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Soft robots are typically intended to operate in highly unpredictable and unstructured
environments. Although their soft bodies help them to passively conform to their
environment, the execution of specific tasks within such environments often requires
the help of an operator that supervises the interaction between the robot and its
environment and adjusts the actuation inputs in order to successfully execute the task.
However, direct observation of the soft robot is often impeded by the environment in which
it operates. Therefore, the operator has to depend on a real-time simulation of the soft
robot based on the signals from proprioceptive sensors. However, the complicated three-
dimensional (3D) configurations of the soft robot can be difficult to interpret using traditional
visualization techniques. In this work, we present an open-source framework for real-time
3D reconstruction of soft robots in eXtended Reality (Augmented and Virtual Reality),
based on signals from their proprioceptive sensors. This framework has a Robot Operating
System (ROS) backbone, allowing for easy integration with existing soft robot control
algorithms for intuitive and real-time teleoperation. This approach is demonstrated in
Augmented Reality using a Microsoft Hololens device and runs at up to 60 FPS. We
explore the influence that system parameters such as mesh density and armature
complexity have on the reconstruction's key performance metrics (i.e., speed,
scalability). The open-source framework is expected to function as a platform for future
research and developments on real-time remote control of soft robots operating in
environments that impede direct observation of the robot.

Keywords: eXtended reality (XR), robotics, soft robot proprioception, 3D shape reconstruction, soft robot actuation,
augmented reality, skeletal animation, teleoperation

1 INTRODUCTION

Soft robots are typically intended to operate in highly unpredictable and unstructured environments.
Although their soft bodies help them to passively conform to their environment, the execution of
specific tasks within such environments often requires the help of an operator that supervizes the
interaction between the soft robot and its environment and adjusts the actuation inputs in order to
successfully execute the task. However, direct observation of a soft robot is not possible when the
robot is operating underground (Calderon et al., 2016), underwater (van den Berg et al., 2020), in vivo
(Runciman et al., 2019), or in confined spaces (Takayama et al., 2015; Mazzolai et al., 2019). In such
scenarios, the operator has to depend on a real-time simulation of the soft robot’s configuration

Frontiers in Robotics and Al | www.frontiersin.org 1

April 2022 | Volume 9 | Article 810328


http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.810328&domain=pdf&date_stamp=2022-04-28
https://www.frontiersin.org/articles/10.3389/frobt.2022.810328/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.810328/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.810328/full
http://creativecommons.org/licenses/by/4.0/
mailto:E.I.AndradeBorges@tudelft.nl
mailto:rob.scharff@iit.it
https://doi.org/10.3389/frobt.2022.810328
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.810328

Borges et al.

Soft Robot Reconstruction in XR

m\

reality based on the measurements from the proprioceptive sensors.

FIGURE 1 | (A) Sensorized Soft Actuator with embedded color sensors for proprioception (B) A real-time digital twin of the deformed soft actuator in augmented

based on the signals from proprioceptive sensors. Although
several proprioceptive sensing and calibration methods for soft
robots have been developed (Scharff et al., 2018; Van Meerbeek
et al, 2018), the complicated three-dimensional (3D)
configurations that are being predicted from this sensor data
can be difficult to interpret using traditional visualization
techniques. This ultimately leads to failures to complete tasks
or inefficient task performance. A real-time 3D simulation of the
soft robot on an immersive display [i.e., Extended Reality (XR)]
would greatly support the operator in remotely controlling the
robot. Besides providing an intuitive way of observing the soft
robot configuration in 3D space, XR allows for the display of
additional information (e.g., the locations and magnitudes of
external forces acting on the robot extracted from additional
embedded sensors) pertaining to the simulated soft actuator.
Moreover, the XR environment could be linked to the soft
robot control environment such that the real soft robot could
be controlled using the virtual twin’s pose as a control input.
However, it is currently unclear how the proprioceptive signals
can be used to reconstruct the 3D shape of soft robots in extended
reality in real-time. Therefore, this work addresses the following
research question: How can the 3D shape of soft robots be
reconstructed in real-time in XR?

In this work, we present an open-source framework for real-
time 3D shape reconstruction of soft robots in XR (Augmented
Reality (AR) and Virtual Reality (VR)). The effectiveness of the
proposed reconstruction framework is verified on a previously
developed soft bending actuator with embedded proprioceptive
sensors (Scharff et al., 2018 and Scharff et al., 2019). The signals
from the embedded sensors are converted to parameters of a
virtual armature which then controls a mesh representation of the
soft actuator through the Unity skeletal animation framework.
This functionality is enabled by a Robot Operating System (ROS)
backbone that interacts with all components and allows for easy
integration with existing soft robot control frameworks
(McKenzie et al, 2017). The approach is demonstrated in
Augmented Reality (AR) (Figure 1) using a Microsoft
Hololens device and runs at up to 60 FPS. In addition, we
explore the influence that system parameters such as mesh
density and armature complexity have on the reconstruction
speed and scalability. Side-by-side comparisons of the
reference footage and the AR reconstruction show that our
reconstruction accurately represents the deformation of the

soft robot while it is interacting with its environment. The
methods used by the framework and described in this paper
can be divided into two clear phases: The pre real-time phase,
which consists of model, scene, sensor and device adaptation and
the real-time phase, which focuses on the methods that run to
convert the sensor data into actionable bone and armature
animation data for the AR visualization. The work is
organized as follows: Section 2 covers the related work in
extended reality for robotics, soft robot shape reconstruction,
and skeletal animation. Section 3 describes the developed
reconstruction framework in detail starting with the pre real-
time subsection (section 3.3), followed by the real-time methods
(section 3.4). The experimental setups used while testing this
technique are briefly discussed in Section 4, while the
framework’s performance is evaluated in section 5. Finally,
section 6 will discuss conclusion and future work.

2 RELATED WORK

In this chapter, we discuss the related work and review the
different contributing fields combined in this publication. We
start with eXtended Reality for Robotics before we address the
Soft Robotics domain with respect to shape reconstruction.
Finally we cover skeletal animation which is our approach for
the 3D animation of the soft robot actuator.

2.1 Extended Reality for Robotics

Various studies (Lorenz et al., 2015; Ludwig et al., 2018) have
shown that the productivity of future manufacturing facilities will
be proportional to the ability of humans to communicate and
interact with smart automated machinery and systems. With the
growing complexity of robots and their workplaces (BCG Group,
2015), as well as their increasing cooperation with people, there is
a need for advancements in the field of Human-Computer
Interaction (HCI), more specifically in our case, in Human-
Robot Collaboration (HRC) (Dianatfar et al., 2021). Extended
reality (XR), with its sub-fields of augmented, mixed, and virtual
reality (AR, MR, VR) offers a range of powerful tools and
methods that can be utilized to simplify, augment and help in
productive interaction between humans and robots. The
implementation of XR in manufacturing has been proven
feasible, such as AR-based repair instructions (Aschenbrenner
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etal,, 2019) or displaying additional information within a factory
(Peake et al., 2016). While significant research was conducted for
each topic, HRC and XR, cross-technology research is yet less
prominent with very few exceptions (Aschenbrenner et al., 2020).
With the increasing popularity of using digital twins, XR can
serve as a way to interface with a digital twin in the context of its
intended physical environment. Applied for the HRC area, XR
can enable a real-time link between robots and XR environments
(e.g., Microsoft Hololens or an Oculus Quest). This increases the
legibility of the robot and the situation awareness of the user.
Multiple frameworks have been published (Hussein et al., 2018;
Babaians et al., 2018; Aschenbrenner and Rieder, 2021) for such
tasks. In this work, the MQTT-based DTStacks (Rieder, 2021)
framework was chosen and customized for this application. This
MQTT protocol choice is motivated in more detail in section 4,
with the conclusion that it is the communication protocol most
suited for real-time applications, and possesses several attributes
beneficial for the particular functionality in this framework.

2.3 Soft Robot Shape Reconstruction

This subsection focuses on soft robot shape reconstruction based
on proprioceptive signals. Proprioceptive sensing for soft robots
is an active field of research that aims at developing sensors
capable of capturing virtually infinite DOFs, large deformations,
and large material strains without restraining the deformation of
the soft robot. For an extensive overview of sensor technologies
for soft robots, please refer to Wang et al. (2018).

After capturing the soft robot deformation, the shape of the
robot needs to be reconstructed from this information. This is
a challenging task that requires efficient parameterization of
the soft robot shape. Commonly used shape parameterizations
for calibrating soft robotic bending actuators are, for example,
a single bending angle (Elgeneidy et al., 2018) or curvature
(Zhao et al., 2016). Such models oversimplify the configuration
space of the robot and are therefore incapable of accurately
describing robot configurations that occur when the soft
actuator is interacting with its environment. Alternatively,
sensors have been calibrated to predict a number of
predefined points on the robot (Thuruthel et al., 2019;
Scharff et al., 2019). However, it is hard for an operator to
visualize the complicated 3D shape of a soft robot based only
on a set of 3D coordinate points. A representation of the soft
robot by a set of 3D curves, such as a piece-wise constant
curvature model (Jones and Walker, 2006; Della Santina et al.,
2020), Cosserat rod model (Till et al., 2019), or Bézier surface
(Scharffetal., 2021) helps the operator to interpret the shape of
the robot, but cannot be used to visualize the appearance of the
soft robot. The appearance of a soft robot can be reconstructed
in real-time as a point cloud (Wang et al., 2020). However, this
representation cannot be directly used for visualization in XR.
This work focuses on soft robot shape representation through a
triangle-based mesh to ensure compatibility with modern
graphics engines. In the broader domain of shape
reconstruction, certain computational techniques have been
applied to reconstruct meshes from differing data sources,
including 3D pointclouds (Yang et al., 2021, or 2D image
inputs (Kolotouros et al., 2019; Nguyen et al., 2022)). Our

Soft Robot Reconstruction in XR

method relies on skeletal animation to visualize the deformed
soft robot shape from the sensor data in real-time.

2.4 Skeletal Animation

Skeletal animation was introduced in 1988 as a technique to
deform arbitrary meshes to create animations by having a
hierarchical “skeleton”—a set of kinematic joint nodes with
associated rigid transforms (Magnenat-Thalmann et al., 1988).
Skeletal animation remains the primary technique for real-time
control of complex 3D meshes (alternative methods for mesh
animation such as simulation based models (Terzopoulos et al.,
1987; Sukumar and Malsch, 2006) while accurate, cannot provide
real-time animation solutions, or cage-based methods (Nieto and
Susin, 2013), which use a lattice-based structure to control
vertices cannot handle complex deformations and present
difficulties in hierarchical composition).

Both the translation between the skeleton bone transforms and
the transforms that are applied to each of the mesh vertices to effect
the mesh deformation are encoded in the skinning algorithm. There
are several approaches in the literature for skinning metrics to
deform meshes (Rumman and Fratarcangeli, 2016): whether
through physics-based simplified mechanical simulations (Nealen
et al., 2006; Sorkine and Alexa, 2007), or example-based methods
(Mukai, 2018), such as motion matching, which uses interpolated
example data from the real world or created by artists for the mesh
deformations. Finally, we have geometric-based metrics, which use
the skeleton transforms directly to compute the final vertex
transforms. They are the standard skinning methods for
interactive applications due to their relative simplicity and
efficiency Rumman and Fratarcangeli, 2016).

This research project adopts a hybrid approach, where the use
of these standard animation pipelines allows for real-time mesh
deformations. Still, the animation is driven by an accurate
estimation of the soft actuator’s configuration coming from its
proprioceptive sensors. As a result of this, our approach
effectively balances accuracy and efficiency.

3 METHODS

This section starts with a broad overview of the entire pipeline,
followed by subsections that go into further detail on the
sensorized soft actuator, pre-processing steps and finally the
real-time processing.

3.1 Overview

Figure 2 shows a broad overview of the real-time framework. It
starts in the top-left region (Figure 2A, highlighted in blue), where
the actual physical actuator is deformed, through the air pressure
differential in the bellows. The light sensors inside these bellows
output the RGBC (red, green, blue, clear) data that is sent through
USB to the Linux based ROS computer (in this case an Intel NUC).
In the ROS environment (Figure 2B, in green) this raw sensor data is
pre-processed and streamed through ROS to the next node, where it
serves as the input of the first Feed-Forward Neural Network
(FFNN), which converts this data into the marker coordinates, a
process described in Scharff et al. (2019).
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FIGURE 2 | Schematic overview of the system framework that converts the measurements from a sensorized soft actuator (A) to a real-time 3D visualization
through holographic displays. (B) denotes the ROS environment and the software nodes within, while (C) indicates the Real-time processing nodes of the framework.

