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We present an online optimization algorithm which enables bipedal robots to blindly walk
over various kinds of uneven terrains while resisting pushes. The proposed optimization
algorithm performs high-level motion planning of footstep locations and center-of-mass
height variations using the decoupled actuated spring-loaded inverted pendulum (aSLIP)
model. The decoupled aSLIP model simplifies the original aSLIP with linear inverted
pendulum (LIP) dynamics in horizontal states and spring dynamics in the vertical state.
The motion planning can be formulated as a discrete-time model predictive control (MPC)
problem and solved at a frequency of 1 kHz. The output of the motion planner is fed into an
inverse-dynamics–based whole body controller for execution on the robot. A key result of
this controller is that the feet of the robot are compliant, which further extends the robot’s
ability to be robust to unobserved terrain variations. We evaluate our method in simulation
with the bipedal robot SLIDER. The results show that the robot can blindly walk over
various uneven terrains including slopes, wave fields, and stairs. It can also resist pushes of
up to 40 N for a duration of 0.1 s while walking on uneven terrains.
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1 INTRODUCTION

To make bipedal robots really suitable for many applications, it is important that they can go out of
the lab and walk in the complex real world environment. Real-world environments contain various
kinds of uneven terrains: slopes, stairs, and hills. Most existing controllers that allow a bipedal robot
to walk over uneven terrains require predefined footstep locations or exact information about the
terrain height variations (Mordatch et al., 2010; Englsberger et al., 2015; Liu et al., 2015). However,
even with most advanced sensors, there are some uncertainties on the perception of the terrain. In
contrast, humans can easily walk on uneven terrains, such as outdoor environments, and without
extra thought or careful planning. Therefore, it is important to have a reactive controller that is
robust to unobserved uneven terrain variations.

The spring-loaded inverted pendulum (SLIP) model has become a popular model for walking and
running in the legged robotic research (Raibert, 1986). Despite its simplicity, it has been proven to
capture essential dynamics properties of walking and running (Geyer et al., 2006). The standard
setting of a SLIP model is energy-conservative: it assumes there is no energy loss at impact. Though
this assumption simplifies the control analysis, it does not resemble the reality. There is energy loss
on physical systems, and robots (Ahmadi and Buehler, 2006; Robotics, 2017) designed to
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approximate SLIP dynamics have added actuation to compensate
for the energy dissipation. As a result, the actuated spring-loaded
inverted pendulum (aSLIP) model (Ernst et al., 2010) is proposed
for a better approximation of the real robot dynamics. The aSLIP
model has been successfully used to design controllers not only
for SLIP-like robots (Apgar et al., 2018; Xiong and Ames, 2018;
Green et al., 2020) but also as a template model for humanoid
robots on uneven terrain walking (Liu et al., 2016).

An important step in making a controller reactive is to achieve
real-time–constrained optimization. However, due to nonlinear
dynamics that arises from the 3D aSLIP model, fast optimization
is difficult. Liu et al., (2016) used a gait synthesized from a library
of gaits acquired from off-line optimization, but this requires a
large computation load off-line and cannot cover all possible
situations Apgar et al., (2018) decoupled a 3D aSLIP model to
facilitate fast computation, but the continuous dynamics of the
decoupled aSLIP model is still nonlinear, and there is no
theoretical guarantee of fast convergence. Xin et al., (2019)
used the simpler linear inverted pendulum (LIP) model to
design a reactive controller for flat ground walking, but this
model cannot be applied to walking on uneven terrains.

