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Modern industrial robots are increasingly deployed in dynamic environments, where
unpredictable events are expected to impact the robot’s operation. Under these
conditions, runtime task replanning is required to avoid failures and unnecessary
stops, while keeping up productivity. Task replanning is a long-sighted complement to
path replanning, which is mostly concerned with avoiding unexpected obstacles that can
lead to potentially unsafe situations. This paper focuses on task replanning as a way to
dynamically adjust the robot behaviour to the continuously evolving environment in which it
is deployed. Analogously to probabilistic roadmaps used in path planning, we propose the
concept of Task roadmaps as a method to replan tasks by leveraging an offline generated
search space. A graph-based model of the robot application is converted to a task
scheduling problem to be solved by a proposed Branch and Bound (B&B) approach and
two benchmark approaches: Mixed Integer Linear Programming (MILP) and Planning
Domain Definition Language (PDDL). The B&B approach is proposed to compute the task
roadmap, which is then reused to replan for unforeseeable events. The optimality and
efficiency of this replanning approach are demonstrated in a simulation-based experiment
with a mobile manipulator in a kitting application. In this study, the proposed B&B Task
Roadmap replanning approach is significantly faster than a MILP solver and a PDDL based
planner.
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1 INTRODUCTION

With the introduction of stationary and mobile robots in collaborative settings (Ajoudani et al.,
2018), robots need a more sophisticated autonomous behaviour to handle an increasingly dynamic
environment both safely and efficiently. Robots must be capable of dealing with such uncertainty at
runtime, without impacting too much on their expected productivity. The path planning problem
has been extensively discussed in the literature (Kavraki et al., 1996; Mac et al., 2016; Costa and Silva,
2019; Mannucci et al., 2019; Tajvar et al., 2020) as one important aspect to be able to guarantee a safe
operation of the robot, and avoid collision with humans, robots, or other unexpected objects present
in the environment. However, an efficient feasible path may not be easy to find at runtime, e.g., due to
physical constraints of the environment, and the robot may need to stop waiting for the path to be
cleared or make an extended detour. Whenever an unforeseeable event is perceived, e.g., the robot
path is not cleared, or a task exception occurs, a task replanner can re-assign the sequence of tasks to
the robot to keep its productivity high (Lager et al., 2019).

In this paper, we propose a task planning approach for industrial robots and service robots, called
Task Roadmaps (TRM), that can be used for replanning the robot’s task allocation at runtime. The
approach is inspired by Probabilistic Roadmaps (Kavraki et al., 1996), as it uses a similar idea to speed
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up the replanning of tasks at runtime. An initial plan may be
generated offline while replanning is an online activity that has a
direct impact on productivity, as well as the perceived reactive
responsiveness of a robot.

In this work, the TRM approach is applied to a robot
application modelled in the form of a Robot Task Scheduling
Graph (RTSG). RTSG is an intuitive graph-based task modelling
formalism for robot applications in dynamic environments that
was proposed in our previous work (Lager et al., 2021). An RTSG
model can be converted to a mathematical representation of the
related task scheduling problem as a Mixed Integer Linear
Programming (MILP) problem. The solution of the MILP
problem provides the execution sequence of tasks to complete
the mission with a minimized makespan. Additionally, an RTSG
model can be converted to a domain and problem description in
the Planning Domain Definition Language (PDDL), allowing for
the scheduling problem to be solved by planners compatible with
this format.

Unfortunately, the MILP formulation is an NP-hard problem
(Miloradović et al., 2020; Miloradović et al., 2021), and
computing a solution can be time-consuming. Compared to
MILP solvers, PDDL based planners tend to be more efficient
for RTSG models with more constraints but less efficient for
models with fewer constraints (Lager et al., 2021).

In this paper, we propose the concept of TRM and present a
Branch and Bound (B&B) algorithm to solve the very same
scheduling problem described above while generating a
reusable planning space (a task roadmap). Whenever
replanning is needed, the B&B algorithm can leverage the
planning space, which will speed up the replanning time
considerably. This usage scenario of the algorithm is referred
to as B&B-TRM.

In a simulation-based experimental study, we compare the
replanning performance for a MILP solver, a PDDL planner,
B&B, and B&B-TRM in a kitting application with a mobile
manipulator. The experiments show a significant reduction of
task replanning time with B&B-TRM compared to the other
approaches, while providing equivalent solutions in terms
of cost.

The remainder of this paper is organized as follows. Section
2 presents related works, Section 4 gives an introduction to the
task modelling formalism, RTSG, and the general scheduling
problem. Section 4 details the scheduling problem formulation
as a MILP, Section 5 shows how RTSG can be converted to
PDDL. Section 6 introduces Task Roadmaps, exemplified with
a B&B scheduling algorithm for RTSG models. Section 7
presents the experimental results, while Section 8 concludes
the paper.

2 RELATED WORK

Some replanning approaches make a new plan from scratch
when an unexpected condition occurs, e.g., see the work by
Weser et al. (2010). This is a solid approach for high-quality
plans but often at a high price of computational time for large
problem instances. Moreover, our approach essentially makes a

replanning from scratch but in addition, it leverages the search
space generated to find the initial plan, thereby reducing the
planning time.

Other approaches try to reuse the initially generated plan,
modifying parts of it to adapt to unexpectedly changed or more
refined conditions. The purpose can be to locally optimize the
initially planned sequence, e.g., with rule-based transformational
planning (Kazhoyan et al., 2020) or by rearranging subgoals at
runtime using Hierarchical Planning (Hadfield-Menell et al.,
2013). The purpose can also be to repair a plan, e.g., by
making a rule-based rearrangement of operations (Lou et al.,
2012). This way of replanning can be more simple and efficient
than replanning from scratch, but the quality of a modified plan
may become less optimal or invalid (McDermott, 1992). A
sophisticated variant of this approach creates an adaptable and
partially ordered initial plan, having an online algorithm
generating a set of completely ordered plans and dispatching
the one with the best chance for success given the current state
(Lima et al., 2020).