The next modules take these marker coordinates, and
eventually convert them into the “bone” animation data
used by the Unity system. Bones would link two joints in
these “skeletons”. These are linked with the mesh vertices
transforms, allowing for the mesh to be controlled indirectly
through the set of joint transforms of the skeleton instead of
the vertices individually. This process of creating and
merging this skeleton is referred to as rigging, where each
bone has a rigid 3D position rotation and scale, and
influences a portion of the mesh it is linked to. There are
three main steps in this process in our method: first, a spline
curve is fitted on the markers, acting as a “main skeleton” of
the current actuator deformation; followed by an
interpolation step that locates the positions and
orientations of the animation “bones” in the digital twin
model of the actuator. Using higher-order derivative
information from the interpolated spline function, the last
step, packs these orientations into a single struct, such that
the full actuator deformation is encoded in a way that can be
streamed and decoded by the Unity script. While initially
done explicitly, later on, these steps were encoded holistically
through a second FFNN (Figure 2C, in purple). In summary,
the pipeline is based on the following essential stages:
Animated 3D model setup rig, Optical sensor data capture
and processing, the animation reconstruction from the FFNN
data to a set of bone configurations for the skeletal animation,
and the live rendering of this data through the Unity
interface.

This data struct is forwarded using Message Queing Telemetry
Transport (MQTT), which connects the ROS sub-systems with
the Unity environment on the HoloLens 2 via a (local) MQTT
broker. Within Unity, the skinned, rigged 3D model’s bones are
updated with every new received data message, allowing for a
direct visualization of the model via the holographic displays.
This was done nominally at up to 60 FPS. Concluding this
overview, the framework has the following four requirements
for reconstructing soft robots:

1) We possess a soft actuator with embedded (or external) real-
time sensing feedback that can deliver data through serial
ports to the ROS computer (section 3.2).

2) We possess a virtual twin of such an actuator, i.e., a 3D model
that can be rigged to simulate the actuator’s DoFs
(section 3.3).

3) We possess some method of embedding a mapping between
this raw actuator data and the morphology of the actuator
itself (in this work’s demonstration, we used the results of
previous work (Scharff et al., 2018), where this is done through
a marker based method, color sensors and a FFNN).

4) We possess a way of converting this morphology data into
Mesh rigging/skinning data (subsection 3.4.1).

3.2 Sensorized Soft Actuator

The framework for real-time reconstruction of soft robots in
XR is applicable to a wide range of sensorized soft robots. In
this work, we demonstrate the framework on the sensorized
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Color sensors

transducing color pattern inside the actuator’s air chamber.

FIGURE 3 | (A) Sensorized Soft actuator embedded with four color sensors and six red markers on the inextensible layer. (B) lllustration demonstrating the signal

soft pneumatic bending actuator shown in Figure 3A. The
sensing principle is based on capturing 3D-printed color
patterns inside the actuator’s air chamber (Figure 3B) with
a small number of color sensors that are embedded on the
inextensible layer of the actuator. Through a machine learning
based calibration process, the change in color that is observed
by the color sensors upon deformation was used to predict the
relative 2D coordinates of six markers that were placed on the
soft actuator. These primitive shape parameters form the basis
for animating the rigged actuator 3D model. For more
information on the sensing principle and calibration
process, please refer to Scharff et al. (2018); Scharff et al.
(2019). In this work, we make use of the open-access
calibration and evaluation dataset (Scharff, 2021) that was
generated by Scharff et al. (2019). The calibration dataset
consists of the RGBC measurements of the four color
sensors and the corresponding 2D marker coordinates for
1,000 different actuator configurations. The evaluation
dataset consists of a video where the actuator interacts with
a variety of objects in combination with the corresponding
RGBC-measurements.

3.3 Pre-processing Steps

Before delving into the real-time framework, we must first begin
with a brief discussion over the pre-processing steps that enabled
such a pipeline.

To have the previously mentioned digital twin of the actuator,
we must start with the rigged 3D mesh. This was achieved
through the blender toolset (Blender Community, 2018).
Before the animation steps, the digital twin’s model needs to
be simplified, as the CAD fabrication one possesses too much
detail. As mentioned previously, the fabrication model is
resampled in blender. This resampling provides a mesh which
is clustered at the surface, at different densities. To optimize the
mesh density, consecutive rounds of decimation and re-
triangulation algorithms are applied, until we end at a
topology that maximizes detail fidelity with minimal vertex
count (as can be see in Figure 4, where (Figures 4B,C)
present the configurations that best encoded these desired
characteristics).