Our article proposes a reactive controller that enables robots to
blindly walk over uneven terrains by optimizing horizontal
footstep locations and center-of-mass (CoM) height online.
“Terrain-blind” means the robot is not provided with an
environment map that specifies terrain height, but the robot
can still get access to its own state through state estimation, for
example, yhe CoM height. Under the assumption that the angle
the modeled inverted pendulum makes with the vertical is
relatively small, we can decouple the 3D aSLIP model into a
1D-actuated spring model responsible for z direction and 2D LIP
model responsible for x and y directions. The dynamics of all
three dimensions can be written as linear equations in a discrete-
time state space manner. We formulate the online step planner as
a discrete-time model predictive control (MPC) problem and

solve it by quardratic programming (QP). To facilitate fast
computation, the spring length is constrained to change
linearly. As a result, we get a step planner which runs at a
frequency of 1000 HZ. The step planner using a simple model
is embedded into the inverse-dynamics–based whole body
controller (Herzog et al., 2015; Kim et al., 2019) which tackles
the inconsistency between the simple model used in high-level
planning and full robot dynamics. With the whole body
controller, the feet of the robot show great compliance, and
this helps the robot to transit between different terrains
without any information about the terrain. Due to the fast
execution frequency and compliance of the foot, our proposed
controller enables the robot to blindly walk over various kinds of
moderately uneven terrains including slopes, wave fields, and
stairs. Our controller can also handle disturbances from all
direction while walking on uneven terrains. We validated our
controller on the straight-legged bipedal robot SLIDER (Wang
et al., 2020) in Gazebo simulation.

The main contribution of the article is the fast online
optimization algorithm which enables bipedal robots to blindly
walk over various uneven terrains while resisting disturbances, as
shown in Figure 1. With reasonable assumptions, we can
decouple the nonlinear 3D aSLIP dynamics and optimize the
footstep location and CoM height separately. By proper
reformulation, the control of the vertical dynamics can be
formulated as QP, and therefore a solution is guaranteed to be
found. Our controller is simple to implement and
computationally efficient; the optimization of both vertical and
horizontal motions can be solved by QP and executed at 1 kHz. A
video showing the SLIDER robot walking with the proposed
controller in simulation is available at: https://youtu.be/ROyV-
ZP8dxA.

FIGURE 1 | SLIDER robot walks on the uneven terrain. The three traces
of trajectories are CoM, left foot, and right foot.

FIGURE 2 | Dimension and joint configuration of the SLIDER robot.
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2 SYSTEM OVERVIEW

2.1 The SLIDER Robot
SLIDER is a knee-less bipedal robot designed by the Robot
Intelligence Lab at Imperial College London, as shown in
Figure 2. SLIDER is 1.2 m tall and has 10 degrees of freedom
(DoF), namely hip pitch, hip roll, hip slide, ankle roll, and ankle
pitch on each leg. The robot is very lightweight (14.5 kg in total),
and most of its weight is concentrated at the pelvis. The legs are
made of carbon fiber–reinforced polymer, and each leg weights
only 0.4 kg. The prismatic knee joint design is a unique feature of
this robot that differentiates it from many other robots with the
anthropomorphic design. Due to its sliding mechanism and

lightweight leg design, SLIDER can be well approximated with
an aSLIP model which can greatly simplify the planning and
control problem. Moreover, the lightweight leg with a large range
of motion makes the robot suitable for agile locomotion.

2.2 The Control Hierarchy
The controller presented has a hierarchical structure as shown in
Figure 3. Due to the computational complexity of using full body
motion planning, a high-level planner optimizes only the foot
placement in x, y directions and the CoM height using the
decoupled aSLIP model online. The low-level whole body
controller (Feng et al., 2015; Herzog et al., 2015) tracks the
trajectory generated by the high-level planner. The whole body

FIGURE 3 | Hierarchical controller with the execution frequency of each
level. The high-level trajectory planner takes the desired velocity as input and
generates the optimal CoM trajectory along with the foot placement. The low-
level whole body controller (Feng et al., 2015; Herzog et al., 2015)
considers full dynamics of the robot and tracks the trajectory at a frequency of
1 kHz.

FIGURE 4 | aSLIP model. This model combines the SLIP model with a
virtual linear actuator. θ is the angle between the inverted pendulum and the
vertical axis.

FIGURE 5 | Decoupled aSLIP model during walking (top), with vertical
dynamics (bottom left), and horizontal dynamics (bottom right).
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controller considers the full dynamics of the robot and generates
the consistent torque command for each joint.

3 ONLINE FOOTSTEP PLANNING

Motion planning with the full dynamics of the robot is too
computationally expensive to be executed at a fast frequency.
Instead, we use reduced order models for online footstep
planning: the LIP model is used to plan footsteps in the
horizontal plane, and the 1D-actuated spring model is used to
generate in the vertical direction.

3.1 The Decoupled aSLIP Model
The aSLIP model is different from the classical SLIP model in
which the aSLIP model is a combination of the SLIP model and a
virtual linear actuator, as shown in Figure 4. Introducing such a
virtual actuator gives the aSLIP model the capability to actively
modify the reference spring length during each walking phase and
makes aSLIP model better at handling vertical changes than the
SLIP model.

However, similar to the SLIPmodel, the dynamics of the aSLIP
model presented previously is nonlinear because of the coupling
in vertical and horizontal dynamics, and the exact dynamic
equation needs to be numerically integrated. An approximate
model, which decouples the CoM, states into horizontal and
vertical directions will be used in this article. This decoupled
approximate model simplifies the nonlinear dynamics of the
original aSLIP model and makes the fast online optimization
of footstep locations and CoM height possible. To make the
approximation valid, two assumptions are made. The first
assumption is that the vertical deviation of CoM over each
walking period is small relative to the height of the CoM, such
that individual steps can be modeled using the LIP model. The
second assumption is that the angle the inverted pendulummakes
with the vertical axis is small, such that the spring contributes to
the CoM’s vertical behavior only. This is reasonable, considering
a typical small step length is small compared to the height of the
CoM. These assumptions are summarized in Figure 4.

3.2 Vertical Dynamics of the Decoupled
aSLIP Model
The original dynamics equation of the SLIP model is

m€l
ml2€θ

[ ] � ml _θ
2 − k l − l0( ) −mg cos θ
−2ml_l _θ +mgl sin θ

[ ], (1)

where l is the pendulum length and θ is the angle between the
pendulum and the vertical axis, as demonstrated in Figure 4.
Under the assumption that θ is negligible and l can be well
approximated by the CoM height z, the dynamics can be
simplified into the decoupled aSLIP model in vertical direction
by Eq. 2, as shown in Figure 5, where r denotes the reference
spring length, and k is the stiffness of the spring.

m€z � −mg + k z − r( ). (2)

Compared with the classical SLIP model, the reference spring
length r(t) is treated as a time-varying optimization variable,
which is contributed by the virtual linear actuator. We also
constrain r(t) to change linearly between initial and final
values over the phase to facilitate fast computation. Therefore,
the reference spring length should satisfy the condition below,

r t( ) � r0 + t

T
rT − r0( ), (3)

where r0 and rT represent the reference spring length at the start
and at the end of one step, respectively, and T is the step duration.
We can formulate the dynamic Eq. 2 into a state space
equation as,

_Z � 0 1
−ω2

z 0
[ ]Z + 0

ω2
z

[ ] r − g

ω2
z

( ), (4)

where the states of CoM in vertical direction are defined as
Z � [z, _z]T, and we defineωz �

��
k
m

√
. Further, we can denote r − g

ω2
z

as uz, and Eq. 5 can be written into a linear state space equation as,

_Z � 0 1
−ω2

z 0
[ ]Z + 0

ω2
z

[ ]uz. (5)

We discretize Eq. 5 with sampling time Ts and can obtain,

Zk+1 � Φ Ts( )Zk + ∫Ts

0

Φ Ts( )dt 0
ω2
z

[ ]uz,k, (6)

where

Φ Ts( ) � cos ωzTs( ) sin ωzTs( )/ω
ωz · sin ωzTs( ) cos ωzTs( )[ ]; (7)

∫Ts

0

Φ Ts( )dt 0
ω2
z

[ ] � 1 − cos ωzTs( )
ωz · sin ωzTs( )[ ].

We can also write this equation as:

Zk+1 � Az Ts( )Zk + Bz Ts( )uz,k,

where Zk and Zk+1 are CoM states in the vertical direction at time k
and k+1, respectively, Az (Ts) and Bz (Ts) are time-varying matrices,
and uz,k is the control input for the spring at time k. Therefore, N
future steps can be computed with the given fixed sampling time Ts:

Z1 � Az Ts( )Z0 + Bz Ts( )uz,0

Z2 � Az Ts( )Z1 + Bz Ts( )uz,1

. . . ,
ZN � Az Ts( )ZN−1 + Bz Ts( )uz,N−1

(8)

where N is the number of steps to be optimized which should be
more than 1. In this formulation, the control input vector for the
spring �U � [uz,0, uz,1, . . . , uz,N−1] is the optimization variable. Eq.
8 can also be written in a matrix form for MPC:

�Z �
Az

A2
z

. . . ,
AN

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z0 +

Bz 0 0 0
AzBz Bz 0 0
. . . . . . . . . . . . ,

AN−1
z Bz AN−2

z Bz . . . Bz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �Uz, (9)
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where �Z and �Uz are the vectors of states and control inputs in z
direction, respectively.

3.3 Horizontal Dynamics of the Decoupled
aSLIP Model
Under the assumption that the leg angle θ is relatively small and
therefore the horizontal and the vertical dynamics can be
decoupled, the horizontal dynamics then becomes a classical
linear inverted pendulum (LIP) model as shown in Eq. 10,
where z0 is the pendulum height and remains constant within
each step but may change between steps. Please note that z0 is
different from the CoM height z. Similar to Xin et al., (2019),
given the continuous dynamics of LIP model in the x direction:

€x � g

z0
x − px( ). (10)

The discrete state space equation can be reformulated into a linear
state space as follows, with the state defined as X � [x, _x]T, and
input ux defined as the footstep positions in x direction:

Xk+1 � Ax Ts( )Xk + Bx Ts( )ux,k, (11)

where

Ax Ts( ) � cosh ωxTs( ) sinh ωxTs( )/ωx

ωx · sinh ωxTs( ) cosh ωxTs( )[ ];
Bx Ts( ) � 1 − cosh ωxTs( )

ωx · sinh ωxTs( )[ ].
Similarly, states in the predicted time horizon can also be

obtained by:

�X �
Ax

A2
x

. . .
AN

x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦X0 +

Bx 0 0 0
AxBx Bx 0 0
. . . . . . . . . . . .

AN−1
x Bx AN−2

x Bx . . . Bx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �Ux, (12)

where �X and �Ux are the vectors of states and control inputs in x
direction, respectively. The dynamics in the y direction has
identical formulation to the dynamics in the x direction.

3.4 Foot Placement and CoM Trajectory
Optimization
The footstep planning can be formulated as a QP problem due to
the fact that both horizontal and vertical dynamics are linear and
the constraints are linear. The formulation is:

min
ux,uy,uz

Γ costfunction( );
s.t. Xk+1 � A Ts( )Xk + B Ts( )uk dynamcs( );
h pj( )< 0 reachability( ),

where Γ = Γ1 + Γ2 + Γ3 is the cost function term, X and u are
general representations of states and control inputs, respectively,
and pj is the left or right foot position.

The cost formulation is composed of three parts: Γ1, Γ2, and Γ3.
The first part is minimizing the difference between the predicted

state and the referenced state, which drives the CoM state to reach
the desired one from the given current state. The formulation is:

Γ1 � ||XN −Xref
N ||2P + ∑N−1

k�0
||Xk −Xref

k ||2Q, (13)

where P and Q are the weight matrices. We only care about the
velocity of CoM in all directions because we want a reactive
footstep planner which is not constrained by an absolute
reference trajectory. From another point of view, tracking the
reference velocity is equivalent to tracking the relative CoM
reference position. Xref is easy to define with the desired
sagittal and frontal velocity. However, the reference velocity in
the vertical direction is not constant during one step. To get the
reference velocity, we can integrate Eq. 2 and get the continuous
dynamics equation:

z t( ) � d1 cosωzt + d2 sinωzt + r t( ) − g/ωz
2, (14)

where

d1 � z0 − r0 + g/ωz
2; (15)

d2 � _z0/ωz
2 − r t( ) − r0( )/ Tω( ). (16)

In this equation, z0 and _z0 are the CoM vertical position and
velocity at the start of the current step, respectively. Then, the
time-varying reference velocity in z direction can be derived from
the continuous dynamics.

The second part is minimizing the difference between the
reference control input urefk and the optimized control input uk
and R is the weight matrix.

Γ2 � ∑N−1

k�0
||uk − uref

k ||2R. (17)

For the reference control input in z direction, recall that the
spring length is constrained to change linearly, as indicated by Eq.
3. If we denote Δri as the change of spring length during one
sampling time Ts at step i, then it is clear that Δri is constant
throughout step i, and the reference control input in z direction
�Uref
z is therefore obtained as below:

�U
ref
z �

r0INr

0Ns

. . .
0Ns

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
1 0 . . . 0
1 1 . . . 0
1 1 . . . 0
1 1 . . . 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0Nr

Δr1INs

. . .
ΔrNstepsINs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where Nr is the remaining number of sampling points for the
current step andNs is the number of sampling points for one step.
Nsteps is the number of predicted steps.

For the horizontal trajectory planning, the input of the system is
the footstep position. The reference control input in x direction �Uref

x
is then obtained according to the current support foot position P0,
and the difference between two consecutive steps ΔPx,i.

�U
ref
x �

INr

0Ns

. . . ,
0Ns

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Px,0 +
0Nr . . . 0Nr

INs . . . 0Ns

. . . . . . . . . ,
0Ns . . . INs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Px,1

Px,2

. . . ,
Px,Nsteps

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; (19)
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Px,1

Px,2

. . . ,
Px,Nstep

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

INr

INs

. . . ,
INs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Px,0 +
1 0 0 0
1 1 0 0
. . . . . . . . . . . . ,
1 1 . . . 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ΔPx,1

ΔPx,2

. . . ,
ΔPx,Nstep

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

The third part is tracking the desired change of the control
input between two consecutive steps, with di denoting the desired
difference and W denoting weights. For the vertical trajectory
planning, we set the desired difference equal to zero; this means
the footstep planner tries to keep a constant CoM height during
one step to make the decoupled aSLIP assumption valid.

Γz3 � ∑Nsteps

i�1
||Δri − dz

i ||2W � ∑Nsteps

i�1
||Δri||2W. (20)

For horizontal trajectory planning,

Γx,y3 � ∑Nsteps

i�1
||ΔPx,y

i − dx,y
i ||2W. (21)

In x direction, dxi is the step length which is calculated by the
desired speed multiplied by the step time. In y direction, dyi is
defined as dyi � dstepp2p(−1)j, where dstep is the desired inter-feet
clearance distance, and j is the flag for the supporting foot, 0
stands for left support, and 1 stands for right support. This
relative distance regularization term is introduced to keep the
feet away from each other to avoid self-collision. Moreover, as this
part of the cost function only includes relative distances, it helps
to produce a reactive footstep planner which keeps the robot
walking even when unexpected disturbance is applied.

The reachability constraint is responsible for making sure the
footstep location is physically possible,

L − rx,y < pj − c< L + rx,y, (22)

where L is the nominal offset of the foot position from the CoM of
the robot, rx,y is the reachability constraint in the x and y
directions, and c is the CoM position.

4 TRAJECTORY TRACKING

The low-level trajectory tracking generates corresponding
torques for each joint to minimize the difference between the
actual body trajectory and the desired trajectory given by the
high-level trajectory planner. Since the trajectory planning does
not include the full body dynamics, the dynamic inconsistency of
the torque command generated by the high-level planner is
significant. The whole body controller solves the inverse
dynamics based on the full robot dynamics.

4.1 Rigid Body Dynamics
The walking robot is modeled as a floating-based rigid body
system with coordinates q = [qb, qr]. Here, qb ∈ R7 represents the
position and orientation of the floating base using quaternions,
and qr ∈ R10 represents the joint configuration. Inspired by
Herzog et al., (2015), the full dynamics can be decomposed
into an underactuated part and an actuated part:

Mf

Ma
[ ]€q + Hf

Ha
[ ] � 0

Sa
[ ]τ + JTf

JTa
[ ]f , (23)

whereM, H, Sa, τ, J, and f are the mass matrix, the Coriolis force
vector and the gravitation force vector, the actuator selection
matrix, the joint torques vector, the stacked contact Jacobian, and
the reaction force vector, respectively. The subscripts f and a
indicate the floating part and the actuated part, respectively.

4.2 Contact Force Constraint
Friction is an important contributing factor to the stability of
walking to prevent the foot from slipping. We use the pyramidal
friction model which is a linear inequality constraint for fast
optimization:

fz ≥ 0, |fx|≤ μfz�
2

√ , |fy|≤ μfz�
2

√ , (24)

where μ is the friction coefficient.

4.3 Swing Foot Trajectory Generation
The swing foot trajectory is generated using a fifth-order
polynomial. The start and final positions and velocities and
accelerations are specified, and a parametric quintic curve is
generated in x, y, and z directions. The polynomial in z
direction has two halves, with the predefined foot height and
zero velocity at the midpoint. The start and final positions in z
direction are calculated using the estimated CoM z position at the
start of current step. Because the robot is walking blindly, we do
not define a trajectory for the foot orientation, and this allows the
foot to be compliant to a range of surfaces.

4.4 Whole Body Controller
The whole-body controller takes the responsibility of computing
the joint torques to achieve the desired motions defined in the
operational space while respecting a set of constraints. The tasks
of interest in this article are the CoM position, the pelvis
orientation, the angular momentum of the robot, and the feet
positions and orientations. The task for the linear motion can be
expressed as:

JT€q � €xcmd − _JT _q; (25)

€xcmd � €xdes + Kpos
P xdes − x( ) + Kpos

D _xdes − _x( ), (26)

where JT is the translational Jacobian for the task and x is the
actual position of the link. For the task of angular momentum, the
centroidal momentum matrix (Orin et al., 2013) is used as the
Jacobian for the task. In uneven terrain walking, the angular
momentum task is defined as a damping task that damps out
excess angular momentum to make the walking robot more
stable. For the task of the angular motion, the command can
be formulated as:

JR€q � _ωcmd − _JR _q; (27)

_ωcmd � _ωdes + Kang
P AngleAxis RdesRT( )( ) + Kang

D ωdes − ω( ), (28)

where JR is the rotational Jacobian for the task, R and Rdes denote
the actual and desired orientation of the pelvis link, respectively,
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AngleAxis ()maps a rotationmatrix to the corresponding axis–angle
representation, and ω ∈ R3 is the angular velocity of the link. The
angular motion is needed because when walking on the uneven
terrain, the pelvis orientation needs to be regulated around a
nominal orientation to maintain a good posture. We set small
values for Kang

P and Kang
D in the foot orientation task to make the

ankle compliant so that the foot can adapt to different terrains. The
whole body controller can be formulated as a QP problem as follows:

min
€q, f

‖A€q + _A _q − Xcmd‖2W ; (29)

s.t. Mf€q − JTff � −Hf floatingbasedynamics( );
Pf ≤ 0 pyramidalfrictioncone( );
S−1a Ma€q +Ha − JTa f( ) ∈ τmin, τmax[ ] inputlimits( ),

whereA is a stack of the Jacobian matrices for the tasks of interest,
Xcmd is a stack of the commanded accelerations, and W is the
weighting matrix, and P denotes the linearized friction cone. We
treat the unilateral contact constraint as a soft constraint by
simply assigning a large weight on the desired zero acceleration of
the foot (Kuindersma et al., 2016; Apgar et al., 2018). This can
speed up the optimization, and it is reported in Feng et al., (2015)
that this gives better stability. The output joint torque commands
τ at each control iteration can be computed by

τ � S−1a Ma€q +Ha − JTa f( ). (30)

5 RESULTS

This section discusses implementation details and simulation
results of the SLIDER robot walking on different kinds of
uneven terrains including slopes, wave fields, and stairs, as
shown in Figure 6. All the experiments are included in the
accompanying video https://youtu.be/ROyV-ZP8dxA.

5.1 Implementation
Both the high-level footstep planner and low-level trajectory
tracking controller are implemented in C++ for real-time
performance. In the whole body controller, we use Pinocchio
(Carpentier et al., 2015–2021) to compute the full rigid body
dynamics and qpOASES (Ferreau et al., 2014) to solve the related
QP problem in both levels. All experiments were carried out in
the robot simulation environment Gazebo (Koenig and Howard,
2004) with the physics engine ODE (Drumwright et al., 2010),
using the full dynamics of the real SLIDER robot. The
communication through different levels of the control
hierarchy is achieved through ROS.

The decoupled aSLIP parameters are set to match with the
physical SLIDER robot, here r0 = 0.715 m, m = 14.5 kg, and k =
1470 N/m. The step duration is chosen to be 0.7 s, and the foot
height in the swing foot trajectory generation is 5 cm. The
sampling time in the discrete-time MPC is 0.1 s in x and y
directions and 0.05 s in z direction. The motion planner
predicts four steps in horizontal states and one step in the
vertical state. We use the same parameters among all walking
experiments except that the forward velocity is different. In the
stair-walking experiment, the robot has to walk faster otherwise
the foot might hit the edge of the stair.

5.2 Flat Ground Walking
We first validate our approach on the flat ground. Because
there are no changes in the z direction on the flat ground, the z
position of CoM oscillates around r0, as shown in
Figures 6A,E.

5.3 Walking on the Smooth Uneven Terrain
We then validate our approach on slopes and wave fields where
the change of terrain height is smooth. With a forward velocity of
0.3 m/s, the SLIDER robot can walk on a slope with 15° and a
wave field approximated by slopes with three different angles: 15,
10, and 5°, as shown in Figures 6B,C,F,G. In the experiment, the

FIGURE 6 | Snapshots and plots of SLIDER blindly walking on different kinds of terrains, with a constant forward velocity of 0.3 m/s (a ~c) and 0.6 m/s (d). On the
top row, from left to right, (a) ~(d) walk on the flat terrain. Walk on a slope with an angle of 15°. Walk on a wave field approximated by slopes with 3 different angles: 15, 10,
and 5°. Walk over stairs; the successive elevation changes are +2 cm, +2 cm, +3 cm, +3 cm, −2 cm, −3 cm, −2 cm, and −3 cm. On the bottom row, from left to right, (e)
~(f) the plots of desired and measured CoM z position in corresponding scenarios.
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whole body controller plays an important role in making the
robot remain robust to unobserved terrain variations. By properly
tuning the PD gain of the foot orientation task in the whole body
controller, the foot is compliant to adapt to large terrain
variations, as shown in Figure 7.

Further experiments, such as pushing the robot while it was
walking on uneven terrains, were performed. As shown in

Figure 8, the robot was pushed in x or y direction twice while
it was walking on a wave field. When the robot was pushed in x
direction, the robot quickly took a large step in x direction to
regulate the CoM velocity back to the desired velocity. There is
also a big change in z direction because the wave field is
ascending in x direction when the robot got pushed, but the
motion quickly got stabilized. In the case of y direction push,

FIGURE 7 |With the whole body controller, the foot is compliant, and the robot can perform transitions to different terrains even though the robot does not know
how the terrain looks like. This makes the robot robust to unobserved terrain variations. The green lines indicate the magnitude and direction of the ground reaction
forces. The blue and red lines show the trace of the right and left foot centers, respectively.