The Traveling Salesperson Problem (TSP) with Precedence
Constraints (PCs) with a fixed starting- and endpoint is a
special case of the scheduling problem for RTSG models
targeted in this work. RTSG models additionally include
alternative sequences and interrupt locks. One example of a
TSP-PC problem instance is TSP with pickup and delivery
(Dumitrescu et al., 2009). Recently, a dynamic programming
approach to solve TSP-PC dating back to 1979 was revisited
(Salii, 2019). In this approach, which is akin to our proposed
B&B (that uses a breadth-first and forward search approach),
the algorithm starts from an empty set of nodes and uses an
expansion operator to select the order-theoretic minimal of the
remaining nodes in every iteration.

3 TASK MODELLING FORMALISM AND
SCHEDULING PROBLEM FORMULATION

In this section, RTSG, the task modelling formalism used in this
paper, is presented. This is followed by a description of the task
scheduling problem and related assumptions.

3.1 Robot Task Scheduling Graph
An RTSG is a directed acyclic graph, as exemplified in Figure 1.
The graph is composed, e.g. by a domain expert, to specify the
variability of a task sequence from a start node (S) to a goal node
(G) that will achieve a higher-level goal, e.g., to fetch and deliver a
selection of different objects from a warehouse. S has one
outgoing edge and G has one incoming edge. Intermediate
nodes in rectangular form represent tasks that may be
executed in a scheduled sequence to reach the goal. Tasks
have one incoming and one outgoing edge and represent
robot actions at different locations in the environment, e.g. the
fetching of an object. Edges and paths (of edges) represent
precedence constraints. For example, if there is a directed path
from task A to task B, then task A must precede task B in any
schedule where both A and B are present. The remaining nodes,
with a circular shape, are logical nodes that guide the variability of
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the task sequence. These are intuitively described in the next
Sections 3.2–3.4

3.2 AND-Pairs
An AND-pair is an AND-Join node (&J) and a corresponding
preceding AND-Fork node (&F). The AND-Fork node has a
single incoming edge and multiple outgoing edges, while the
AND-Join node has multiple incoming edges and a single
outgoing edge. AND-pairs split a single branch into parallel
branches at the AND-Fork node (&F) and rejoin them at the
AND-Join node (&J).

The function of AND-pairs is to indicate more complex
precedence constraints by being able to fork and rejoin
branches. The mutual scheduling order of tasks in different
parallel branches is variable since there is no directed path
between them. Additionally, tasks in these branches must be
scheduled before any task succeeding the AND-Join node.

3.3 OR-Pairs
An OR-pair is an OR-Fork node and a corresponding succeeding
OR-Join node. The OR-Fork node has a single incoming edge and
multiple outgoing edges while the OR-Join node has multiple
incoming edges and a single outgoing edge. An OR-pair contains
alternative branches of tasks, where at most one of them will be
scheduled. If an OR-pair is contained by another OR-pair, it is
said to be internal, otherwise, it is external. For an external OR-
pair, one of its contained branches will be scheduled. For an
internal OR-pair, one of its branches will be scheduled if the OR-
pair is a part of a scheduled branch.

3.4 Lock-Pairs
A Lock-pair is an +L node and a corresponding succeeding -L
node. These nodes have a single incoming edge and a single
outgoing edge. The sub-graph between a Lock-pair must be
scheduled uninterrupted by externally located tasks.

3.5 The Task Scheduling Problem
The problem to solve is to generate a sequence of tasks that
minimises the cost to achieve the goal in a way that satisfies the
constraints of the given RTSG model. Apart from the sequencing of
tasks, a selection of alternative tasks is generally included in the
scheduling problem. The cost to beminimized includes routing costs
implicated by the task sequence selection.

It is a deterministic, single robot scheduling problem with
non-concurrent tasks, where the task allocation type is a time
extended assignment (Gerkey and Matarić, 2004). The state is
fully observable at planning/replanning.

Targeted replanning scenarios handle unexpected states that
are blocking or delaying the progress of task execution. They
include the considering of obstacles that are obstructing the
execution of the initially planned path/route or blocking the
access of planned task locations. Additionally, they may
include unexpected circumstances affecting the time to execute
a task, e.g., when the robot needs to pick an object from a shelf
location, and there are no objects in the box; the box will be
eventually refilled, e.g., by a human but the completion of the task
is affected by an unexpected duration. As a consequence of the
replanning scenario, the cost for the initially planned sequence
may increase and in the extreme case make it impracticable. The
transition cost may become changed between many tasks and not
only affect the currently running task or its successor. After
rescheduling, the order of tasks to be executed may be
changed or remain. Additionally, alternative tasks may become
replaced.

Replanning for an unexpected adding of sub-goals, requiring a
structural modification/extension of the RTSG model, is not
investigated in this work. However, the removal of modelled
sub-goals may be handled, e.g., by penalizing the cost for related
tasks or with a selective pruning by the proposed B&B algorithm.

The computational complexity of the RTSG scheduling
problem depends on the structure of the graph. As a simplistic
example, the RTSG can be used tomodel two alternative branches
of totally-ordered sequences of actions encapsulated by an OR-
pair. The solution to this problem can be solved in polynomial
time. On the other hand, RTSG can also be used to model a
Traveling Sales Person problem (TSP). This is a problem that is
known to be NP-hard (Grefenstette et al., 1985) indicating the
general RTSG problem is at least NP-hard.

A planner supporting temporal PDDL may be used to address
problems of harder complexity classes than NP, e.g. a temporal
plan existence problem may be EXPSPACE-complete (Rintanen,
2007). Rintanen shows that a significant fragment of temporal
PDDL planning problems can be reduced in polynomial time to
classical planning with a complexity class of PSPACE. The
requirements for this reduction include no overlapping of the
same action and state-independent action duration. However,

FIGURE 1 | Robot task scheduling graph.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8163553

Lager et al. Task Roadmaps

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


RTSG planning problems have state-dependent action durations.
Classical domain-independent planning languages do not
support state-dependent cost. However, it might be possible to
reduce the problem into a classical problem by generating a
manifold of fixed-cost actions (Geißer et al., 2015). The modelling
approach in this work is not based on a standardized format, e.g.,
classical PDDL, which is too limited for the approach. Instead, it
uses the native SAS+ format (Bäckström and Nebel, 1995).
Despite the improvements suggested by Geißer et al., these
conversions will in the worst case grow exponentially. The
combination of these drawbacks for the usage of classical
planners motivated the selection of a temporal PDDL planner
as one of the benchmarks in this study.