We use the animation standard skinning method, Linear
Blend Skinning, which is a direct geometric-based method

(Lewis et al., 2000). To animate and deform the skeleton bone
set from one “pose” to another, where each mesh vertex position
will depend on the following basic equation:

n-1

Vi) = ) 0B (t)Vaer, (1)

=0

Note that a skeleton’s pose is always defined in reference to
the skeleton at its initial pose, in our case, the actuator when all
the bellows are non-actuated. A given pose will move all the
mesh’s vertexes from this initial pose position (v,.s,) to v;. In
this mathematical model, given a tree of joints that compose the
skeleton, and the bones that link two joints and manipulate
them, each vertex v;’s position in relation to a specific time (t)
will depend on a linear combination of several deformation
primitives. Namely, B; (¢) € R>“ the relative transform of bone
j encodes the transform of the associated joint j, relative to the
reference pose. w;; is the set of skinning weights. This set exists
because a single vertex can be influenced by several bones. The
sum of this set per vertex over all of its associated bones is
unitary (Z;‘;é wjj = 1). The specific partition of this set is done
by the skinning algorithm. In our case, a particular bone’s
influence on a vertex is encoded in the weight painting step
(Figure 5B).

Rigging the 3D model was a manual process, the actuator is
composed of a soft material section, with two hard 3D-printed
parts at the end. As this “finger” actuator’s main DOF (Degree of
Freedom) is the contraction/extension of the bellows through the
air pressure, and the bellows™ expansion is simultaneous, the
rigging skeleton is simple, a bone can control the position of each
bellow segment, with both ends of the actuator being connected
to the soft actuator section through fixed constraints. Each bone
has a fixed reference between each-other, as they are perfectly
centered in each bellow segment. The bone’s final position is
parameterized with the marker’s coordinate position
information, which we obtain from the animation processing
pipeline from the FFNN.

With the actuator design, the skinning approach was
simple, using a gradient ramp applied to the bones, such
that each bone influences its corresponding bellow, with the
exception of the base bone, which is attached to the
actuator’s base.
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FIGURE 4 | Different Sampling visualizations of original CAD model, with decreasing mesh density per row. The original cad model was exported from
SOLIDWORKS, and in Blender, it was sampled at different densities [(A) 847 k verts, 1.7 M tris; (B) 82 k verts, 164 Ktris; (C) 13 k verts, 26 k tris; and (D) 3.2 k verts, 6 k
tris], after which the decimation/remeshing algorithms which simplified the mesh topology.

(Scharff et al. (2018))

FIGURE 5 | (A) Rigged simplified 3D actuator model, along with (B), showing the weight painting gradient for the third bone [from red (maximum vertex influence) to
dark blue—zero influence] for one bellow and its corresponding bone. This gradient is a visual representation of the vertex weights set for this mesh for the third bone

3.4 Real-Time Processing
3.4.1 Animation Processing From Optical Sensor Data

The starting point for representing the correct bone coordinates
and rotations (and thus the global deformation of the actuator)
are the coordinates of the six markers in the in-extensible layer of
the actuator. Each bellow segment of the actuator possesses a
color sensor embedded in the actuator’s in-extensible layer. The
first FFNN takes the RGBC color sensor data as inputs and
outputs the six marker coordinates (X, Y, in millimeters). It is
composed of two-layers, with a hidden layer (with a sigmoid
transfer function) with ten neurons, with the output layer using a
linear transfer function. The 16 raw sensor inputs then become 12
coordinate outputs.

The final animation skeleton pose requires the 3D position
(relative to the actuator origin ie, the base marker or the
attachment part) and rotation of each bone, thus each skeletal
pose requires 30 inputs. This pose struct, is sparse due to the
inextensible material constricting the soft bellows (e.g., the base
spine layer the markers are deposited into). The bellows’ 3D
position can be retrieved with its delimiting marker’s (X,Y)
coordinate relative to the origin, and the bellow’s angular
orientation relative to its “rest” pose (Figure 3A), where the
deviation is 0°, as the markers ground truth rest coordinates are
known a priori. As each bone is perfectly centered between its

delimiting “base” markers, its orientation and (X,Y) origin
coordinates can be obtained by defining a differentiable
interpolated piece-wise cubic spline curve from the marker
coordinates. This piece-wise polynomial connects the marker
positions with third degree splines. The smooth behavior of this
approximated spline means that N-dimensional derivative
information for this curve is available, for any point sampled
from it. Each bone’s origin position is sampled from the
parameterized curve location (in relation to the actual
distances in the real actuator), and the bone’s normal
orientation is obtained through the rotated tangent technique.
With this technique, given the bones origin position along the
curve, the normal vector (#) to this point can be estimated by the
rotated normalized tangent vector at that point in the curve itself.

This tangent vector is calculated by first obtaining the first
derivative at the bone’s location along the parametric form of this
curve % (the t parameter encodes the position along the
curve this tangent is calculated at). As the normal vector is
orthogonal to this tangent one, it can be obtained by a simple
positive 90° 2D rotation. Once this normal vector is normalized,
the bone’s angular orientation can be retrieved by calculating its
dot product with the reference coordinate vector of a bone at rest
angular position (j): - j = Iﬁlljl cos(0) = 0 = arccos (7 - j),
given that the vectors are basis vectors (|v| = 1).
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Alternatively, these transformations can be encoded end-to-
end. After validating the previous approach for the actuator
visualization, a new FFNN was devised, with the same
structure as the initial one, except for the output layer, which
has 14 nodes (the fixed pose parameters, such as the origin are
excluded). While the full skeletal pose takes 30 parameters, the
DOF constraints inherent in the prototype design allow these
parameters to be fixed. This new network was trained using the
Bayesian Regularization algorithm, using a standard division of
end-to-end samples (70% for training—15% for validation set,
15% for testing).

3.4.2 Rendering in Augmented Reality

For the final step in this framework, this skeleton animation
data is sent over a local network to a (local) MQTT broker
and forwarded to the Hololens 2 running the real-time unity
simulation environment. This consists of a scene with the
rigged 3D model in which a C# script updates each bone’s
parameters, given a new message from the broker, to
compose a final skeletal pose of the actuator. To prevent
any visual artifacts, and smooth out temporal glitches, the
final poses between subsequent frames are linearly
interpolated (as a free parameter of the visualization). The
Hololens 2 then renders the latest bone positions and
rotations (3D movement and rotation) to visualize the
model in real-time.

4 EXPERIMENTAL SETUP

As alluded to previously, several tools are used in this real-time
visualization technique. These can be divided in roughly two
stages: First, interfacing with the actuator, capturing the data
and converting it into the animation pose, and second,
animating the rigged actuator virtual twin in an AR scene
setup. We used an Intel NUC computer, which used the Robot
Operating System (ROS) to collect data from the sensor
(through serial port) in a node, and transfer it to the
animation ROS node, which implemented the FFNN and
created the animation pose data. For benchmarking the
alternative methods under similar constraints repeatedly,
raw actuator data was collected previously under set
constraints into a database, which was then fed directly to
the rest of the framework. MQTT-Bridge GROOVE-X (2020),
was set-up in the system, which, with the help of a router, fed
the animation poses through the local network, via a
(mosquitto) MQTT Broker, to the HoloLens 2. The
HoloLens 2 received the MQTT messages via a customized
version of the MQTT framework “DTStacks” (Rieder, 2021).
This MQTT protocol originated in the IoT (Internet of Things)
field. It was chosen due to the fact that it is an industry
standard protocol, with broad device/platform support
(from web hosts to embedded devices)—allowing for
maximum flexibility in connecting the portions of our
framework and for future work with minimum user effort,
i.e., there are easily available plugins handling communication
in all of different modules of the framework, requiring no extra

Soft Robot Reconstruction in XR

work for the connection overhead. Its implementation is
simple, and it is a data agnostic, lightweight and bandwidth
efficient way of transferring data wirelessly. MQTT is also
optimized for low latency, thus being more suited for real-time
applications, furthermore it is open source, light-weight to be
used in a Game engine for a mobile device and can use global
addresses. The actuator model was staged in a fixed location
and manipulated based on the latest received data struct, with
each received message containing all relevant information for
all joints.

For preparing the networks and trigger the tests, the dataset
was obtained through a setup in which the live actuator would be
actuated with a randomized amount of pressure, and the position
of an obstacle. At this point, both the sensor’s state and the
ground-truth deformation were captured with a camera, with the
ground truth being obtained from extracting the marker’s
position from the calibrated images. More details on the
conditions of this dataset construction can be found in Scharff
et al. (2019).

5 RESULTS

The open-source framework for real-time 3D shape
reconstruction of soft robots in XR can be accessed on the
4TU Research Data Repository (Borges and Rieder, 2021). The
framework includes ROS code for interfacing with the
actuator, together with Unity scripts that allow for live
animation data to be visualized in AR. The code is
accompanied by an extensive documentation that allows
others to easily set up the framework as well. To allow
others to compare results on future implementations of the
proposed framework, the image/video-data and the
corresponding sensor values that were used for calibrating
the soft actuator and evaluating the framework have been
made available online as well (Scharff, 2021). The
framework can achieve through puts of 66 FPS. The
Hololens 2 AR device requires application developers to
maintain 60 FPS, giving a 16 ms latency budget for the
framework to send a new pose to Unity. The demo presents
alow case of complexity scene, as there are no textures applied
to the soft robot’s virtual twin, with around 100 k vertices.
Thus, on the application side, the only performance bottleneck
that remains are the post-processing filters (such as shadows/
lighting). This provides an uniform stage for testing the
performance of the framework itself.

5.1 Evaluation and Comparisons
Starting with Linear Blend Skinning (LBS), the amount of
required operations is connected to two main factors: mesh
density, and bone complexity.

There are two main bottlenecks to the animation performance
in this setup 1): the number of bones of a given skeleton, as a
vertex may use the transformation matrix data of several bones of
the skeleton (through the weight parameter set), and the number
of mesh vertexes that must be transformed (this is due to the
rendering process being dependent on the mesh vertices). As a
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linear operation (Figure 6), retaining a simple scene setup is
direct. By reducing mesh density with decimation algorithms and
restraining related bone pairs to specific vertices (ideally, a single
one), the number of parameter updates for a new pose of the
mesh can be restrained (this is not always possible, as complex
deformations cannot be faithfully replicated with a single bone
influence per vertex). Due to the 3D-printed process involved in
manufacturing the actuator, a CAD model was already available.
Visualization does not require the vertex density necessary for
fabrication (linearly correlated to animation performance) and, as
in the skinning process only the external surface mesh is
necessary, this raw converted mesh from the CAD model was
simplified using mesh decimation techniques (Gotsman et al.,
2002), namely vertex clustering around the external 3D surface,
and decimation of the original mesh, from ~1 M vertexes to
approximately 100 k. As can be seen in Figure 4B, the soft-robot
behavior could not be replicated with the lowest fidelity mesh, as
the overlap between the bellows renders the bone-vertex
armature unfeasible, as the bellow transitions required a vertex
to be influenced by the adjacent bones as well, though these
vertexes remains a minority of the full mesh. While further
optimizations could be applied, these transformations already
allowed for the reduction of necessary operations by a factor of
12, with these parameters being adjustable to a particular scene/
actuator setup, whether towards more fidelity or more
performance.

For the animation pipeline, the largest latency delay is in the
animation processing phase. The total framework takes roughly
(5.18 + 1.42) ms to send new pose information to Unity. The

neural network forward pass requires (0.68 + 0.09) ms, with the
spline and bone reconstruction section taking up (3.30 + 1.05)
ms. By replacing these two steps into an holistic FENN this whole
stage takes (2.69 + 0.10) ms; however, such a structure has
drawbacks in terms of robustness. Structuring the output data
and sending it through the MQTT connection takes (1.19 + 0.31)
ms, with the animation script in unity’s side taking up
9.62 £ 0.38) ms, allowing for a best scenario system framerate
of around 65.88 FPS'.

Unity’s Hololens performance guidelines provide certain
boundaries in scene complexity, for keeping a table
framerate. LBS is a linear algorithm, meaning that a given
skeleton’s animation performance is linearly correlated
between its number of vertices, with multiplier influence
factor relying on armature (and thus, bone) complexity.
While the influence matrix is sparse (due to the industry
standard of maximum four bones connected to a single
vertex), the exact factors will depend on the percentage of
vertices in the skinned mesh that are influenced by one or
more bones. In our case, the simple actuator possesses few
multi-influence areas (essentially bellow wall gaps).
Rendering several of these actuators in a scene is not
limited to the animation pipeline section of the
framework—ROS modular nature simply means an

'Unity contains a certain latency delay. The bone data is only updated with the
following frame. Meaning we have a rendering delay of up to 16 ms, however this
“shift” is not noticeable for a user.
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animation node can be instanced for each actuator,
effectively parallelizing these, though this might add I/O
overhead, depending on the available I/O ports. In the
hololens environment, this is not easily adapted however,
the linear complexity of the animation in regards to vertex
count, means a scene with ten animated digital twins would
have roughly a 10x performance decrease. However, this
could be remedied by using lower fidelity meshes,
(i-e., through decimation algorithms) though this has clear

limits (e.g., the used actuator remains unaffected up to a
~2.5x vertex decimation, after which serious mesh
resolution deformations come to the fore).

Finally, we may compare the final visualization with the
expected marker positions and ground truth images
(Figure 7). Beyond the base FFNN model’s accuracy, which
is evaluated in more detail in previous work (Scharff et al.,
2018), we can see that as the deformations get more
extreme, the reconstruction becomes less faithful. This is
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due to several reasons, among them, the fact that the
completely “inextensible” layer is a simplification, the gap
that exists between the skinning “model” of the actuator
and its actual deformation properties, and the innate error
of the FFNN (0.0094 MSE between the expected results vs.
the NN outputs). The main advantages of these networks
lies in their fixed performance and good approximation
behavior. In our case a simple FFNN with only 338k
parameters could replicate the bone estimation phase from
the raw sensor data, at a loss of robustness, but do it
predictably.

A video of the simulation synced with the footage of the real
soft actuator is made available with the article.

6 CONCLUSION

The main research contribution of this work lies in devising a
scalable, performant method for reconstructing a soft robot’s shape
in real-time in a 3D environment. The proposed method takes
advantage of standard real-time techniques used in animation and
computer graphics, allowing for modern graphics tools.

The open-source framework is expected to function as a
platform for future research and developments on real-time
remote control of soft robots in environments that impede
direct observation of the robot. Moreover, we believe the
framework could be a valuable tool for other researchers to
study a soft robot in their intended environment in order to
identify possible areas for improvement.

In this work, the framework is demonstrated on a soft actuator
that only bends in-plane. However, the approach can be easily
extended to three-dimensionally deforming soft robots by fitting a
3D spline to several points on the robot. However, the approach does
require that the shape of the soft robot can be approximated by an
armature. This is the case for most commonly used soft robot
designs, such as soft continuum arms, soft bending actuators,
artificial muscles, and soft robots designed for peristaltic
locomotion. The approach is applicable to any type of
proprioceptive sensors. However, the sensors should be calibrated
to ground truth data that can be easily converted to an armature (e.g.,
using strategically placed markers such as in this work).

For minimum user overhead, we believe marker/geometric
based methods give a good balance of these considerations, as a
fixed marker based construction is demonstrated to give good
results for FENN model-based actuator morphology predictions
(Scharft et al., 2018). This marker/geometric-based method can
be more simply parametrized to the Bone/Armature standard, as
demonstrated in this work, with the performance and high
throughput needed for real-time (as evaluated in section 5.1).
Using such an approach for other soft robots consists mainly in
retraining the FFNN model and adjusting the bone estimation
method according to the new digital twin, and setting up the XR
scene according to the desired scenario.

Future work will focus on displaying additional information
about the environment or state of the robot in the simulation
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(e.g., location of the contact or the stress distribution).
Moreover, future work could focus on the integration of not
only simulation but also soft robot control through ROS (an
example of soft robot control through ROS is demonstrated in
McKenzie et al. (2017)). This integration could enable
interaction between the soft robot and its virtual twin. For
example, whereas the soft robot currently drives the
reconstruction, it could also be controlled using the virtual
twin’s pose as a control input.

Finally, the framework could be further optimized by
automating the skinning and rigging steps, reducing visual
glitches occurring from the mesh decimation phases, and
simplifying the framework overhead to allow for more
complex and realistic visualizations (complex lighting,
shadows, multi-material soft robots).
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