
Learning State-Variable Relationships
in POMCP: A Framework for Mobile
Robots
Maddalena Zuccotto*, Marco Piccinelli, Alberto Castellini *, Enrico Marchesini and
Alessandro Farinelli *

Department of Computer Science, University of Verona, Verona, Italy

We address the problem of learning relationships on state variables in Partially Observable
Markov Decision Processes (POMDPs) to improve planning performance. Specifically, we
focus on Partially Observable Monte Carlo Planning (POMCP) and represent the acquired
knowledge with a Markov Random Field (MRF). We propose, in particular, a method for
learning these relationships on a robot as POMCP is used to plan future actions. Then, we
present an algorithm that deals with cases in which the MRF is used on episodes having
unlikely states with respect to the equality relationships represented by the MRF. Our
approach acquires information from the agent’s action outcomes to adapt online the MRF
if a mismatch is detected between the MRF and the true state. We test this technique on
two domains, rocksample, a standard rover exploration task, and a problem of velocity
regulation in industrial mobile robotic platforms, showing that the MRF adaptation
algorithm improves the planning performance with respect to the standard approach,
which does not adapt the MRF online. Finally, a ROS-based architecture is proposed,
which allows running theMRF learning, theMRF adaptation, andMRF usage in POMCP on
real robotic platforms. In this case, we successfully tested the architecture on a Gazebo
simulator of rocksample. A video of the experiments is available in the Supplementary
Material, and the code of the ROS-based architecture is available online.

Keywords: planning under uncertainty, POMCP, POMDP, prior knowledge, Markov Random Fields, learning, mobile
robot planning

1 INTRODUCTION

Planning under uncertainty is a problem of sequential decision-making, which has important
applications in artificial intelligence and robotics. Over the last 2 decades, the interest in this topic has
grown rapidly due to methodological improvements and the application of these techniques to real-
world domains, such as smart buildings, industrial machinery controllers, and mobile robot
navigation. Intelligent and autonomous agents have been, in fact, recently employed in complex
domains (e.g., search and rescue, warehouse pick-and-place operations, and mobile robot
navigation) where the environment is only partially observable. In such domains, it is hard to
have complete knowledge of the environment in which the agent acts. In this work, we tackle a
specific problem in the context of planning under uncertainty: the problem of learning probabilistic
state-variable relationships. Consider, for instance, a warehouse made of aisles with different traffic
levels. A robot has to move in the warehouse to accomplish some tasks. The state of the system
contains the robot’s position and the configuration of traffic levels in each aisle, but the traffic levels

Edited by:
Pedro U. Lima,

University of Lisbon, Portugal

Reviewed by:
Dimitri Ognibene,

University of Milano-Bicocca, Italy
Jennifer Renoux,

Örebro University, Sweden

*Correspondence:
Maddalena Zuccotto

maddalena.zuccotto@univr.it
Alberto Castellini

alberto.castellini@univr.it
Alessandro Farinelli

alessandro.farinelli@univr.it

Specialty section:
This article was submitted to

Computational Intelligence in Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 20 November 2021
Accepted: 13 June 2022
Published: 19 July 2022

Citation:
Zuccotto M, Piccinelli M, Castellini A,

Marchesini E and Farinelli A (2022)
Learning State-Variable Relationships

in POMCP: A Framework for
Mobile Robots.

Front. Robot. AI 9:819107.
doi: 10.3389/frobt.2022.819107

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191071

ORIGINAL RESEARCH
published: 19 July 2022

doi: 10.3389/frobt.2022.819107

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.819107&domain=pdf&date_stamp=2022-07-19
https://www.frontiersin.org/articles/10.3389/frobt.2022.819107/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.819107/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.819107/full
http://creativecommons.org/licenses/by/4.0/
mailto:maddalena.zuccotto@univr.it
mailto:alberto.castellini@univr.it
mailto:alessandro.farinelli@univr.it
https://doi.org/10.3389/frobt.2022.819107
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.819107

are not known by the robot. It has to discover them using noisy
sensors while moving in the warehouse. In this case, each state
variable represents the traffic level of an aisle. In the following,
state variables refer to the hidden part of the state. Learning state-
variable relationships in this context means learning the
relationships among the traffic levels of different aisles in the
warehouse. The rationale is that if the robot knows that two aisles
have the same traffic levels with a high probability, it can improve
its planning performance because once it has observed the traffic
level of one aisle, it has also acquired some knowledge about the
traffic of the other aisle and it can plan considering that
knowledge.

Partially Observable Markov Decision Processes (POMDPs)
(Sondik, 1978; Kaelbling et al., 1998) are a powerful framework
for planning under uncertainty. Markov Decision Processes
(MDPs) (Russell and Norvig, 2010) are extended to the case of
partially observable environments. To tackle partial observability,
they consider all possible states of the (agent-environment)
system and assign to each of them a probability value
expressing the related likelihood of being the true state. These
probabilities, considered as a whole, constitute a probability
distribution over states, called belief. A solution for a POMDP
is a policy that maps beliefs into actions. The computation of
optimal policies is unfeasible in practice (Papadimitriou and
Tsitsiklis, 1987). Therefore, much effort was put into
developing approximate (Hauskrecht, 2000) and online (Ross
et al., 2008) solvers. The most recent approaches mainly rely on
the use of point-based value iteration (Spaan and Vlassis, 2004,
2005; Veiga et al., 2014) or Monte-Carlo Tree Search (MCTS)
based solvers (Kocsis and Szepesvári, 2006; Browne et al., 2012) to
deal with large state spaces. Deep Reinforcement Learning (DRL)
approaches are instead used to learn policies directly from
observations, without using a model of the environment
dynamics (Silver et al., 2016, 2017; Sutton and Barto, 2018).
Planning and reinforcement learning methods have also been
used together (Leonetti et al., 2016) to allow adaptation to the
environment and increased reliability. Among the main MCTS-
based solvers (Thrun, 2000; Kocsis and Szepesvári, 2006), a
meaningful improvement was obtained by Partially Observable
Monte Carlo Planning (POMCP) (Silver and Veness, 2010), a
pioneering algorithm that allows applying model-based
reinforcement learning to very large state spaces, overcoming
the scalability problem that has limited the usage of POMDPs for
many years.

We apply the proposed approach for learning state-variable
relationships to POMCP. The standard version of this algorithm
does not consider any kind of prior knowledge about state-
variable relationships. Castellini et al. (2019) proposed an
extension of POMCP, which considers these relationships in
the form of Constraint Networks (CNs) or Markov Random
Fields (MRFs). In that work, the introduction of such knowledge
provides an improvement in terms of planning performance, with
no additional overhead in terms of time complexity. However, it
is assumed to have full knowledge about the CN or MRF
containing the state-variable constraints. This knowledge could
be provided, for instance, by experts. Herein, instead, we deal with
a methodology for learning this knowledge in the form of an

MRF. The literature provides some general approaches for
learning MRFs, mainly in the context of computer vision
(Vuffray et al., 2020; Shah et al., 2021), but they are very
general and often time-consuming. On the contrary, our
proposed approach is specialized in planning under
uncertainty with POMDPs. Hence, it integrates with POMCP
without increasing its time complexity. Learning pairwise MRFs,
instead of general MRFs, requires a smaller amount of data, which
is important in the context of planning, where each learning
episode can take a long time. Let us consider, for instance, the case
study of the warehouse mentioned above, in which a learning
episode could last an entire day of work, having the autonomous
robot collect data about traffic levels in the aisles while doing
its job.

In this work, we propose three methodological advancements.
The first is an algorithm for learning the MRF during the
execution of POMCP. The second is implementing a
framework to integrate POMCP in ROS, enabling the
employment of the MRF learning algorithm on real robotic
platforms, with experiments performed on Gazebo simulators
of known application domains. The ROS-based architecture
allows learning the MRF on real robotic platforms. It
comprises three ROS nodes: environment, agent, and
planning. The environment node discretizes the real world by
exploiting a task-specific representation. The agent node, instead,
holds information about odometry and interfaces the ROS-based
robotic platform with the environment and the planner. Finally,
the planner node runs the learning algorithm. The third
advancement is an algorithm called “Adapt” (see Algorithm
2), which deals with cases in which we use the learned MRF
in episodes with unlikely state-variable configurations with
respect to the joint probability defined by MRF. This
algorithm runs when the knowledge provided by the learned
MRF does not reflect the true state-variable values. In such cases,
the MRF is misleading because it forces the belief probabilities
toward configurations of state variables that are discordant from
the true state, decreasing the probability of the true state. Thus,
the proposed algorithm adapts (i.e., changes) the MRF potentials
when the agent acquires knowledge about the true state-variable
values and detects a mismatch between the information in the
learned MRF and the specific state-variable relationships of the
episode to fix the mismatch. The adaptation is performed online,
as POMCP works, limiting the performance decrease that could
derive from the usage of the MRF when the true state-variable
configuration represents an unlikely state.

Our empirical analysis shows that the MRF adaptation
method improves the performance obtained using the MRF
without adaptation. We tested the algorithm on two domains,
namely, rocksample (Smith and Simmons, 2004), a benchmark
domain in which an agent moving in a grid has to collect hidden
rocks maximizing their values, and velocity regulation (Castellini
et al., 2020, 2021), a domain in which a robot traveling on a
predefined path has to regulate its velocity to minimize the time
to reach the end and the collisions with obstacles in the path.
Results show an average improvement of a discounted reward of
6.54% on rocksample and 3.51% on velocity regulation. Finally,
we tested the proposed ROS-based architecture on a Gazebo

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191072

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

simulator of rocksample. The architecture enables the generation
of informative MRFs that produces statistically significant
performance improvements. A video showing the evolution of
the learning process performed on the ROS-based architecture
and the Gazebo simulator is available in the Supplementary
Material. The code of the ROS-based architecture is also available
online.1

In summary, the main contributions of this work to state of the
art are as follows:

• We present a methodology for learning state-variable
relationships in the form of an MRF as POMCP is
executed on a mobile robot.