4 MIXED INTEGER LINEAR
PROGRAMMING REPRESENTATION

The task scheduling problem can be formulated as a Mixed
Integer Linear Programming (MILP) problem where the
decision variables and the constraints are derived from the
RTSG model. The optimization objective is to minimize a cost
function, e.g., in the form of a total completion time. The MILP
problem formulation is detailed in this section.

4.1 Notation
A is the set of all task nodes in the RTSG, S is the start node andG
is the goal node. We indicate with AS � A ∪ S, with AG � A ∪ G,
and with ~A � A ∪ S ∪ G.The setO ⊆ A, is the set of all task nodes
contained by OR-pairs, thus indicating alternative tasks that may,
or may not be a part of a valid task sequence.The notation j ≺ k
where j, k ∈ ~A indicates that task jmust be scheduled before task
k. The relation j ≺ k holds if there is a directed path from j to k in
the RTSG.

4.2 Problem Formulation
The problem that needs to be solved is to select a set of tasks within ~A
and their sequence, starting from S and ending in G, subject to the
constraints indicated by the RTSG so that the cost is minimized.
Such a problem, can be formulated as an optimization problem,
where the decision variables are Xj,k ∈ {0, 1}, ∀j, k ∈ ~A, where

Xj,k � 1, if there is a scheduled transition from j to k
0, otherwise.

{
Note that Xj,j � 0, ∀j ∈ ~A since we require that there is always a
transition to a different task.

The cost for selecting a transition between task j and task k is
indicated with Kj,k ∈ R≥0, and it includes the transition cost τj,k,
i.e., the time to move from the location of task j to the location of
task k, and the time αk that is required to complete the action of
task k:

Kj,k � τj,k + αk. (1)
The optimization problem aims tominimize the following cost

function:

J � ∑
j∈AS

∑
k∈AG

Xj,kKj,k (2)

4.3 General Constraints
The minimization problem is subject to the following constraints.

• There is exactly one transition from, and one transition to
the non-alternative nodes. However, there is no transition
from the goal node and no transition to the start node:

∑
k∈AG

Xj,k � 1 ∀j ∈ AS\O (3)

∑
k∈AS

XG,k � 0 (4)

∑
j∈AS

Xj,k � 1 ∀k ∈ AG\O (5)

∑
j∈AG

Xj,S � 0 (6)

• No cyclic sub-routes: Let V ⊆ A be any non-empty subset
of tasks.

∑
j∈V

∑
k∈V

Xj,k ≤ |V| − 1 ∀V ⊆ A,V ≠ Ø (7)

• Precedence constraints: Let D ⊆ ~A be any ordered subset
with multiple elements where the last element precedes the
first element. Di is the i-th element of D.

∑|D|−1

j�1
XDj,Dj+1 ≤ |D| − 2 ∀D ⊆ ~A, |D|≥ 2, D|D| ≺ D1. (8)

4.4 Lock-Pair Definitions and Constraints
A Lock-pair contains a set of tasks, L ⊆ A. Tasks in L must be
scheduled as a group in a sub-sequence that is uninterrupted by
other tasks. Two subsets of L are defined: LF �
{a ∈ L |bIa ∀b ∈ L} specifies the first tasks of L while LL �
{a ∈ L |aIb ∀b ∈ L} specifies the last tasks of L.

The constraints associated with Lock-pairs restrict transitions
from/to tasks contained by the pair. There can at most be one
transition from external tasks to the first tasks, and at most one
transition from the last tasks to external tasks:

Xj,k � 0 ∀L,∀j ∈ L\LL,∀k ∈ AG\L (9)
Xj,k � 0 ∀L,∀j ∈ AS\L,∀k ∈ L\LF (10)
∑
j∈LL

∑
k∈AG\L

Xj,k ≤ 1 ∀L (11)

∑
j∈AS\L

∑
k∈LF

Xj,k ≤ 1 ∀L (12)

4.5 OR-Pair Definitions and Constraints
The OR-pair constraints presented in this section can handle OR-
Pairs inside OR-Pairs etc., in a recursive manner. To express the
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OR-pair constraints we first need to prepare some supporting
definitions and operators:

An OR-pair contains a set of OP nodes, where an OP node is
either a task node or an internal OR-pair. In the same way,
internal OR-pairs contain OP nodes etc.

Formally, O1, . . . , Ov are OP node sets contained by OR-pair
1, . . . , v; Op1, . . . , Opm, are OP node sets in branches 1, . . . , m of
OR-pair p; OT

pq � {a ∈ Opq |a is a task} contains task nodes and
OOP

pq � {a ∈ Opq |a is an internal OR − Pair} contains internal OR-
pairs so that Opk � OT

pq ∪ OOP
pq .

One primary OP-node, Ppq ∈ Opq is arbitrarily selected for
each OR-pair branch. We define the following operators:

• F is a recursive operator that returns a set of tasks for a given
OR-pair branch. The set represents alternative tasks in the
branch that shall not be combined:

F Opq( ) � a{ } if Ppq is task a.
F Or1( ) ∪ . . .∪ F Orm( ) if Ppq is OR − pairOr

{
(13)

• H returns a set of tasks for a given OR-pair. It represents
alternative tasks in the OR-pair that shall not be combined:

H Op( ) � F Op1( ) ∪ F Op2( ) ∪ . . .∪ F Opm( ) (14)

• R returns a set of sets of tasks for a given OR-pair branch. It
represents other sets (than F) with alternative tasks in the
branch that shall not be combined:

R Opq( ) � OT
pq\Ppq ∪ ⋃

i∈OOP
pq \Ppq

H i( ){ } (15)

With these definitions, the OR-pair constraints can be
summarized:

• Transitions from and to tasks contained by OR-pairs: There
is at most one transition from/to such a task and the number
of incoming transitions is the same as the number of
outgoing transitions:

∑
k∈AG

Xj,k ≤ 1 ∀j ∈ O (16)

∑
j∈AS

Xj,k ≤ 1 ∀k ∈ O (17)

∑
k∈AG

Xj,k � ∑
k∈AS

Xk,j ∀j ∈ O (18)

• Transition from and to tasks in alternative OR-pair
branches: For an external OR-pair, exactly one branch
will be scheduled. For any OR-pair: If the primary OP
node in one branch is scheduled, the remaining OP-
nodes in the same branch will also be scheduled.

∑
j∈AG

∑m
q�1

∑
s∈F Opq( )

Xs,j � 1 ∀ externalOp (19)

∑
j∈AS

∑m
q�1

∑
s∈F Opq( )

Xj,s � 1 ∀ externalOp (20)

∑
j∈AG

∑
k∈R′

Xk,j � ∑
j∈AG

∑
s∈F Opq( )

Xs,j ∀Opq,∀R′ ∈ R Opq( ) (21)

∑
j∈AS

∑
k∈R′

Xj,k � ∑
j∈AS

∑
s∈F Opq( )

Xj,s ∀Opq, ∀R′ ∈ R Opq( ) (22)

4.6 Replanning Constraints
In dynamic environments, some unforeseeable events may make
the initially computed plan not possible to execute. To complete the
robotmission, a replanning can be initiated. Such a replanning can,
besides changing the order of tasks, exploit other OR-pair branches
of the RTSG to successfully complete the mission in an alternative
way. On the other hand, if one or more tasks in an OR-pair branch
are already completed, the remaining tasks in this branch will also
become scheduled in the new plan. For replanning, one needs to
introduce additional constraints to account for completed tasks,
and for capturing the changed situation that hinders the
completion of the initial plan. The set C � {C1, . . . , Cl} contains
the sequence of already completed tasks. The initial transitions for
these tasks become additional replanning constraints:

XS,C1 � 1 (23)
XCi,Ci+1 � 1 ∀i � 1, . . . , l − 1 (24)

Further, the costs for possible transitions between tasks,
Kj,k j ∈ AS\C, k ∈ AG\C are updated to describe the current
situation. For example, the costs are affected by unexpected
obstacles and the new location of S, i.e., the current location
of the robot. Thereafter, the cost of transitions involving
completed tasks are initialized:

KS,C1 � 0
KCi,Ci+1 � 0 ∀i � 1, . . . , l − 1
KCl,j � KS,j ∀j ∈ AG\C

5 PLANNING DOMAIN DEFINITION
LANGUAGE REPRESENTATION

PDDL is a general domain-independent modelling formalism for
setting up planning problems, originating from classical planning
(Fikes and Nilsson, 1971). It is used to define planning problems
in many areas, also outside the field of robotics. Planning problems
that are represented in a PDDL format can be solved bymany different
planner algorithms, e.g., Temporal Fast Downward (TFD) (Eyerich
et al., 2009) and POPF2 (Coles et al., 2011). Since an RTSGmodel can
be converted to a PDDL planning problem (Lager et al., 2021), many
different planner algorithms are available. One of these, TFD, is used in
this work as a benchmark. The reason for selecting TFDwas it is ability
to find high quality solutions in comparison with other planners/
solvers in our previous work (Lager et al., 2021). For compatibility,
planners need to support some parts of PDDL2.1 (Fox and Long,
2003) that extends PDDL with syntax for temporal planning.
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5.1 Planning Domain Definition Language
Introduction
A PDDL problem specification is divided into a domain
description and a problem description. In the domain
description, definitions are made that can be reused for similar
planning problems. The most basic definitions include:

• Types are used to instantiate different types of objects, e.g.,
robots, locations, tools, paths, or boxes. The types can be
organized with polymorphism, e.g., a tool may be a gripper
or a camera.

• Predicates are used to instantiate different types of facts,
describing relations between objects, e.g., “robot1 is at
location1″, “location1 and location2 is connected with path1”.

• Actions are operators that can be applied if a set of
preconditions, specified as predicates, hold for a set of
object parameters. The application of an action causes a set
of effects, also specified as predicates, that will add or
remove facts. Action example: Move robot1 from location1
to location2. Preconditions are: 1) “robot at location1″ and
2) “location1 and location2 is connected with path”. Effects
are: 1) “robot is at location2″ and not “robot is at
location1”.

A basic PDDL problem description includes:

• Existing objects of different types.
• Facts describing initial relations between objects, i.e., the
initial state.

• Facts describing desired or undesired relations between
objects, i.e., the goal state.

The task of a planner algorithm is to process the domain and
problem description and find a sequence of applicable actions
operating on the existing objects, that will change the initial
state to a state where the goal state is fulfilled. This plan
generation process is not investigated here. Instead, details
are presented on how to convert the RTSG task modelling
formalism into PDDL, thereby enabling plan generation with
already existing planner algorithms.

5.2 Conversion From Robot Task
Scheduling Graph to Planning Domain
Definition Language
In general, when converting an RTSG model to a PDDL
specification, the RTSG nodes become objects and the edges
become facts. Two types of PDDL actions are defined:

• Running a task. This is a durative action where the duration
is the cost to perform the task.

• Firing a transition of a logical node. The purpose of this
action type is to enable the execution of tasks under the
constraints imposed by the logical nodes, e.g., precedence
constraints and alternative OR-pair branches. They do not
correspond to real actions and their duration is zero in order
not to affect the cost.

5.2.1 A Planning Domain Definition Language Domain
for Robot Task Scheduling Graph
Listing 1 presents a PDDL domain for a general RTSG. The domain
is almost independent of the RTSG model that shall be converted.

Listing 1:. PDDL domain

All object types are derived from the node type, and are used to
represent nodes in an RTSGmodel. There are two types of node: task
and logical. task represents actions or states that affects the cost of a
plan: startcond, goalcond and robtask. logical represents different
types of logical nodes: andfork, orfork and orjoin. Different andjoin
types are defined for each number of incoming edges that needs to be
represented in the RTSG model. For example, andjoin2 represents
an AND-Join with two incoming edges. A nofork object is a dummy
object that helps in the modelling of alternative branches. Lock-pair
nodes are not represented by object types; instead their constraints
are modelled with not-locked facts.

Among the static predicates, that cannot be affected by any
action, edge represents an edge between two nodes. orfork-branch
specifies the outgoing connection from an OR-Fork to another
node. not-locked specifies if a transition between two tasks is not
locked. The other predicates are dynamic and can be created or
removed by actions: fired specifies if a node (task or logical) is
completed. latest-completed specifies if a task is the latest
completed task. branch-not-selected specifies if an alternative
branch for an OR-Fork not has been selected.

There are two types of actions: to run a task and to fire a
transition for a logical node. There is one action that runs all
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tasks, i.e. RUN-TASK. There are a limited number of actions for
logical nodes, i.e. FIRE-LOGICAL to run transitions for all non
AND-Join nodes, FIRE-ANDJOIN2 for transitions of AND-Joins
with two incoming edges, FIRE-ANDJOIN3 for 3 incoming edges
etc. Additional AND-Join actions must only be defined if they
exist in the RTSG model.

Running a task has a duration and the duration is represented
by a cost function that specifies the cost of performing a task (to)
after completing another task (from). The preconditions require
that the node connected to the incoming edge has been fired. If this
connected node is an OR-Fork, it is required that a branch not yet
has been selected. It is also required that a transition from the latest
completed task not is locked. The effects update the dynamic
predicates: The task becomes both fired and the latest-completed.
The branch-not-selected is removed for the task’s orfork.

Fire a transition for a logical node has a zero duration, i.e., free
of cost. The preconditions require that the node connected to the
incoming edge has been fired. If this connected node is an OR-
Fork, it is required that a branch not yet has been selected. The
effects update the dynamic predicates: The logical node becomes
fired and the branch-not-selected is removed for the logical node’s
orfork. For an AND-Join action, the preconditions additionally
require every node connected to the incoming edges to be fired.

5.2.2 A Planning Domain Definition Language Problem
for an Robot Task Scheduling Graph Model
Listing 2 exemplifies a PDDL problem description at initial
planning, that is converted from the RTSG model in Figure 1.
Some of the data in the conversion are left out, indicated with ’...′,
to get a more compact overview.

Listing 2. PDDL problem

The objects and the static facts listed in the PDDL problem are
dependent on the structure of the RTSG model.

Objects are defined for all nodes in the RTSG graph except for
Lock-pair nodes. Additionally, nofork objects are created for all
nodes that do not have an incoming edge from an OR-Fork node.
noforks are dummy objects assisting in the selection of alternative
OR-Fork branches.

Static facts are created to represent the structural elements of
the RTSG model. The edges are represented with edge facts that
specify connected nodes. However, edges to/from Lock-Pair
nodes are bypassed. not-locked facts are created for each valid
transition between two tasks, with respect to precedence
constraints as well as Lock-pair constraints. For each AND-
Join node, an andjoinX-inputs fact is created that specifies all
nodes connected to its X incoming edges. For each node
connected to the outgoing edge of an OR-Fork node, an
orfork-branch fact is created indicating this orfork. For all
other nodes, an orfork-branch fact is created indicating their
nofork object.

Dynamic facts are created to represent all possible
intermediate states of a task execution sequence. A fired fact
is added for all completed nodes. For the initial state, as
illustrated in Listing 2, there is only a single fired fact for the
start node. At replanning, a fired fact is additionally added for all
completed tasks and for the logical nodes that precede
completed tasks. A single latest-completed fact specifies the
latest completed task. At initial planning, the start node is
always the latest-completed, while this may have changed at
replanning. For the initial plan, a branch-not-selected fact is
created for each orfork and nofork. At replanning, these facts are
removed if the orfork has a fired fact or if the node that is
connected to the nofork has a fired fact.

Finally, the numerical cost value for all not-locked transitions
between tasks is specified. In a replanning scenario, these values
may become changed by the current state of the modelled
application.

The required goal state is a fired fact for the goal object. The
objective of the plan, the metric, is to minimize the makespan.

6 TASK ROADMAPS

We developed a Branch and Bound (B&B) algorithm, to compute
solutions of scheduling problems modelled with RTSG as detailed
in Section 4. The algorithm makes a breadth-first expansion of a
search tree. It is a forward search that is guided from the start
node of the RTSG model. When replanning is needed, the
algorithm is designed to make a new plan while considering
the current conditions, e.g., the location of the robot and the
sequence of already completed tasks. Optionally, the search space
that was constructed while generating the initial sequence can be
reused. This option avoids the need of expanding a new search
space from scratch, making the replanning significantly faster
with preserved quality of generated plans.

In analogy with Probabilistic Roadmaps (Kavraki et al., 1996),
the search space is referred to as the Task Roadmap (TRM) that is
created in a learning phase and used for runtime replanning in a
query phase. In Table 1, we compare the basic characteristics
between Probabilistic Roadmaps (PRM) and TRM.
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Additionally, a saved Task Roadmap may be leveraged to
speed up initial planning for an RTSG model if it has the same
graph structure as the model used to generate the Task Roadmap.

6.1 Learning Phase
In the learning phase, a search tree is expanded by the B&B
algorithm acting on a Robot Task Scheduling Graph (RTSG) to
find an initial task sequence.In the search tree, see Figure 2, the
initial start condition is represented by the root node S, and other
nodes represent sub-sequences. The number of tasks in a sub-
sequence corresponds to the distance between the node and the
root node. The best sequence is the sequence reaching the leaf G
with the lowest cost (indicated in green in the figure). An

important aspect of the scheduling algorithm is the pruning of
equivalent nodes. Equivalent nodes have the same distance to the
root node and the same combination of tasks (but in different
orders) where the last task is the same, leading to a similar state.
In the example in Figure 2, the two nodes representing the
sequences S-A-B-C and S-B-A-C are equivalent. The difference
between equivalent nodes is mainly the cost of the respective
sequence leading to this state. The possible propagation of task
sequences from equivalent nodes is identical. This conclusion is
not formally proved here but verified experimentally in the
scenarios presented in Section 7 where B&B always finds
valid and potentially optimal solutions with the same objective
value as a MILP solver and a PDDL planner, at initial planning as

TABLE 1 | Similarities of the basic characteristics for Probabilistic Roadmaps and Task Roadmaps, respectively.