FIGURE 8 |Comparison between the proposed aSLIP planner with the LIP planner when walking on a 15° slope. Top left is the snapshot showing SLIDER walking
using a LIP planner; after two steps, the robot stops walking forward because LIP does not take height change into account. Top right is the snapshot showing SLIDER
walking using our aSLIP planner where the robot is able to walk forward successfully. Bottom is a plot showing the comparison between the desired CoM height of LIP
and aSLIP planners.
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the robot also took a large step in y direction and stabilized in
one step. As the terrain height is only changing along x
direction, there is no big change in z direction in this case.

We also compared our proposed planner with a planner using
LIP, as shown in Figure 9. The robot with a LIP planner is unable
to walk up a 15° slope as the LIP planner assumes a constant CoM
height, as shown in the bottom plot in Figure 9. The aSLIP
planner enables SLIDER to walk uphill because it adapts to height
changes.

5.4 Walking on the Discrete Uneven Terrain
The discrete uneven terrain provides bigger instantaneous
variations to terrain height than the smooth uneven terrain.
As shown in Figure 6D, the robot walked blindly over a set of
stairs with a biggest height change of 3 cm. The robot walked
with a forward velocity of 0.6 m/s and a foot height of 5 cm in
the swing foot phase. As shown in Figure 6H, the CoM Z
position exhibits large variations when walking over stairs but
was stabilized quickly. In our experiment, the highest step the
robot can walk over is 3 cm, for higher steps the foot would hit
the edge of the stair and get stuck.

6 DISCUSSION

The proposed method is applied to the SLIDER robot and
demonstrates successful blind walking on various uneven
terrains and the robustness to disturbances due to fast MPC.
Because of SLIDER’s lightweight legs, the robot can perform fast
leg movements which helps to stabilize the robot. Furthermore,
the proposed method is general and can easily be applied to other
legged robots.

There are other techniques dealing with variable height CoM
trajectories, for example, DCM-based approaches (Englsberger
et al., 2013; Caron and Kheddar, 2017). But these techniques
require the controller to be terrain-aware to plan future CoM
motion. Our proposed controller adjusts the CoM height online
within each step by following a spring dynamics. This has two
advantages: first, the controller does not require terrain
information; second, the spring dynamics enables the vertical
compliance of the robot so that the robot is robust to unexpected
height variations.

The author observed that the tracking error is larger when the
robot walks down the wave field or stairs than walking up, as

FIGURE 9 | Plots showing the states of CoM when the robot got pushed in x or y direction while walking on a wave field at a speed of 0.3 m/s. The pushes are
indicated with circles. All impulses are applied with a value of 40 N for a duration of 0.1 s. Top row: states of CoM when got pushed in x direction. Bottom row: states of
CoM when got pushed in y direction.
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shown in Figures 6G,H. This happens because the feet are still in
the air at the end of one step when the robot walks down. The
unexpected sudden drop of the feet at the start of the next step
gives the robot a large impact. For robot walking upward, the
effect of early touchdown can be alleviated by the compliant feet
and vertical compliance of the CoM. To improve, a controller
with contact detection or terrain information can achieve a
smaller tracking error.

7 CONCLUSION AND FUTURE WORK

We present an online optimization algorithm, which enables robots
to blindly walk over various kinds of uneven terrains while resisting
pushes. The high-level motion planner performs fast online
optimization on footstep locations and CoM height, and the low-
level inverse-dynamics–based whole body controller tracks the
trajectory. We show in simulation that using this controller, the
robot SLIDER can walk over slopes, wave fields, and stairs without
any terrain information and can also recover from pushes while
walking. Future work will involve implementing our approach on
the real SLIDER robot and also incorporating perception
information into the high-level step planner.
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