• We introduce a framework to integrate POMCP within
ROS, targeting ROS-based mobile robots. The architecture
supports both the phase in which the MRF is learned and
the phase in which it is used.

• We propose an algorithm for adapting the MRF constraints
to episodes having unlikely state-variable configurations as
new observations are acquired from the environment.

The rest of the study is organized as follows: Section 2
discusses related work. Section 3 describes the rocksample
domain used as a running example. Section 4 presents
background on POMDP, POMCP, MRF, and the extended
POMCP. Section 5 formalizes the learning algorithm and the
stopping criterion, describes the ROS-based architecture, and
formalizes the MRF adaptation method. Section 6 presents the
empirical evaluation of the three contributions. Section 7 draws
conclusions and suggests future research directions.

2 RELATED WORK

We identified four research topics in the literature related to our
work: probabilistic planning under uncertainty, application of
POMCP to robotic platforms, Bayesian adaptive learning and
other forms of learning for planning, and MRF learning.

Planning under uncertainty is a crucial task for autonomous
and intelligent agents. The first works on POMDP-based
planning date back to the seventies (Sondik, 1978). Since then,
several methods have been proposed to solve POMDPs
(Kaelbling et al., 1998). Recent works highlight the benefits of
introducing prior knowledge in problems formalized as POMDPs
and solved by POMCP. Castellini et al. (2019) showed that the
introduction of prior knowledge about state-variable
relationships yields performance improvement. In particular,
constraints expressed as MRFs (Murphy, 2012) and CNs
(Dechter, 2003) were used. Castellini et al. (2021) showed how
mobile robots exploited prior knowledge about task similarities to
improve their navigation performance in an obstacle avoidance
context. The main limitation of these works regards the
requirement to have a full specification of the prior knowledge
in advance, but this is not always feasible in practice, especially in

complex application domains such as robotic ones. What
differentiates our work from Castellini et al. (2021, 2019) is
that here we aim to learn the MRF on real robots while acting
in the environment and adapt the MRF while it is used. Some
other works deal with the problem of adding constraints to
planning for improving the performance or scaling to large
environments. Lee et al. (2018)used MCTS to generate policies
for constrained POMDPs, and Amato and Oliehoek (2015)
explored the multi-agent structure of some specific problems
to decompose the value function. Instead, we constrain the state
space on the basis of state-variable relationships to refine the
belief during execution. More precisely, we exploit the learned
MRF whose potentials express probabilistic constraints between
state-variable values. Other related works in the field of planning
under uncertainty concern factored POMDPs and their
applications (McAllester and Singh, 1999; Williams and
Young, 2007). However, our approach is substantially different
as the performance improvement does not derive from a
factorization of the POMDP but from the introduction in
POMDP of prior knowledge on the domain, represented as an
MRF learned from previously collected data.

Regarding the application of POMCP to robotic platforms, we
noticed that the planning algorithm has been recently applied to
different robotic problems. Goldhoorn et al. (2014) proposed two
extensions of POMCP to find-and-follow people that work in the
continuous space and plan actions in real time. The Adaptive
Highest Belief Continuous Real-Time POMCP Follower
presented in that paper aimed to avoid unnecessary turns of
the robot in reaching the goal. Our method and ROS-based
architecture, instead, aim to learn state-variable relationships
and use them in POMCP to improve planning performance.
Wang et al. (2020) and Giuliari et al. (2021) used POMCP in the
context of Active Visual Search. The authors proposed a method
in which the agent starts acting in an unknown environment
(i.e., with no information about the area map). Moreover, they
present a new belief reinvigoration approach dealing with
dynamically growing state space. Lauri and Ritala (2016) used
POMCP to control a mobile robot to explore a partially known
environment. POMCP was previously integrated with ROS in
Wertheim et al. (2020), where a robotic planning platform called
ROS-POMDP was presented. It generated the POMDP model of
the problem using Performance Level Profiles (PLP) (Brafman
et al., 2016) and Relational Dynamic Influence Diagram Language
(RDDL) (Sanner, 2010). A two-layer control architecture was
instead proposed by Castellini et al. (2021), where the upper layer
used an extension of POMCP to tune the velocity of a mobile
robot and the lower layer used a standard engine controller to
deal with path planning. As explained above, our proposed ROS
architecture has a completely different goal, integrating the
learning of the MRF with POMCP.

As our goal is to learn some information about the
environment and introduce it in POMCP to improve its
performance, we also analyzed related works on merging
learning and planning, with a specific focus on POMDPs and
POMCP. Our work is also related, for instance, to Bayesian
adaptive learning in POMDPs (Ross et al., 2011). Katt et al.
(2017) presented an elegant method for learning the transition1https://github.com/kriato/pomcp_mrf_ros

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191073

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://github.com/kriato/pomcp_mrf_ros
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

and reward models. They extended the POMCP algorithm to the
Bayes-Adaptive case, proposing the Bayes-Adaptive Partially
Observable Monte Carlo Planning (BA-POMCP) approach
that, however, learns the parameters of the transition model.
Our method, instead, learns probabilities of pairs of state
variables to have equal values in the hidden part of single
states (i.e., we do not consider any information about how the
state changes over time). We assume that the hidden part of the
state can change only from one episode to another, and each state
has a probability of occurring that depends on some (unknown)
state-variable probabilistic relationships. We notice that this
setting is very common in practice (see the warehouse
example in the introduction), but it cannot be naturally
encoded in the transition model. The information encoded in
our MRF is instead used to initialize and update the belief. For the
same reason, our approach also differentiates from Factored BA-
POMDP (Katt et al., 2019), which learns a compact model of the
dynamics by exploiting the underlying structure of a POMDP,
allowing for better scale to large problems. Even this approach
deals with knowledge about the transition from one state to
another across the steps of execution, and it cannot learn the
probability distribution of states considering probabilistic state-
variable relationships, as our MRF does. We remark that we do
not factorize the POMDP to learn the compact model of
dynamics. We are interested in learning probabilistic
relationships between state-variable values, which is
information affecting the belief and its update over time. For
instance, the traffic level in two aisles of a warehouse can be highly
correlated. Hence, in an episode, the two aisles may have a high
traffic level; in another episode, they may have a low traffic level,
but the probability that the two aisles have different traffic levels
in an episode is low. This prior knowledge about the state of the
environment, represented by the initial belief in POMDPs, can be
naturally integrated into POMCP using the MRF, a generative
model that directly represents state-variable relationships. Using
the MRF, we push the belief probabilities toward states that agree
with this knowledge. Methodologies for optimally updating
POMDP beliefs to reduce uncertainty on the true state have
been proposed by Stachniss et al. (2005), Araya et al. (2010),
Veiga (2015), Ognibene et al. (2019), Fischer and Tas (2020), and
Thomas et al. (2020). However, these methods mainly focus on
introducing the belief into the reward function to allow the
definition of information gain goals, otherwise not definable,
in the context of POMDP. In order to deal with large
environments in practical problems, hierarchical models
(Friston, 2008) have been used to extend the POMDP
framework (Pineau et al., 2001; Theocharous et al., 2001;
Theocharous et al., 2004; Sridharan et al., 2008; Doshi-Velez,
2009). These approaches take advantage of the structure of the
problem to decompose the state or the action space, introducing
different levels of abstraction to learn much larger models.
Moreover, in these works, the computation of optimal policies
is performed considering only a subset of the models or an action
subset because it is intractable to compute optimal policies for the
original problem. However, in our approach, we do not
decompose the original problem into sub-tasks. We compute
policies considering the entire problem domain. Finally, within

the research topic of learning for planning in robotic platforms,
Atrash and Pineau (2010) proposed a methodology for learning a
model of the user in applications where untrained humans
interact and control the robot. In this case, the goal is also to
learn a model of the environment.

In the literature, some works proposed approaches to learning
arbitrary MRF structures (Besag, 1977; Abbeel et al., 2006;
Pletscher et al., 2009; Salakhutdinov, 2009; Vuffray et al.,
2020) mainly in the field of computer vision. Due to their
generality, these approaches have a higher complexity than
our proposed approach, which is specialized in pairwise MRF
for representing state-variable relationships inside POMDPs.
Shah et al. (2021) also focused on pairwise MRF, but their
proposed methodology focused on learning continuous
pairwise MRF. The MRFs that we used in our approach are
discrete.

3 ROCKSAMPLE: A DOMAIN FOR A
RUNNING EXAMPLE

As a running example for explaining the main elements of the
proposed contributions, in the rest of the study, we consider
rocksample (Smith and Simmons, 2004) a benchmark domain
inspired by robotic planetary exploration. In the rocksample,
the agent acts in a grid containing valuable and valueless rocks
and aims to maximize the value of the collected rocks. The
agent does not know the values of the rocks, but it knows only
their locations in the grid. Rock values can only be inferred
from noisy observations returning the true value of the rock
with a probability proportional to the distance between the
agent and the observed rock. Knowing in advance the
relationships between pairs of rock values (e.g., close rocks
could have similar values in real-world applications), the agent
can improve its planning performance, collecting more
valuable rocks in less time. An example of a probabilistic
equality relationship between two state variables X1 and X2

assuming values in {0, 1} is “X1 is equal to X2 with probability
0.9”. In the rocksample, this means that rocks 1 and 2 have the
same values with high probability. This kind of relationship
cannot be encoded in the transition or observation models
because it does not deal with the dynamics of the environment
or state observability. Instead, it is a property of state
distribution and can be represented by the potential of a
pairwise MRF in which nodes correspond to state variables
and edges to probabilistic relationships between pairs of state-
variable values.

4 BACKGROUND

In this section, we provide definitions of POMDP, the model
used to formalize our planning problem, POMCP, the planning
algorithm used to solve the POMDP, MRF, and the structure
used to represent state-variable relationships. Finally, we
describe the extension of POMCP that considers prior
information.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191074

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

4.1 POMDP
A POMDP (Kaelbling et al., 1998) is defined as a tuple (S, A, O, T,
Ω, R, γ), where S is a finite set of states,A is a finite set of actions,Ω
is a finite set of observations, T: S × A → Π(S) is the transition
model, where Π(S) is the space of probability distribution over
states,O: S ×A→Π(Ω) is the observation model,R: S × A → R is
the reward function, and γ ∈ [0, 1) is the discount factor. The
agent’s goal, as in a MDP (Russell and Norvig, 2010), is to
maximize the expected discounted return E[∑∞

t�0γtR(st, at)]
acting optimally (i.e., choosing, in each state st, at time t, the
action at with the highest expected reward). In the POMDP
framework, however, the agent cannot directly observe the
current state st, but it maintains a probability distribution over
states S, called belief which updates at each time step. In the
following, we represent by symbol b(s) the probability of being in
state s according to belief b. The belief summarizes the agent’s
previous experiences, that is, the sequence of actions and
observations that the agent took from an initial belief b0 to the
belief b. The sequence of actions and observations is called history
(h) and is represented as h = 〈a0, o0, . . . , at, ot〉. The solution of a
POMDP is an optimal or approximated policy, namely, a function
that maps belief states into actions, that is, π: B → A, where B is
the belief space. A policy is optimal if it maximizes the expected
discounted return. The discount factor γ guarantees convergence
by reducing the weight of long-term rewards.

4.2 POMCP
POMCP (Silver and Veness, 2010) is a Monte-Carlo-based
algorithm for planning in partially observable environments
that combines MCTS (Browne et al., 2012) to compute an
approximated policy with a particle filter to represent the
belief. The particle filter is initialized with k particles, each
representing a state s and following a uniform distribution if
no prior knowledge is available about the initial state. At each
step, POMCP uses an MCTS to find the best action to perform.
The MCTS is generated by iteratively 1) sampling a state from the
particle filter and 2) performing a simulation with that state
according to the transition and observation models known by the
agent. The Upper Confidence bounds applied to the Trees (UCT)
strategy (Kocsis and Szepesvári, 2006) is used to balance
exploration and exploitation in the simulation phase. The
reward of each simulation is backpropagated in the tree to
compute the approximated Q-values Q (b, a) for the current
belief b and, at the end of the process, the action a with the higher
Q-value is selected. After the selected action, a is performed in the
real environment, a real observation o is collected, and particles in
the belief are updated by keeping only particles that explain the
observations. Particle reinvigoration is used if no more particles
are available in the particle filter.

4.3 Markov Random Fields
An MRF is an undirected graph where nodes represent variables
and edges represent probabilistic relationships between variable
values (Bishop, 2006; Murphy, 2012). A potential function is a
non-negative function of its arguments representing the relative
“compatibility” of different variable assignments. According to
the Hammersley–Clifford theorem (Upton and Cook, 2008), the

joint probability represented by the MRF can be computed as the
product of potential functions over the maximal cliques of the
graph, namely,

p x|θ() � 1
Z θ() ∏c∈C ψc xc|θc(), (1)

where x is a variable configuration (e.g., x = (1, 0 . . . , 0)), θ is a
parametrization of the MRF (i.e., a specific set of values for the
parameters θ that represent the MRF), C is the set of maximal
cliques, ψc (xc|θc) is the potential function, and Z(θ) is the partition
function, that is, a normalization factor that can be computed as

Z θ() � ∑
x

∏
c∈C

ψc xc|θc(). (2)

Potentials can be represented by a Boltzmann distribution
(i.e., exponentials); thus, ψc (yc|θc) = exp (−F (xc|θc)), where F (xc)
is the energy function. Restricting the parametrization of theMRF
to the edge rather than to the maximal clique of the graph, we
obtain pairwise MRF, and, consequently, the product of potentials
can be computed by summing the energies of all pairwise
relationships. We call E the set of pairwise relationships (i, j)
in the MRF, where i, j ∈ 1, . . . , n, and n is the number of state
variables. For instance, given a pair of state variables (Xi, Xj)|(i, j)
∈ E representing two rocks in rocksample, a potential could be
ψXi,Xj

(0, 0) � 0.45, which indicates a compatibility of 0.45 to have
value 0 in both rocks Xi and Xj, or ψXi,Xj

(0, 1) � 0.05, which
indicates a compatibility of 0.05 to have value 0 in rockXi and 1 in
rock Xj. In the following, when we refer to an MRF we mean a set
of potentials representing compatibilities of different variable
assignments:

ψXi,Xj
l, h(), i, j() ∈ E, l, h ∈ 1, . . . , k{ }, (3)

where k is the number of possible values of each variable.

4.4 Extended POMCP
The methodology we use to introduce prior knowledge in POMCP
(Castellini et al., 2019) allows for defining probabilistic equality
relationships among pairs of state variables through MRFs. The use
of the MRF allows factorizing the joint probability function of state-
variable configurations, and this probability is used to constrain the
state space. Indeed, the MRF defines a probability distribution over
states of the POMDP. For instance, in the rocksample domain, the
state space is the set of all possible rock value configurations, and the
constraints introduced by theMRF allow (probabilistically) reducing
the possibility of exploring states that have a small probability of
being the true state. The integration of prior knowledge in POMCP is
mainly developed in the particle filter initialization and in the
reinvigoration phase (Castellini et al., 2019), where the
probabilistic constraints stored in the MRF are used to optimize
the management of the particle filter representing the agent belief.

To intuitively understand the advantage introduced by the MRF,
consider the rocksample environment depicted in Figure 1A, in
which the knowledge introduced by the MRF is represented by blue
edges between rocks on the grid. The prior knowledge about state-
variable relationships is information about equality relationships
among the value of different rocks (e.g., with a probability of 0.9,

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191075

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

rocks 4 and 5 have the same value).We use this knowledge to “push”
the belief probabilities toward states that agree with this information
during particle filter initialization. The rationale is that if the agent
knows that two rocks (i.e., two state variables) have the same value
with high probability (0.9 in Figure 1A), then it can improve its
planning performance because once it has observed the value of one
rock, it has also acquired some knowledge about the value of the
other rock and it can plan accordingly. In the first row of Figure 1B,
we show a hypothetical sequence of action performed by the agent
with no knowledge about rock values relationships (i.e., standard
POMCP), whereas in the second row, we show a hypothetical
sequence of action performed by exploiting such knowledge. In
both cases, in step 2, the agent performs a sensing action to check the
value of rock 1 (yellow colored). In the hypothesis that the agent
observes that rock 1 is valuable (green pentagon in the second
column), in the first case (i.e., without MRF), it has no information
about rocks 2 and 3, whereas in the second case (i.e., with MRF), the
agent also has some information about rocks 2 and 3, which are
considered valuable with high probability (green pentagons). In step
10, exploiting the acquired knowledge about rock value
relationships, the agent with MRF has already sampled rocks
from the three rocks, whereas the agent without any knowledge
has only sampled rocks 1 and 2. Hence, the agent with the MRF
moves faster. We remark that the knowledge in the MRF does not
affect the transition model but only the probability distribution over
POMDP states. The knowledge stored in anMRF is used to initialize
the particle filter (representing the belief) of POMCP and update the
particle filter (i.e., the belief) during reinvigoration, a procedure used
by POMCP to introduce new particles upon depletion.

5 METHODOLOGY

In this section, we present a method for learning the MRF during
POMCP execution (Section 5.1) that leverages information from
the state with the highest probability in the belief and a stopping

criterion based on the convergence of MRF potentials (Section
5.2). In Section 5.4, we describe MRF Adaptation; the algorithm
that adapts the learned MRF as new knowledge is gathered about
the true state-variable configuration and it differs from the
information in the MRF. Finally, in Section 5.3, we present
the ROS-based architecture designed to have POMCP running
within ROS and learn the MRF on real mobile robots.

5.1 MRF Learning
We present a method to learn theMRF during POMCP execution
based on the information provided by the belief. More precisely, it
employs information from the state having maximum
probability. In all our tests, we assume to learn the MRF in
NE episodes, where each episode e is composed of a fixed number
of steps, but the proposed methodology can simply adapt to the
case of episodes with a different number of steps. We assume the
hidden part of the state to be static in each episode and changing
across episodes. We initialize the MRF with uninformative priors
and then update it at the end of each episode. Then, at the end of
the learning process, we have an MRF which defines probabilistic
constraints on hidden state variables. This information allows for
better initializing and updating of the state distribution. Details
about the proposed methodology and the used data structures are
reported in the following.

5.1.1 Data Structures Used in the Learning Algorithm
Learning the MRFmeans learning the potentials of pairwise MRF
representing state-variable relationships. Given two variables Xi

and Xj with k possible values each, we need to learn the potential
ψXi,Xj

(l, h) for each pair (l, h) with l ∈ {1, . . . , k} and h ∈ {1, . . . , k},
where variable equality occurs when l = h and variable inequality
occurs in all other cases. To keep track of state-variable values in
different episodes, we use three data structures. First, a vector of
state-variable values Ve(i) for each episode e. Ve(i) ∈ {1, . . . , k} is
the value of the state-variable Xi extracted from the state with
maximum likelihood in the final belief of episode e (i = 1, . . . , n

FIGURE 1 | (A) Example of usage of the MRF in the rocksample environment. The MRF topology is depicted using rocks as nodes, and equality probability
constraints are specified on blue edges between rocks. (B) Effect of the action performed by the agent at steps 2, 5, and 10 using standard POMCP (first row) and the
information stored in the MRF (second row). A yellow-colored rock means that the rock is checked by the agent, whereas a green-colored rock represents a rock
observed to be valuable by the agent. We consider rocks 1, 2, and 3 valuable in this example.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191076

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

where n is the number of state variables). This vector is initialized
to Ve(i) � 0,∀i ∈ {1, . . . n}, and then each value Ve(i) is updated
to the value in {1, . . . , k} obtained for variable Xi in episode e. The
second data structure is a four-dimensional array in which we
store the count of equalities and inequalities among pairs of state
variables in each episode e,Me(i, j, l, h), where (i, j) ∈ E and l, h, ∈
{1, . . . , k}. The valueMe(i, j, l, h) is the number of times variable;
Xi had value l and variable Xj had value h in the previous e
episodes, where e ∈ N. We updateMe at the end of each episode e
using the values in Ve(i), and the MRF potentials ψXi,Xj

(l, h) are
directly computed using values in Me(i, j, l, h) (Eq. 5). Hence,
the MRF can be updated using values in Me. The third data
structure is a matrix of probabilities of state-variable equalities,
Pe(i, j), where (i, j) ∈ E. The value Pe(i, j) is the probability that
state variables Xi and Xj had equal values until episode e (Eq. 6).
Notice that the proposed learning algorithm learns both equalities
and inequalities’ probabilistic relationships. Equalities are
represented by edges with positive probabilities (e.g., Pe(i, j) �
0.9means that rocks Xi and Xj have a 0.9 probability to have equal
values), whereas inequalities are represented by edges with
negative probabilities (e.g., Pe(i, j) � 0.1 means that rocks Xi

and Xj have only 0.1 probability to have equal values, viz, they
have a probability 0.9 with different values).

In summary, at each episode e, we compute Me from Ve, ψ
from Me, and finally Pe from ψ following the pipeline
Ve(i),Ve(j) → Me(i, j, l, h) → ψXi,Xj

(l, h) → Pe. In the next
section, we present the proposed learning algorithm and the
related strategy for populating Ve and update Me.

5.1.2 Learning Algorithm
At each episode e, the vector of state-variable values Ve(i) is first
populated with the values of state variables Xi of the state having
maximum likelihood in the agent belief.

Update of equality/inequality counts M. The array of
equality/inequality counts M is initialized to M(i, j, l, h) � 0,
∀(i, j) ∈ E, ∀l, h ∈ {1, . . . k}. At the end of each episode, the array
Me is updated using vector Ve as

Me+1 i, j, l, h() � Me i, j, l, h() + 1 if Ve i() � l ∧ Ve j() � h
Me i, j, l, h() otherwise

{ .

(4)
Computation of potentials ψ from counts M. We compute

MRF potentials ψ from multi-dimensional array M at each
episode e by normalizing each cell using the following formula:

ψe
Xi,Xj

l, h() � Me i, j, l, h()
∑k

w�1∑k
y�1Me i, j, w, y(), (5)

where (i, j) ∈ E. Namely, we consider only pairs of nodes
connected by an edge. For instance, given a pair of state
variables (Xi, Xj)|(i, j) ∈ E assuming values in {0, 1}, the
potential ψe

Xi,Xj
(0, 0) � 0.6 corresponds to the ratio between

the number of times Xi = Xj = 0 and the number of times
each possible assignment for Xi and Xj has been observed.
Namely, given Me(i, j, 0, 0) � 6, Me(i, j, 0, 1) � 1,
Me(i, j, 1, 0) � 1, and Me(i, j, 1, 1) � 2, we
compute ψe

Xi,Xj
(0, 0) � 6

6+1+1+2 � 0.6.

Computation of probabilities of state-variable equalities P
from ψ. These probabilities are finally computed for each (i, j) ∈ E:

Pe i, j() � ∑k
l�1

ψe
Xi,Xj

l, l(). (6)

In other words, Pe(i, j) is the sum of potentials corresponding
to equal values of variables Xi and Xj. For instance, given the pair
of state variables (Xi, Xj) and the potentials ψe

Xi,Xj
(0, 0) � 0.6,

ψe
Xi,Xj

(0, 1) � 0.1, ψe
Xi,Xj

(1, 0) � 0.1, and ψe
Xi,Xj

(1, 1) � 0.2, we
compute Pe(i, j) � 0.8.

5.2 Stopping Criterion
At the end of each learning episode, theMRF is updated, considering
the information about the state-variable relationships acquired in the
episode. The question we answer in this section is, “when can the
learning process be stopped?”. The MRF must provide meaningful
knowledge about state-variable relationships to improve planning
performance. The methodology we propose analyzes the equality
probabilities in the MRF and stops the learning phase when these
probabilities converge, namely, when their values have little changes
for a few consecutive episodes. More precisely, at the end of each
episode e, we check if each equality probability Pe(i, j), (i, j) ∈ E,
differs less than a threshold η from the same equality probability at
the end of the previous episode e − 1. If this condition is satisfied for
ce consecutive episodes, then we stop the MRF learning process.
Algorithm 1 formalizes the approach. It receives the matrices of
equality probabilities at episodes e and e − 1, namely, Pe(i, j) and
Pe−1(i, j), the convergence threshold η, the threshold ce on the
number of consecutive episodes, and the number ct of consecutive
episodes that satisfied the condition on the convergence threshold
until the current episode e. It returns the stop learning flag stop and
the updated number of consecutive episodes that satisfy the
convergence condition ct. The value of stop is true if, for every
edge, the difference between the value at episode e and episode e − 1
is below the threshold η (line 3) for at least three consecutive episodes
(line 9), false otherwise. The value of ct is used for checking the
stopping condition at the next episode.

Algorithm 1. Stopping criterion.

5.3 ROS Architecture for POMCP
We developed a light and straightforward framework that
integrates POMCP with ROS, targeting mobile robots. The
architecture can also be exploited to execute the MRF learning
algorithm and subsequently run the extended POMCP that
leverages the constraints in the learned MRF. Optionally, the

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191077

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

extended POMCP can be run with MRF adaptation. The
architecture can be used with all mobile robotic platforms
supporting the ROS Navigation Stack (Marder-Eppstein et al.,
2010) and with POMDPs defined following the original POMCP
implementation. Additionally, it can be executed in simulation
using Gazebo. Since the architecture relies on the ROS network to
communicate, the POMCP algorithm is not directly run on the
machine mounted on the robotic platform but on an external one,
which has more computational power. This results in faster
execution of POMCP, with lower power consumption for the
mobile robot. The structure of the architecture is illustrated in
Figure 2. It contains three main components, namely, the
environment, the planner, and the agent, all implemented in
C++. In the following paragraphs, each component is
described in detail.

5.3.1 Environment
The environment is a discretization of the real world that exploits
a task-specific representation, such as a grid for the rocksample
domain.

5.3.2 Planner
The role of the planner is manifold. First, it runs POMCP, from
the standard to the extended version. Second, it manages the
whole learning process, handling the learning algorithm and
keeping track of learned relations to eventually trigger the
stopping criterion. When performing the MRF learning
process, the node keeps track of the belief, after which each
action is performed by the agent. Then, at the end of each episode,
the MRF is updated accordingly.

The planner communicates with the ROS network during the
Step function call, hence when applying the transition and the
observation model of the POMPD. Right after producing the
best-desired action, a command is dispatched to the agent, and
the planner pauses until the agent feeds back the result.

5.3.3 Agent
The agent node is the interface with the robotic platform. It holds
information about the robot’s position through odometry and is

responsible for moving the mobile platform to the desired
position whenever the planner produces a goal command,
which corresponds to a 3D pose in the environment. This is
done by exploiting the ROS Navigation Stack, which takes the
pose as input and gives a series of target velocities as output. On
the contrary, if the planner produces a sensing action, the agent
will directly interfere with the environment or sensors mounted
on the robotic platform.

5.4 MRF Adaptation
The MRF is learned on several episodes and contains probabilistic
information about state-variable relationships. For instance, a
probability of 0.9 between state variables X1 and X2, that is,
P(1, 2) � 0.9, in the rocksample domain means that, in 90% of
the learning episodes, the most probable state-variable configuration
had equal values in rocksX1 andX2.When theMRF is used in a new
episode, however, the values of the rocks in that specific episode can
be equal to or different from each other (e.g., in a specific episode X1

could be valuable and X2 valueless, although this configuration has
only probability 0.1 to occur). TheMRF is used in POMCP to “push”
the belief probabilities toward states that agree with the joint
probability it represents. In other words, using the constraints
among state-variable values introduced by the MRF, we
probabilistically reduce the possibility of having in the particle
filter a large number of particles corresponding to states with a
small probability of being the true state. At each episode, we initialize
the belief leveraging the information present in theMRF, peaking the
probability distribution on states that reflect the equality
relationships expressed in the MRF. In our example, the states
with the same value of X1 and X2 will be initialized with a higher
probability. This is beneficial if the values in the true state of the
current episode are actually equal (which happens with a probability
of 0.9 in our example) and harmful if the values in the true state of
the current episode are actually different from each other (which
happens with a probability of 0.1). In this second case, the belief is
peaked in the wrong states and even several observations could be
not enough to “correct” the probability distribution over states,
leading to a performance decrease with respect to the standard
POMCP. Thus, the idea of the algorithm presented in this section is

FIGURE 2 | ROS architecture for running POMCP on mobile robotic platforms. The three main components are identified by the colored boxes and connected to
the same ROS network. The planner supports standard POMCP, extended POMCP, and our proposed approach with MRF adaptation, besides the MRF learning
algorithm.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191078

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

to adapt the probabilities in theMRF during the usage of theMRF as
new evidence is gathered about the true values of the state variables
in the specific episode and there is a mismatch (i.e., discrepancy)
between these true values and the information in theMRF. Then, the
adapted MRF is used to re-initialize the belief to change the agent
strategy. Let us consider, for instance, an episode of rocksample in
which rock X1 is valuable and rock X2 is valueless. When we use the
MRF, the states with different rock values are penalized, but if the
agent collects the rocks, then their true values are available. Hence,
we can detect the discrepancy between the MRF probabilities
P(1, 2) � 0.9 and the true rock values and update the MRF
probabilities accordingly to avoid penalizing good states in the
following steps of the same episode. This is the idea behind the
MRF adaptation algorithm formalized in Algorithm 2 and explained
in detail in the following: notice that, given an episode e, the
adaptation of the MRF has effect only in the steps after a
discrepancy is detected in that episode. However, the learned
MRF is restored in the next episode e + 1 because each episode
is characterized by a different true state. We remark that the
proposed algorithm does not learn a new MRF, as it adapts the
information stored in the learned MRF when a discrepancy is
detected during an episode, and it uses the adapted MRF to re-
initialize the particle filter. At the beginning of the subsequent
episode, we restore the learned MRF (with no adaptation) and
use it to initialize the particle filter. On the contrary, during the
learning process, we update the MRF leveraging the information
given by the state with the highest probability in the belief, and we do
not introduce the MRF in POMCP.

Algorithm 2. MRF adaptation algorithm.

The inputs of the main function of the algorithm (Function
Adapt) are as follows: the step q of the episode, the MRF
P(i, j), i � 1, . . . , n, j � 1, . . . , n updated until the current

step of the current episode; the index i of the state-variable of
which we have observed the true value in the current step; the
vector TV [i] of state variables observed until the current step,
where TV [i] = na if the true value of the variable has not been
observed and TV [i] = vi if the true value of the variable has been
observed; and 〈a0, o0, . . . , aq, oq〉 the sequence of actions and
observations (history) obtained up to the current execution step
q. The output is the adapted MRF and the new belief b′ (returned
by Function Belief_recomputation) if a discrepancy has been
detected. Otherwise, the Function Adapt ends returning the
received MRF and an empty belief to notify that no
discrepancies have been detected.

Every time the true value of a state-variable Xi is gathered, the
algorithm checks if Xi is connected to another state variable Xj by
an edge in the MRF and if both variables have been observed (line
6). In this case, the algorithm checks the value of P(i, j) and the
values of the observed variables vi and vj to detect a discrepancy
(line 7). In particular, a discrepancy occurs if the equality
probability in the MRF is discordant with the true values of Xi

and Xj. In such a case, the MRF must be updated. If P(i, j)> 0.5
and vi ≠ vj, then P(i, j) is set to 0 (see line 10). This is because we
are sure that the two variables have different values in the current
episode, and the MRF is updated accordingly. If P(i, j)< 0.5 and
vi = vj, then the algorithm sets P(i, j) to 1 (see line 12). In this
case, we are sure that the two variables have the same values, and
the MRF is again updated accordingly. In the example above, if
rock x1 is valuable and rock X2 is valueless but P(1, 2) � 0.9, then
this probability is set to P(1, 2) � 0 in the adapted MRF.

If a discrepancy has been detected and the MRF updated, the
current belief at step qmust also be updated considering the new
specific knowledge acquired on the current episode. Function
Belief_recomputation performs this task. Its inputs are the step q
of the episode, the adaptedMRFP(i, j), and the history of actions
and observations 〈a0, o0, . . . , aq, oq〉, and its output is the updated
belief b. The new belief b is first initialized (line 21), sampling NP
states according to the distribution defined by the adapted MRF
(we set NP to the number of POMCP simulations), and then
updated using POMCP belief update following the current
history 〈a1, o1, . . . aq, oq〉 (see line 25). Silver and Veness
(2010) used a simulator G as a generative model of the
POMDP. The updated belief b is used in the next step instead
of the current belief.

6 EXPERIMENTS

In this section, we present the results of our empirical analysis.
We perform three different tests on two application domains
described in Section 6.1. Section 6.2 defines the measure used to
evaluate the performance. Then, we present the results of our test
following the order by which we introduced the methodological
contributions. First, in Section 6.3, we analyze the performance
of the proposed learning algorithm on a C++ simulator of the
rocksample environment. The empirical analysis shows the
average performance improvement achieved using the learned
MRF in the extended POMCP against standard POMCP (in the
following, we refer to them as EXT and STD, respectively).

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8191079

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Second, in Section 6.4, we show the evaluation of the ROS-based
architecture for learning and using the learned MRF. The
empirical analysis shows the average performance
improvement achieved when the MRF learned on the robotic
platform is used in EXT on the same platform. A video is also
presented, which shows a complete learning process performed
on the Gazebo simulator of rocksample. Third, in Section 6.5, we
describe the experiments performed to evaluate the MRF
adaptation algorithm. The performance of POMCP with MRF
adaptation (ADA, in the following) is compared with that of EXT.

6.1 Domains
We provide full details on the two application domains used in
our tests, namely, rocksample (Smith and Simmons, 2004) and
velocity regulation (Castellini et al., 2020, 2021).

6.1.1 Rocksample
In the rocksample domain (Smith and Simmons, 2004), an agent
moves through a grid containing valuable and valueless rocks
placed in a fixed position to maximize the discounted reward
collecting rock values. We perform our tests on rocksample (5,8),
consisting of a 5 × 5 grid in which we pose eight rocks
(Figure 3A). The rock value configuration changes at each
episode and is decided a priori to reflect specific constraints.
Notation (i, j) identifies the cell in column i and row j on the grid,
whereas for rocks, we use indices from 1 to 8. The agent (light
blue circle in Figure 3A) knows the rock locations, but it cannot
observe rock values (which is the hidden part of the state). These
values can only be inferred using observations returned by the
environment. The correct result of rock observations, however, is
inversely proportional to the distance between the agent position
and the rock. At each step, the agent performs one action among
moving (up, down, left, right), sensing a rock (i.e., checking its
value), or sampling a rock (i.e., collecting its value). The reward
obtained by moving and sensing is 0, whereas sampling a rock
gives a reward of 10 if the rock is valuable and −10 if it is valueless.
Figure 3B shows the true MRF we used to constrain rock values.
It presents five edges with the following probability values:
P(1, 2) � 0.90, P(2, 3) � 0.91, P(3, 4) � 0.92, P(4, 5) � 0.91,
and P(5, 6) � 0.91. Thus, admissible configurations of rock
values have, with high probability, all these rocks with the
same value, whereas the values of rocks 7 and 8 can be

randomly assigned because there are no constraints on their
values in the MRF.

This problem can be formalized as a POMDP. The state is
characterized by 1) the agent position on the grid, 2) the rocks’
configuration (hidden), and 3) a flag indicating rocks already
sampled. The set of actions is composed of the four moving
actions, the sample action, and a sensing action for each rock.
Observations have three possible values: 1 for valuable and 2 for
valueless rock observation returned by sensing actions and 3 for
null observations returned by moving actions. The discount
factor used is γ = 0.95. We aim to maximize the information
learned about state-variable relationships, so we prevent the agent
from exiting the grid.

6.1.2 Velocity Regulation
In the velocity regulation problem (Castellini et al., 2020, 2021),
a mobile robot traverses a pre-defined path (Figure 4A) divided
into segments gi and subsegments gi,j. Notation (i, j) identifies
the position of the robot in the path, where i is the index of the
segment and j the index of the subsegment. More precisely,
with (i, j), we mean that the agent is at the beginning of
subsegment gi,j. Each segment is characterized by a difficulty
fi that depends on the obstacle density in the segment. The
robot has to traverse the entire path in the shortest possible
time, tuning its speed v to avoid collisions with obstacles. Each
time the robot collides, a time penalty is given. The robot does
not know in advance the real difficulty of the segments (which
is the hidden part of the state), and it can only infer their values
from the readings of a sensor (Figure 4A). Figure 4B shows the
true MRF that we used to constrain segment difficulties. It
presents five edges with the following probability values:
P(1, 2) � 0.90, P(2, 3) � 0.91, P(3, 4) � 0.92, P(4, 5) � 0.91,
and P(5, 6) � 0.91. Thus, admissible configurations of
segment difficulties have, with high probability, all these
segments with the same value, whereas the values of
segments 7 and 8 can be randomly assigned as there are no
constraints on their values in the MRF.

This problem can be formalized as a POMDP. The state is
characterized by 1) the position of the robot in the path; 2) the
(hidden) true configuration of segment difficulties (f1, . . . , fm),
where fj ∈ {L, M, H}, L represents low difficulty, M medium
difficulty, H high difficulty; 3) t is the time elapsed from the
beginning of the path. The set of actions is composed of the three
possible speed values of the robot in a subsegment: slow (S),
intermediate (I), or fast (F). Observations are related to
subsegment occupancy and robot angular velocity. The
occupancy model p (oc|f) probabilistically relates segment
difficulties to subsegment occupancy. oc = 0 means that no
obstacles are detected in the next subsegment. On the
contrary, oc = 1 means that some obstacles are detected. The
angular velocity model, instead, provides the probability of
angular velocity given segment difficulties, namely, p (av|f).
More precisely, av = 0 means that the robot performs a few
curves in the subsegment, whereas av = 1 means it performs
several curves. In a realistic application on a mobile robot, oc is
computed by averaging the values of the laser in front of the robot
and applying a threshold to obtain the two binary values.

FIGURE 3 | (A) Instance of rocksample environment (Zuccotto et al.,
2022). (B) True MRF topology used for the domain.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910710

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Moreover, we count the actions corresponding to robot turns
with angular velocity ≥ 45°/s, and threshold such count to obtain
the binary signal for av. The final observation is a coding of both

variables oc and av computed as o = av + 2 · oc. Namely, o = 0 if
av = 0 and oc = 0; o = 1 if av = 1 and oc = 0; o = 2 if av = 0 and oc =
1; and o = 3 if av = 1 and oc = 1. The observation model provides
the probability of observations given segment difficulties, namely,
p (o|f). We refer to the original work on the velocity regulation
problem for more details about specific parameters (Castellini
et al., 2021).

The time required to traverse a subsegment depends on the
action that the agent performs and the time penalty it receives.
Namely, the agent needs one time unit if the action is F (fast
speed), two time units if the action is I, and three time units if the
action is S. The collision model p (c|f, a) regulates the collision
probability; more precisely, c = 0 means no collision and c = 1
means a collision occurs. The reward function here is R = −(t1 +
t2), where t1 is the time depending on the agent’s action and t2 is
the penalty due to collisions (in our tests t2 = 10). Finally, the
discount factor we used is γ = 0.95. The parameters used in our
tests are summarized in Tables 1–3.

6.2 Performance Measure
We introduce the performance measure used to evaluate the
planning performance of our methods: difference and average
difference in discounted returns. The discounted return of
episode e, called ρe, is the sum of the discounted rewards
collected in all steps of that episode. The difference between
the discounted return obtained using two different methods, such
as EXT with the learned MRF and STD or ADA and EXT, on
episode e is called Δρe. The average of this difference over all
episodes of all runs is called Δρe. Notice that the difference is
computed episode by episode to reduce the randomness, and the
average is computed across all the episodes of each run. Indeed,
the discounted return depends on the state of the episode; then, it
could have very different values over the episodes and the
distribution of these data would be very large. By computing
the mean of the difference on each episode, we always compare
the performance of the two algorithms in the same state, thus
obtaining a low standard deviation value as a result of the reduced
level of uncertainty.

FIGURE 4 | (A) Instance of velocity regulation. (B) True MRF topology used for the domain.

TABLE 1 | Main elements of the POMDP model for the collision avoidance
problem. Occupancy model p (o|f): probability of subsegment occupancy
given segment difficulty.

f p (oc = 1 | f)

L 0.600
M 0.690
H 0.940

TABLE 2 | Main elements of the POMDP model for the collision avoidance
problem. Angular velocity model p (av|f).

f p (av = 1 | f)

L 0.170
M 0.240
H 0.530

TABLE 3 | Main elements of the POMDP model for the collision avoidance
problem. Collision model p (c|f, a): collision probability given segment difficulty
and action.

f a p (c = 1 |
f, a)

L S 0.000
L I 0.033
L F 0.033
M S 0.000
M I 0.033
M F 0.067
H S 0.000
H I 0.067
H F 0.100

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910711

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

6.3 Test on MRF Learning
We introduce the experimental setting used in our tests on the
MRF learning method and then present our empirical analysis
results.

6.3.1 Experimental Setting
We perform tests using the MRF learning algorithm (Section 5.1)
with the stopping criterion (Section 5.2) to learn the MRF.
Experiments are performed on the rocksample domain
described in Section 6.1.1 using a C++ simulator.

In this test, we first select a true MRF (i.e., a set of relationships
among rock values; see Figure 5A). Edge probabilities are always
set to 0.9 in the true MRF. We perform NR = 10 runs. Hence, we
compute 10MRFs. In each run, we start preparing an emptyMRF
with the same topology (i.e., set of edges) as the true one (notice
that our current method does not learn the topology of the MRF
but only the potentials of anMRF with pre-defined topology). We
learn the MRF potentials for several episodes determined by the
stopping criterion with threshold η = 0.01 and ce = 3. The
configuration of rock values changes with each episode
satisfying the distribution defined by the true MRF. Then, we
evaluate the performance of the learned MRF performing NE =
100 episodes with EXT and STD algorithms, comparing the
discounted return of each episode and averaging it over all the
runs. In each episode, the agent performs NS = 60 steps. The
POMCP always uses 100,000 particles and performs the same
number of simulations.

To prove that the introduction of the learned MRF provides a
statistically significant improvement with respect to STD, we
show that the average difference Δρe between the discounted
return obtained with EXT and the discounted return obtained
with STD is significantly larger than zero. Notice that the
difference is computed across all the NE = 100 episodes of
each run (i.e., over 1,000 episodes in total). More precisely, at
episode e, we compute the difference of discounted return ρe as
Δρe � ρEXT

e − ρSTDe . Then, we compute the average of these values
over all the episodes of all the runs average discounted return Δρe.

6.3.2 Results
The results we obtained using the C++ simulator are summarized
in Figure 5. The main result is represented by the average
difference in discounted return, Δρe, achieved using the

learned MRF in EXT with respect to STD that does not use
any kind of prior knowledge. The value of Δρe is 1.15 and
corresponds to a performance improvement of 5.99%
(Figure 5D). The distribution and corresponding average
difference is computed over 100 episodes and 10 runs. To
verify that Δρe is statistically different from zero, we perform
the Student’s t-test that confirms the statistical significance of the
result as the p-value is lower than 0.05.

To explain the motivation for this improvement in
Figure 5B, we compare the true and the learned MRF. On
the x-axis, we display the edges of the MRF topology, whereas,
on the y-axis, we show edge probability values. With pink dots,
we represent the values on the true MRF edges (i.e., that from
which we sampled the state-variable configurations of the
learning episodes), whereas blue dots and lines represent,
respectively, the average values of the learned MRF and
their standard deviations (where the average is computed
over the 10 runs performed in the learning process). The
picture shows that the similarity between learned MRFs and
the true one is very high. Moreover, Figure 5C depicts the
trend of difference in probability values of all edges during a
run of the learning process until it is stopped by the proposed
criterion. In episode 25, on the x-axis, the difference in equality
probabilities of all edges starts to be lower than 0.01, the
threshold used in the stopping criterion. Since this
condition persists in the next three episodes, the stopping
criterion ends the learning phase in episode 27. Similar results
with a different stopping criterion have been presented by
Zuccotto et al. (2022).

6.4 Tests on the ROS Architecture for MRF
Learning
In this section, we test the ROS architecture for MRF learning and
present the results of our empirical analysis performed using this
architecture.

6.4.1 Experimental Setting
We perform tests using the MRF learning algorithm (Section 5.1)
with the stopping criterion (Section 5.2) to learn the MRF on the
ROS architecture proposed in Section 5.3. We perform our tests
on the open-source multi-robot simulator Gazebo (Koenig and

FIGURE 5 | (A) True MRF topology with the equality probability constraints on its edges. (B) True MRF and average of the learned MRFs. Pink dots represent the
values on the edges of the true MRF, whereas blue dots and lines correspond to the average edge values of the learned MRF and their standard deviations, respectively.
(C) Difference of edge probability values during execution of the learning process until the convergence is reached in episode 27. The black line represents the
convergence threshold. (D) The density of difference in discounted return from STD.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910712

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Howard, 2004), in which TurtleBot3 acts in the rocksample
domain described in Section 6.1.1.

In this test, we first select a true MRF (Figure 6A). Edge
probabilities are always set to the values on the edges of the true
MRF topology. We perform NR = 10 runs. In each run, we start
preparing an empty MRF with the same topology as the true one.
We learn the MRF potentials on the Gazebo environment,
running the learning algorithm for several episodes
determined by the stopping criterion with threshold η = 0.01
and ce = 3. The configuration of rock values changes in each
episode, satisfying the distribution defined by the true MRF
shown in Figure 6A. Then, we test the performance of the
learned MRF performing NE = 100 episodes with EXT and
STD, comparing the discounted return of each episode and
averaging it over all the runs. The MRF we used is the average
of the 10 MRFs obtained during the learning process. In each
episode, the agent performs NS = 60 steps. The POMCP always
uses NP = 100,000 particles and performs the same number of
simulations.

To prove that the introduction of the learned MRF provides a
statistically significant improvement with respect to STD, we
show that the average difference Δρe between the discounted
return obtained with the MRF learned with the ROS-architecture
on Gazebo and the discounted return obtained with STD on the
same framework is significantly larger than zero. Notice that the
difference is computed episode by episode, and the average is
computed across all the NE = 100 episodes of each run (i.e., over
1,000 episodes in total). More precisely, at episode e, we compute
the difference of discounted return ρe as Δρe � ρEXT

e − ρSTDe .
Then, we compute the average of these values over all the
episodes of all the runs average discounted return Δρe.

6.4.2 Results
The results we obtained using the Gazebo simulator are
summarized in Figure 6. The main result consists of the
average difference of discounted return, Δρe, achieved using
the learned MRF in EXT with respect to STD that does not
use any kind of prior knowledge. The value of Δρe is 1.28 and
corresponds to a performance improvement of 5.88%
(Figure 6D). The distribution and corresponding average
difference is computed over 100 episodes and 10 runs. To
verify that Δρe is statistically different from zero, we perform

the Student’s t-test that confirms the statistical significance of the
result as the p-value is lower than 0.05.

What allows this improvement is visible in Figure 6B in which
we compare the true and the learned MRF. On the x-axis, we
display the edges of the MRF topology, while on the y-axis, we
show edge probability values. Pink dots represent the values on
the true MRF edges (i.e., that from which we sampled the state-
variable configurations of the learning episodes), whereas blue
dots and lines represent, respectively, the average values of the
learned MRF and their standard deviations (where the average is
computed over the 10 runs performed in the learning process).
The picture shows that the learned MRFs are very similar to the
true one. Moreover, this also shows that using the proposed
learning approach implemented in the ROS architecture allows us
to learn accurate MRFs. Figure 6C depicts the trend of difference
in probability values of all edges during a run of the learning
process until it is stopped by the proposed criterion. In episode
20, on the x-axis, the difference in equality probabilities of all
edges starts to be lower than 0.01, the threshold used in the
stopping criterion. Because this condition persists in the next
three episodes, the stopping criterion ends the learning phase in
episode 23.

To further clarify the learning process performed on the
ROS-based architecture, we provide a video showing four
learning episodes performed by a TurtleBot in the Gazebo
simulator of the rocksample domain. Figure 7 shows a
snapshot of the video. The mobile robot acting in the
Gazebo environment is shown in Figure 7A. When it
performs a sensing action on a rock, a question mark
appears in the cell containing the rock. This cell becomes
green or red if the outcome of the sensing action identifies the
rock as valuable or valueless. When the agent performs a
sampling action on a rock, the cell in which the rock is
posed turns blue to specify that the rock has been collected.
Figure 7B shows the true rock value configuration of the
episode that satisfies the distribution defined by the true
MRF. In Figures 7C,D, we show the edge probability values
of the learned MRF updated at the end of episode 23 and the
ones of the true MRF we aim at learning. In Figure 7E, we show
the evolution of the edge probability values in the learned
MRF, and when all the values reach the convergence in
Figure 7E, the learning process ends.

FIGURE 6 | (A) True MRF topology with the equality probability constraints on its edges. (B) True MRF and average of the learned MRFs. Pink dots represent the
values on the edges of the true MRF, whereas blue dots and lines correspond to the average edge values of the learned MRF and their standard deviations, respectively.
(C) Difference of edge probability values during execution of the learning process until the convergence is reached in episode 23. The black line represents the
convergence threshold. (D) Density of difference in discounted return from STD.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910713

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

6.5 Test on MRF Adaptation
We introduce the experimental setting used in our tests on ADA
and then present the results of our empirical analysis.

6.5.1 Experimental Setting
We perform two tests to evaluate the ADA method described in
Section 5.4: one is performed on rocksample (5,8) and the second
on velocity regulation. In both cases, a C++ simulator of the
environment has been used to avoid the slowdown introduced by
Gazebo because the physics of the environment is not
fundamental to evaluating this algorithm. The goal of our tests
is to highlight that by using ADA, we can, on average, improve the
performance of the planner over both STD and EXT. This
improvement is achieved by limiting the performance decrease
generated when the learned or given by expert MRF is used on
episodes characterized by unlikely state-variable configurations.
In both tests, we performNR = 10 runs using anMRF that reflects
probabilistic equality constraints among state-variable values
learned using the MRF learning method of Section 5.1. To
evaluate the performance of ADA, we perform NE = 100
episodes using the MRF adaptation approach every time a
discrepancy is detected during an episode and NE = 100
episodes using the EXT algorithm. Then, we compare the

discounted return of the two methods considering only the
episodes in which the MRF adaptation approach has been
used and average it over all the runs. In each episode, the
agent performs NS = 60 steps in the rocksample domain,
whereas in the velocity regulation environment, it performs
for NS = 32 steps, namely, the number of subsegments in the
path. The configuration of rock values (for the test on
rocksample) and segment difficulties (for the test on velocity
regulation) changes with each episode satisfying the distribution
defined by the true MRF. The POMCP always uses NP = 100,000
particles and performs the same number of simulations. We
summarize the parameters used in our tests in Table 4.

To prove that the use of the MRF adaptation method in
POMCP provides a statistically significant improvement with
respect to the use of the MRF without adaptation, we show that
the average difference Δρe between the discounted return
obtained with ADA and the discounted return obtained with
EXT is significantly larger than zero. Notice that the difference is
computed episode by episode, and the average is computed across
all the episodes of each run in which ADA is used. More precisely,
at episode e, we compute the difference of discounted return as
Δρe � ρADA

e − ρEXT
e . Then, we compute the average of these values

over all the episodes of all the runs average discounted return Δρe.

6.5.2 Results
Figure 8 and Table 5 summarize the results of the two
environments.

6.5.2.1 Rocksample
Figure 8A shows the distribution of the differences between the
discounted returns obtained using ADA and those obtained using

FIGURE 7 | (A) Instance of the rocksample environment in which the TurtleBot acts during episode 23. (B) True rock values in episode 23. (C) MRF learned after
23 episodes. (D) True MRF, the one to be learned. (E) Evolution of edge probability values at the end of episode 23. When they converge, the learning process is ended.

TABLE 4 | Parameters of tests on ADA.

Environment NR NE NS NP

Rocksample 10 100 60 100,000
Velocity regulation 10 100 32 100,000

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910714

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

EXT. The distribution is computed considering the 162 episodes
(out of 1,000, i.e., 100 episodes for 10 runs) in which the
adaptation mechanism was activated (i.e., at least a
discrepancy between the learned MRF and the true state has
been detected). The average distance is Δρe � 1.35, which
corresponds to a 6.54% improvement (see the first line of
Table 5). The p-value of the Student’s t-test guarantees that
this average is significantly different from zero (Table 5).
Figure 8B shows the distribution of the differences between
the discounted returns obtained using ADA and those
obtained using STD. This distribution is computed on
1,000 values (i.e., 100 episodes for 10 runs). The average is
Δρe � 1.62, which corresponds to a 7.46% improvement (see
the second line of Table 5). Also, in this case, the p-value of
the Student’s t-test guarantees that this average is significantly
different from zero (Table 5). Therefore, we can state that the
improvement is, on average, statistically significant.

6.5.2.2 Velocity Regulation
The experiments performed on the velocity regulation domain
confirm the positive results obtained on the rocksample.
Figure 8C shows the distribution of the differences between
the discounted returns obtained using ADA and the ones
obtained using EXT. The distribution is computed considering
714 episodes (out of 1,000), that is, the number of episodes in
which the adaptation mechanism was activated. The average
difference is Δρe � 1.04, corresponding to a 3.51%
performance improvement (third line of Table 5). This
average is significantly different from zero because the p-value
of the Student’s t-test is lower than 0.05 (Table 5). Figure 8D
shows the distribution of the differences between the discounted
return obtained with ADA and the ones obtained with STD. In
this case, the distribution is computed on 1,000 values (i.e., all the

100 episodes for all the 10 runs). The average Δρe � 1.35 and it
corresponds to an improvement of 3.34% (fourth line of Table 5).
Furthermore, in this case, the p-value of the Student’s t-test
guarantees that the value of Δρe is statistically different from
zero (Table 5). Thus, the performance improvement obtained is,
on average, statistically significant.

Finally, to highlight the different behavior of ADA compared
to EXT, in Figure 9A, we show the behavior of ADA (on the left)
and EXT (on the right) in a specific episode in which ADA is used
and gives a performance improvement. Instead, in Figure 9D, we
show the behavior of a specific episode in which the use of ADA
yields a decrease in performance. In each figure, we represent on
the left grid the actions performed by the agent using ADA,
whereas, on the right grid, we represent its action using the
learned MRF. To denote the presence of a rock in a specific cell,
we use its ID (from 1 to 8). The agent’s starting position is
represented by the light blue circle, and blue arrows indicate the
path traveled by the agent. In pink-bordered boxes, we indicate
the ID of the rock that the agent senses from a cell. With green
boxes and red triangles we, respectively, represent the fact that the
agent samples a valuable or valueless rock in the corresponding
cell. Finally, the orange lightning means that a discrepancy is
detected and that the adaptation approach is used as previously
described in Section 5.4.

Figure 9A shows lighting in cell (2,2) of the left grid. The
learned MRF (Figure 9B) expresses a high equality probability
between rock 4 and rock 3 (P(3, 4) � 0.90). Thus, after the
valuable rock 4 has been collected, the agent is encouraged to
also sample rock 3. In the true state-variable configuration,
instead, rock 3 is valueless; thus, a discrepancy with the
learned MRF is detected. Then, the probability value on the
edgeP(3, 4) is set to 0 because the assignments of rock 3 and 4 are
different (Figure 9C). Afterward, the particle filter is re-initialized
according to Algorithm 2 and the belief re-computed. The
positive effect of the proposed method is clearly visible
because the agent does not sample rocks 1 and 2. Rock 2, in
fact, is related to (valueless) rock 3 by an equality probability of
0.89 (on average) in the learned MRF, so the agent is not
encouraged to sample rock 2 (Figure 9C). Rock 1, in turn, is
related to rock 2 by P(1, 2) � 0.88; thus, the agent does not
sample rock 1. For the same reason, rocks 5 and 6 are sampled due
to the equality probability that relates the assignment of rock 5 to

FIGURE 8 | Density of difference in discounted return between (A) ADA and EXT on rocksample. (B) ADA and STD on rocksample. (C) ADA and EXT on velocity
regulation. (D) ADA and STD on velocity regulation.

TABLE 5 | Performance of ADA.

Environment Comparison Δρe(Δρe%) p-value

Rocksample ADA—EXT 1.35 (6.54%) 5.68 × 10–5

ADA—STD 1.62 (7.46%) 4.37 × 10–22

Velocity regulation ADA—EXT 1.04 (3.51%) 8.70 × 10–7

ADA—STD 1.35 (3.34%) 5.82 × 10–8

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910715

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the valuable rock 4 and the one that relates the assignment of rock
5 to the value of rock 6 (both probabilities are 0.9 on average). On
the right grid of Figure 9A, instead, we see what happens when
the learned MRF, despite its correctness in probabilistic terms,
does not reflect the state-variable configuration in the specific
episode at hand. The agent samples the valueless rock 3 then;
because its knowledge about the environment does not change,
the agent also samples rocks 1 and 2, both valueless. In this
episode, ADA allows limiting the negative effect of a misleading
MRF obtaining a Δρe of 14.13.

In Figure 9D, instead, we depict the most relevant agent
actions of an episode in which ADA performs worse than EXT.
On the left grid, we show that two discrepancies with the learned
MRF (Figure 9E) are detected, respectively, in cell (2,5) and (1,4).
Thus, ADA is used twice in this episode. The effect of the first
usage of ADA (Figure 9F) consists of discouraging the agent from
sampling rock 1, whereas the second (Figure 9G) does not
influence any other sampling action because rock 5 has
already been sampled and no other state variable has equality
relationships with rock 6. In the right grid, the agent performs a
sensing action on rock 6 that returns a negative response
discouraging the agent from sampling the rock. The different
behavior of the agents about rock 6 gives a negative value for Δρe,
which is −4.63.

7 CONCLUSION AND FUTURE WORK

We presented three main contributions to the literature: a
methodology for learning state-variable relationships in
POMCP in the form of an MRF, an algorithm for adapting
the MRF to the true states encountered while using the MRF in
POMCP, and a ROS-based architecture that allows running

the MRF learning and the POMCP with the MRF on real
robotic platforms. Results show that the MRF adaptation
algorithm achieves a statistically significant performance
improvement over the use of the MRF without adaptation.
Moreover, using the proposed architecture, we managed to
learn informative MRFs that yield statistically significant
performance improvement over standard POMCP. Our
future work will focus on two main directions. From a
methodological point of view, an interesting problem
concerns integrating the learning process into the context of
information gain problems on POMDPs. The goal, in that case,
is to tune the exploration-exploitation trade-off considering
the learning of the MRF. From an application viewpoint, we
aim to extend the proposed ROS architecture to support other
kinds of platforms, such as robotic manipulators, to assess our
method on different problems that can be formalized as
POMDPs.

DATA AVAILABILITY STATEMENT

Code availability: https://github.com/kriato/pomcp_mrf_ros.
The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

MZ and AC: conceptualization, methodology, and
writing—review and editing. MP: software, visualization, and
writing—review and editing. EM: visualization and
writing—review and editing. AF: supervision, project

FIGURE 9 | (A) Relevant actions of the execution traces of an episode with a positive Δρe between ADA (on the left) and EXT (on the right). (B) Initial MRFs (learnt).
(C) Adapted MRF, P(3, 4) � 0. (D) Relevant actions of the execution traces of an episode with a negative Δρe between ADA (on the left) and the use of EXT (on the right).
(E) Initial MRFs (learnt). (F) MRF after the first adaptation, P(2,3) � 0. (G) MRF after the second adaptation, P(5, 6) � 0.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910716

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://github.com/kriato/pomcp_mrf_ros
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

administration, funding acquisition, conceptualization, and
writing—review and editing.

FUNDING

The research has been partially supported by the projects
“Dipartimenti di Eccellenza 2018-2022”, funded by the Italian
Ministry of Education, Universities and Research (MIUR), and

“SAFEPLACE, POR-FESR 2014-2020”, funded by Regione del
Veneto.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2022.819107/
full#supplementary-material

REFERENCES

Abbeel, P., Koller, D., and Ng, A. Y. (2006). Learning Factor Graphs in Polynomial
Time and Sample Complexity. J. Mach. Learn. Res. 7, 1743–1788.

Amato, C., and Oliehoek, F. A. (2015). “Scalable Planning and Learning for
Multiagent POMDPs,” in Proceedings of the AAAI15, 1995–2002.

Araya, M., Buffet, O., Thomas, V., and Charpillet, F. (2010). “A Pomdp Extension
with Belief-dependent Rewards,” in Advances in Neural Information Processing
Systems (Red Hook, NY, USA: Curran Associates, Inc.), Vol. 23.

Atrash, A., and Pineau, J. (2010). “A Bayesian Method for Learning Pomdp
Observation Parameters for Robot Interaction Management Systems,” in In
The POMDP Practitioners Workshop.

Besag, J. (1977). Efficiency of Pseudolikelihood Estimation for Simple Gaussian
Fields. Biometrika 64, 616–618. doi:10.1093/biomet/64.3.616

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Germany: Springer-Verlag.

Brafman, R. I., Bar-Sinai, M., and Ashkenazi, M. (2016). “Performance Level
Profiles: A Formal Language for Describing the Expected Performance of
Functional Modules,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (Daejeon, South Korea: IEEE Press),
1751–1756. doi:10.1109/IROS.2016.7759280

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I.,
Rohlfshagen, P., et al. (2012). A Survey of Monte Carlo Tree Search
Methods. IEEE Trans. Comput. Intell. AI Games 4, 1–43. doi:10.1109/
TCIAIG.2012.2186810

Castellini, A., Chalkiadakis, G., and Farinelli, A. (2019). “Influence of State-
Variable Constraints on Partially Observable Monte Carlo Planning,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019 (ijcai.org), 5540–5546. doi:10.24963/ijcai.
2019/769

Castellini, A., Marchesini, E., and Farinelli, A. (2021). Partially Observable
Monte Carlo Planning with State Variable Constraints for Mobile Robot
Navigation. Eng. Appl. Artif. Intell. 104, 104382. doi:10.1016/j.engappai.2021.
104382

Castellini, A., Marchesini, E., Mazzi, G., and Farinelli, A. (2020). “Explaining the
Influence of Prior Knowledge on POMCP Policies,” in Multi-Agent Systems
and Agreement Technologies - 17th European Conference, EUMAS 2020, and
7th International Conference, AT 2020, Thessaloniki, Greece, September 14-15,
2020, 261–276. Revised Selected Papers (Springer), vol. 12520 of Lecture Notes
in Computer Science. doi:10.1007/978-3-030-66412-1_17

Dechter, R. (2003). Constraint Processing. Burlington, Massachusetts: Morgan
Kaufmann Publishers Inc.

Doshi-Velez, F. (2009). “The Infinite Partially Observable Markov Decision
Process,” in Advances in Neural Information Processing Systems, NeurIPS
2009 (Red Hook, NY, USA: Curran Associates, Inc.), 477–485.

Fischer, J., and Tas, O. S. (2020). “Information Particle Filter Tree: An Online
Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains,”
in Proceedings of the 37th International Conference on Machine Learning
(PMLR), vol. 119 of Proceedings of Machine Learning Research, 3177–3187.

Friston, K. (2008). Hierarchical Models in the Brain. PLoS Comput. Biol. 4,
e1000211–24. doi:10.1371/journal.pcbi.1000211

Giuliari, F., Castellini, A., Berra, R., Bue, A. D., Farinelli, A., Cristani, M., et al.
(2021). “POMP++: Pomcp-Based Active Visual Search in Unknown Indoor
Environments,” in 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (Prague, Czech Republic: IEEE). doi:10.1109/
IROS51168.2021.9635866

Goldhoorn, A., Garrell, A., Alquézar, R., and Sanfeliu, A. (2014). “Continuous Real
Time POMCP to Find-And-Follow People by a Humanoid Service Robot,” in
2014 IEEE-RAS International Conference on Humanoid Robots, 741–747.
doi:10.1109/HUMANOIDS.2014.7041445

Hauskrecht, M. (2000). Value-function Approximations for Partially Observable
Markov Decision Processes. jair 13, 33–94. doi:10.1613/jair.678

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and Acting
in Partially Observable Stochastic Domains. Artif. Intell. 101, 99–134. doi:10.
1016/S0004-3702(98)00023-X

Katt, S., Oliehoek, F. A., and Amato, C. (2019). “Bayesian Reinforcement Learning
in Factored POMDPs,” in Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems (International Foundation for
Autonomous Agents and Multiagent Systems), AAMAS 2019, 7–15.

Katt, S., Oliehoek, F. A., and Amato, C. (2017). “Learning in POMDPs with Monte
Carlo Tree Search,” in Proceedings of the 34th International Conference on
Machine Learning - Volume 70 (JMLR.org), ICML’17, 1819–1827.

Kocsis, L., and Szepesvári, C. (2006). “Bandit Based Monte-Carlo Planning,” in
Proceedings of the 17th European Conference on Machine Learning. ECML
2006, 282–293. doi:10.1007/11871842_29

Koenig, N., and Howard, A. (2004). “Design and Use Paradigms for Gazebo, an
Open-Source Multi-Robot Simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566). vol. 3, 2149–2154. doi:10.1109/IROS.2004.1389727

Lauri, M., and Ritala, R. (2016). Planning for Robotic Exploration Based on
Forward Simulation. Robotics Aut. Syst. 83, 15–31. doi:10.1016/j.robot.2016.
06.008

Lee, J., Kim, G., Poupart, P., and Kim, K. (2018). Monte-carlo Tree Search for
Constrained POMDPs. Adv. Neural Inf. Process. Syst. 2018, 7934–7943. doi:10.
1155/2018/7689549

Leonetti, M., Iocchi, L., and Stone, P. (2016). A Synthesis of Automated Planning
and Reinforcement Learning for Efficient, Robust Decision-Making. Artif.
Intell. 241, 103–130. doi:10.1016/j.artint.2016.07.004

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and Konolige, K. (2010).
“TheOfficeMarathon: Robust Navigation in an Indoor Office Environment,” in
2010 IEEE International Conference on Robotics and Automation, 300–307.
doi:10.1109/ROBOT.2010.5509725

McAllester, D. A., and Singh, S. (1999). “Approximate Planning for Factored
Pomdps Using Belief State Simplification,” in Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann
Publishers Inc.), UAI’99, 409–416.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: The MIT Press.

Ognibene, D., Mirante, L., and Marchegiani, L. (2019). “Proactive Intention
Recognition for Joint Human-Robot Search and Rescue Missions through
Monte-Carlo Planning in Pomdp Environments,” in Social Robotics - 11th
International Conference, ICSR 2019, Proceedings (Berlin, Germany: Springer),
332–343. