification to characterize the row vegetables (A) View 3D, (B) Top View.

FIGURE 6 | Height and radius dimensions representation of the
characterized plants.

FIGURE 7 | Histograms corresponding to Figure 4A,E,C mosaics, Cabbage, Small cabbage, Red cabbage.
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corrective actions. The information collection is carried out in a
first pass of the platform on the crop row, while in a second pass,
action is taken on the vegetables that require it.

The development of robotic fertilization using the Igus
CPR5DOF Robotic Arm uses the information processed
sequentially in Sections 3.1–3.3. As a basis for trajectory planning.

In the first instance, the point cloud processing of Section 3.1 allows
obtaining the individual clusters and their geometric characteristics to
generate a cone that covers all the plant in such a way that the expansion
of the fertilizer is homogeneous throughout the plant, as shown in
Figure9E. Subsequently,with the information fromSections3.2–3.3, it is
determined those plants that require the application of fertilizer.

FIGURE 8 | (A,C,E) Masks generated from the processing for the detection of vegetables using dynamic histograms. (B,D,F) Original images with the mask
applied, detected vegetables are highlighted.

TABLE 2 | NDVI values (x 0.01) from Figure 4B (Row1)-D (Row2)-F (Row3) are shown. The respective numbering is specified on each floor.

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 46 42 4 28 37 29 42 41 46 39 38 27 39 41 – –

2 43 39 36 23 42 44 26 38 39 41 38 4 29 42 41 –

3 39 24 37 22 4 25 39 27 41 39 3 39 41 42 28 26

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8084847

Cruz Ulloa et al. Trend Technologies for Robotic Fertilization

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


The planning of movements takes as parameters the plant
radius, its height and the angle of insertion concerning the base to
place the end of the robot in position and perform the sweep,
activating the nozzle to apply the liquid fertilizer. The system
needs to complete the vision processing analysis and later
accomplish its fertilization task in two steps concerning the
time processing. The processing of the vision system takes
about 200ms due to all the computational processing onboard.
On the other hand, the fertilization stage (spraying) takes about
5 s because abundant irrigation with fertilizer is required.

The development of the trajectory planner has been
implemented using ROS’s MoveIt tool, which takes as
parameters the characteristics and position of the plant, along
with the position of the arm to determine the trajectories that the
robot will execute. The trajectory that the robotic arm develops is
a semicircle at a given height oriented towards the base of the
plant, defining a cone that encompasses the plant to fertilize
all areas.

The result of the planning executed by the MoveIt package
is a discretized collision-free trajectory, which is adapted to the

FIGURE 9 | (A,B,C,D) Visualization of the perception system and robot movements execution on different rows of crops, using the RVIZ tool for visualization (E)
Fertilizer application strategies, based on a cone.

FIGURE 10 | Height and radius dimensions representation of the characterized plants.
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movements of each joint thanks to the controller implemented
in python, which takes the current positions, establishes the
errors with the destination positions and adjust the speed
ramps to obtain a joint movement of the robot. The
parameters used for the scheduler are Type of scheduler
(RRT - Rapidly Exploring Random Trees), Maximum
scheduling time (5 [s]), Number of iterations (10), scaling
speed (0.4), scaling acceleration (0.3), Goal State (Planning
Trajectory Discretized Trajectory), Start State (Current State),
Planning Group (Robot CPR Igus-5DOF).

Figure 9A–D shows the robot’s perception system through
the RVIZ tool. Different culture rows are shown with the
individualized clusters Figure 9-A-B, as well as the robot
with the complete culture row Figure 9C,D. Figure 9E
shows the nozzle opening of the fertilization system,
together with the movement executed by the arm to expand
the fertilizer.

3.5 Comparison of Sensory Systems for
Information Processing
Based on the results obtained during the reconstruction of
crop rows, processing of acquired data and extraction of
relevant information for the robotic fertilization process,
the quantitative markers shown in Figure 10 have been
extracted, which serve as a reference for analyzing the
efficiency of each sensory system used in this
experimentation.

The different indicators analyzed in Figure 10 highlight
the efficacy of each sensory system (Lidar, RGB,
Multispectral). In the first instance, the efficacy for crop
row reconstruction has been analyzed, where the three
sensory systems have an efficacy superior at 94%, on the
other hand, the most robust system for reconstruction in
variable light conditions is the laser system, since its
operating principle is based on time of flight (ToF). It also
has great advantages for eliminating weeds and individual
plant characterization. However, the multispectral system is
more efficient for the extraction of specific characteristics
such as vegetative indices.

It should be noted that each sensory system has greater or
lesser efficacy for the silver indicators individually, but as has been
shown in this article, the combination of information in a
systematic way (Laser System: Reconstruction of rows and
geometric characterization of plants, RGB System:
Identification of plants, Multispectral System: Obtaining
vegetative indices). Allows generating robust processing for the
development of a Robotic Fertilization application.

4 CONCLUSION

A method has been presented wich uses three types of
sensors (Laser, RGB, Multispectral) to evaluate different
parameters in row crops; through its characteristic
operating principle, the main conclusions drawn from this
work are shown below:

The individual analysis of vegetables in crop rows has a
significant advantage over conventional methods in
fertilization applications since the proposed method
considers specific needs at the plant level to evaluate
whether or not the application of treatment is needed. This
optimizes the amount of treatment and reduces the potential
effect of soil erosion.

Unsupervised learning algorithms allow point cloud
processing for plant clustering and the extraction of
fundamental characteristic parameters to carry out
applications such as robotic trajectory planning.

The use of histograms in the processing of different colour
channels (Green) allows identifying areas or regions of interest in
the cultivation rows based on the definition of information
selection criteria.

The NDVI indices calculated from multispectral images allow
evaluating the vegetative state and provide relevant information
in making decisions about whether or not to fertilize a plant.

The combined information of the three sensory systems
presented has allowed the development of a comprehensive
application of a prototype of a robotic platform for
fertilization applications. As future research lines, it is
proposed to implement a herbicide system to eliminate weeds
simultaneously during fertilization on the crop row.

As future lines of research, the analysis of other environmental
variables in the fertilization process is proposed, such as the
influence of temperature, as well as the use of remote sensors, the
development of tests in larger fields is also proposed.
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