Probabilistic roadmaps Task roadmaps

Represents a robot configuration space with a graph Represents a robot task sequence space with a search tree
Used for path planning with obstacle avoidance Used for task planning with scheduling constraints
The graph is built using probabilistic sampling of the robot configuration space The search tree is built with a deterministic B&B algorithm where the scheduling

constraints are specified with an RTSG model
Nodes represent collision-free configurations in the configuration space Nodes represent valid task sequences with respect to the scheduling constraints
Edges represent collision-free paths between robot configurations. Path costs are
typically fixed

Edges represent valid transitions that extend task sequences with applicable tasks.
Transition costs are updated for a new replanning scenario

Offline learning phase to build the graph Offline learning phase to build the search tree
Online query phase where the graph is used, e.g., at replanning, to identify a collision-
free and potentially efficient path from a current state to a goal state

Online query phase where the search tree is used, e.g. at replanning to identify a valid
and potentially optimal task sequence from a current state to a goal state

FIGURE 2 | Visualization of a B&B search tree for the RTSGmodel in Figure 1. This expanded search treemakes up the Task Roadmap. The initial task sequence is
marked in green and completed nodes have a checkmark. Pruned nodes are red and have red pruning edges.
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well as at replanning in the query phase. The identical task
sequence propagation from equivalent nodes is leveraged in the
query phase. For this purpose, the algorithm always adds a
pruning edge from a pruned node to the equivalent node with
a better cost that caused the pruning. In the following description,
equivalent nodes that are interconnected with pruning edges are
referred to as peers.

6.2 Query Phase
At a point of replanning, the world is in a new state where the
robot has completed 0 to |A| tasks of the initial sequence. It is
expected that the transition costs and the action costs of the
remaining tasks (Eq. 1) may have changed, e.g., since the
previously planned path to a task may have become
temporarily blocked. Especially, the transition cost from the
latest completed task to other tasks should be guided by the
current state of the robot, e.g. its location. The query phase tries to
identify an efficient sequence of tasks that will bring the robot
from the current world state to the goal.

The query phase is divided into 2 steps:

1) The first step is to identify the current node of the search tree. This
is the node that represents the sequence of already completed
tasks. If no tasks have been completed, the root node becomes the
current node.

2) The second step is to find the most efficient task sequence
between the current node and a goal-reaching node in the
search tree. In this step, pruning edges are leveraged to explore
nodes without children.

When replanning is made while reusing an existing search
tree, we will refer to this method as B&B-TRM. And when
replanning is made from scratch with a single and non-
expanded root node, we will refer to this method as B&B.
The memory required for replanning with B&B-TRM is
always the same amount as required by B&B to find the
initial task sequence in the learning phase and create the
Task Roadmap. Replanning with B&B will in worst case
require the same amount of memory as B&B-TRM, i.e., if no
tasks are completed. If some tasks are already completed the
memory need becomes reduced due to the smaller problem size.
Both methods are realized with the same algorithm. This
algorithm takes as input a list of already completed tasks. It
also needs cost estimates for actions and transitions with respect
to the current state. The search starts from the root node, which
may be an initial single node or the top node of an existing
search tree. It is a breadth-first search where any existing
children are reused instead of being created while expanding
the search. It is pruning all nodes in the first generation except
the one that matches the first completed task. Then all nodes in
the second generation are pruned except the one that matches
the second completed task etc. This goes on until the current
node is reached. From this node and onwards, only equivalent
nodes are pruned. If an expansion is required from a node
without children, the algorithm will look for a peer of the node.
If no peer is found (e.g., since the algorithm is run without a
TRM), all applicable children of the node are identified by a

search of the RTSG and created. If instead a peer is found, the
peer’s children are adopted by this node. If the peer lacks
children, the peer’s peer’s children are adopted etc. These
adopted children are top nodes of sub-trees that are
disconnected from the peer and reconnected to the new
parent node. The cost of all reused children adopted or
previously existing, need to be updated to consider the new
cost of the parent. The search continues until the goal is reached
in all active (non-pruned) search nodes. Finally, the goal-
reaching node with the lowest cost is identified.

Due to the exchange of subtrees between peers, each
replanning will potentially modify the structure of the
search tree. However, no information is lost that is
required for later replanning. The significant reduction of
planning time from reusing nodes comes from 1) removing
the process of searching the RTSG to find possible search tree
propagations and 2) removing the process of creating nodes
from scratch.

6.3 B&B and B&B-TRM
A pseudo-code for B&B and B&B-TRM is given in Algorithm 1.

Algorithm 1: B&B and B&B-TRM.

The algorithm starts at the ScheduleTasks function. It takes as
input arguments a root node and a list of already completed
tasks. The root node keeps the starting conditions for planning,
e.g., the current location of the robot. At initial planning, the
root node does not have any children. After completing the
initial planning, it has been expanded to a search tree. At
replanning, the expanded root node can be used as an input
argument to ScheduleTasks, thereby speeding up the planning
time. This usage scenario is referred to as the B&B-TRM
algorithm. If instead a non-expanded root node is used, the
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search tree will be generated from scratch, which is referred to as
the B&B algorithm.

ScheduleTasks runs a loop where a new generation of nodes is
fully explored in every cycle, starting from the root node. From
each generation, any goal-reaching nodes (sequences) are
collected. The loop continues until no more generations can

be explored. Finally, ScheduleTasks returns the goal-reaching
sequence with the lowest cost. For each explored generation,
pruning is made among equivalent nodes (in the algorithm
referred to as peers) and pruning edges (object references to
peers) are recorded for all pruned nodes to keep track of
reusable sub-trees. If there are completed tasks, all children
of the first generations, except the ones matching the completed
sequence, are pruned.

To explore a new generation, the recursive GetGeneration
function is used. The first argument, tn, is a reference to a tree
node. The function returns a list of nodes representing a
generation with respect to the tree node. The generation is
specified with a relative depth argument, where the value of 1
specifies the current generation, i.e., the tree node itself. A
value of 2 indicates the children of the tree node while 3
indicates the grandchildren etc. If the grandchildren or later
generations are specified, intermediate generations have

FIGURE 3 |Warehouse layout. The light green path, starting and ending
at the bottom right, is the initial route for Scenario (B). The robot has stopped
in front of an obstacle that is blocking the initially planned movement. The red
lines along the shelves, the wall and the obstacle indicate the objects
perceived by the robot’s laser scanner. A replanned route in blue, starting at
the robot’s location, has changed the order of the remaining tasks.

FIGURE 4 | RTSG representation of Scenario A.

FIGURE 5 | RTSG representation of Scenario B.

FIGURE 6 | RTSG representation of Scenario C.
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already been explored due to the breadth-first search
approach, and the existing children are used to explore the
specified generation recursively. If instead the children
generation is specified, the way of exploration will depend
on the usage scenario. For the B&B scenario, where a reusable
roadmap is missing, the children of the tree node are identified
with the method SearchAndCreateChildren. This is a method

that searches the RTSG model recursively, where any possible
child nodes are created, configured, cost estimated and
attached to the search tree. For B&B-TRM, existing children
can be reused and if a tree node does not have children, these
can be localized from its peer. If the peer has no children, the
peer’s peer is checked etc until children are found. Thereafter,
the children are reconnected from the peer to the tree node.
For both usage scenarios, the costs of the children are
estimated as the cost of the parent plus the cost to perform
the last task of the child with respect to the last task of the
parent. Apart from returning a list of a generation,
GetGeneration also updates the list of goal-reaching
sequences, i.e. the GS argument, with any goal-reaching
sequence.

TABLE 2 | Variables and constraints for the MILP problem formulations.

Scenario #Variables #Constraints

A 342 46
B 342 46
C 210 30

FIGURE 7 | Replanning time for B&B (dashed area), B&B-TRM (solid area) and MILP (dotted area) at different task completion levels. The central line in each area
indicates the median. Note that the vertical axis is logarithmic.
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7 RESULTS

7.1 Use Case
The use case is a kitting application in a warehouse. A mobile
manipulator shall deliver kit boxes filled with several specified
objects to a delivery station. Objects and empty kit boxes are
located on 5 different shelves in a simple warehouse as illustrated
in Figure 3.

The robot can carry 2 kit boxes and fill them in parallel. The
process to deliver the kits is divided into 5 phases: Fetch empty
kit boxes, Fetch layer 1, Fetch interlayer, Fetch layer 2, and
Deliver kits. There are two types of tasks: The first is to load
empty kit boxes, and the second is to fetch an object to a
carried kit box. Three different scenarios (A, B and C) are
modelled with RTSG, see Figures 4–6. Task names, e.g.,
F98B1, indicate type of task (Fetch), location (98) and kit
box (1). In all scenarios, the first task, L01BX, is to load two kit
boxes from a shelf location (01). The remaining tasks require
fetching one object at a shelf location into one of the two
carried kit boxes. The first AND-pair splits the graph into two
branches, each one modelling the filling of one kit box. The
goal node represents the movement of the robot to the goal
location where the filled kit boxes shall be delivered. Scenario

A is a realistic specification for how kit boxes can be filled in an
industrial context. For layer one, the kit objects can be fetched
in any order. For layer 2, the right-hand side kit box is
modelled to be filled in strict order (F09B2-F10B2-F11B2)
while the left-hand side kit box provides some variability. A
strict order can be desired, e.g., to achieve a predefined
overlap of objects in the kit box. There are two alternative
locations, 98 and 99, where an interlayer can be fetched. In
Scenario B, tasks from Scenario A are rearranged in the
graph, applying a strict order for each layer, thereby
introducing more precedence constraints that reduce the
variability of the task sequence. In Scenario C, the tasks
are rearranged to minimize the number of precedence
constraints, thereby maximizing the variability. Scenario C
is closer to a TSP problem with no precedence constraints
among the objects that shall be placed in the boxes.

When converting the three scenarios to MILP problem
formulations, the number of variables and constraints are
indicated in Table 2. Additionally, some lazy constraints are
added dynamically when required for Eqs. 7 and 8 while running
the MILP solver. The theoretical number of constraints for these
equations can be very high and defining them all may not be
viable.

FIGURE 8 | Scalability experiments for Scenario A. ‘#Tasks’ indicates the number of tasks in the RTSG. ‘#Tree nodes’ indicates the number of nodes in the Task
Roadmap search tree.
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7.2 Experimental Setup
The simple warehouse world is modelled with the Gazebo
simulator (Koenig and Howard, 2004). This includes the
shelves, the mobile robot and an obstacle that may interfere
with the robot path. ROS Navigation Stack (Guimarães et al.,
2016) is used to navigate the robot between different locations.
The navigation is guided by a 2D map of the warehouse that
initially does not include the obstacle. While navigating, the robot
simultaneously maps changes in the simulated world with respect
to the map.

The benchmarked planners include the proposed B&B and
B&B-TRM algorithms, a MILP solver (Gurobi Optimization,
2021) and Temporal Fast Downward (TFD) (Eyerich et al.,
2009) which is a PDDL based temporal planner. An initial task
sequence is generated from the RTSGmodel with B&B, MILP and
TFD. Additionally, B&B generates a task roadmap that is reused
by B&B-TRM in all replanning experiments. The transition costs
between tasks are represented by the collision-free path
lengths generated with the Dijkstra algorithm from the
initial map. The initial task sequence corresponds to a route
in the warehouse that starts and ends at the same location. In
the simulation-based replanning experiments, the robot
navigates the initially computed route, which turned out to
be the very same route for all planners, while simultaneously
mapping the environment with a simulated laser scanner.
When the first task is reached, the next task is dispatched
etc. During the progress of the plan execution, the planned
motion to the next task becomes blocked by the obstacle at
randomized locations along the path. The part of the obstacle
that is visible from the robot while approaching it and stopping
a short distance nearby (1–1.5 m), becomes included in the
map. A replanning is initiated from a randomized location of
the robot in front of the obstacle on the planned path. For this
purpose, the initial planning problem is updated to become a
replanning problem, considering already completed tasks, the
robot’s (randomized) current location and updated transition
costs caused by the updated map. Depending on the location of
the obstacle and its effect on collision-free path lengths
between tasks, the replanned routes may change or keep the
sequence of tasks. Replanning may fail if the location of the
obstacle blocks a planned task when there are no alternative
tasks. If a collision-free path can not be found between two
tasks, the transition cost is penalized to a very high value that
will help to detect a failed plan. All replanning scenarios were
run with the benchmarked planners, including B&B-TRM and
B&B (without the TRM). The number of already completed
tasks at replanning, l, was in the range l ∈ {0, 1, . . . , |A|}. 50
replannings were made for each l, with randomized robot and
obstacle locations along the path between the location of the
latest completed task and the next task. All experiments were
run on the same computer with an Intel i5-4,570, quadcore,
64-bit processor having 7.6 GB RAM running on Ubuntu
18.04.5. For the MILP solver, the no-cyclic-subroutes
constraints and the precedence constraints were
implemented as lazy constraints in a customized Python
callback routine. The B&B and the B&B-TRM algorithms
were implemented in Python.

7.3 Experimental results
Figure 7 shows the experimental results for the four planner
algorithms, i.e., B&B, B&B-TRM, TFD and the MILP solver. The
graphs show the minimum, the median, and the maximum
replanning time for the four algorithms, as a function of the
number of completed tasks l; if l is 0, no task has been completed,
and the replanning is performed with all the tasks in the task set,
and therefore the replanning time is expected to be higher.

For each experiment in all scenarios, B&B-TRM and B&B
reach the very same objective value as the solution computed by
the MILP solver, suggesting that the proposed algorithms may be
optimal. However, further investigation on the optimality of the
proposed algorithms is needed. TFD also reaches the very same
objective values in all experiments. The replanning time for B&B-
TRM is less than 1 s (and often a fraction of that) for all scenarios.
As expected from B&B-TRM essentially being a reduced version
of B&B, it outperforms B&B in every scenario by an average factor
of 26. The factor tends to increase slightly for scaled-up problem
instances with fewer completed tasks.

B&B-TRM outperforms the MILP solver in Scenario A by a
factor greater than 152 for the largest problem instances
l ∈ {0, ..., 8}. The difference is slightly less for the smaller
problem instances but still significant (> 18). For Scenario
B, B&B-TRM is more than 137 times faster for l ∈ {0, ..., 8}. For
Scenario C and l ∈ {0, 1, 2}, B&B-TRM is only 1.8, 2.3 and
2.6 times faster than the MILP solver, but for l> 2, the
proposed method exhibits significantly better performance.
The decreasing difference to the MILP solver for the larger
problem instances in Scenario C is correlated with a fast-
growing search tree and increased memory consumption. For
Scenario A and B, the growth of the search tree at each
breadth-first expansion step is limited by the more
numerous precedence constraints, thereby reducing the
memory consumption considerably. Scenario C highlights
the main limitation of the proposed approach, i.e., for
loosely constrained problems (Figure 6), the number of
alternatives grow significantly in breadth-first tree-based
search approaches. On the other hand, the specification of
robot applications is typically closer to Scenario A (Figure 4),
with a more structured sequence of tasks, hence with
additional constraints. In such cases, the proposed approach
can provide a significant speedup.

B&B-TRM outperforms TFD by a factor greater than 149 for all
l ∈ {0, ..., |A|} in Scenario A. This factor is 151 for Scenario B and 68
for Scenario C, respectively. A part of this performance differencemay
depend on the fact that the proposed algorithm is designed for the
RTSGmodelling formalism used tomodel these scenarios, while TFD
is designed for the PDDL modelling formalism.

Finally, it is worth noticing that both the B&B-TRM approach
and TFD provide a more predictable performance than MILP,
highlighted by the limited variability (standard deviation) of the
replanning time.

7.4 Scalability Investigation
As discussed in Section 3.5, the complexity of the scheduling
problem depends on the structure of the graph. It is assumed that
the scalability of the presented algorithm also depends on this
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structure, and how the graph is scaled. In order to investigate how
the algorithmmay scale for growing problem sizes, an experiment
was setup targeting the graph in scenario A. The size of this graph
was modified in different steps. For each problem size, memory
consumption and replanning time were measured. The number
of tree nodes in the Task Roadmap are used to represent memory
consumption. All replanning times were measured at random
locations before completing the first very task, which is the worst
case. Scenario A was scaled in two ways, 1) by changing the
number of tasks in each layer of the kit boxes (Figure 8ab), by
changing the number of layers in the kit boxes (Figure 8B). Both
scaling scenarios indicate an exponential growth of the memory
consumption, but at different rates where scaling the number of
layers is more advantageous. Scaling the number of layers
introduces a lot of precedence constraints, while the scaling of
layer sizes introduces very few. The B&B-TRM replanning times
are within a few seconds for the included problem sizes. The
scalability experiments confirms that memory consumption may
be a limitation for the algorithm in some scenarios. Especially for
less constrained, scaled up problem scenarios.

8 CONCLUSION AND FUTURE WORK

We have proposed the concept of Task Roadmaps (TRM) and
shown that it is a promising strategy to speed up online
replanning of robot tasks, thereby contributing to improved
productivity in a dynamic environment. We have presented a
strategy to implement Task Roadmaps, using a Robot Task
Scheduling Graph to model a robot application, Branch and
Bound (B&B) for initial planning and B&B-TRM for
replanning. The benefits, as well as the limitations for this
strategy, have been investigated in an experimental study

where a MILP solver and a PDDL based planner have been
used as benchmarks.

Future work will address the combining of different
replanning strategies with the modelling and runtime
observation of disturbance behaviours. Another interesting
extension is to widen the scope to multi-robot task allocation
and scheduling.
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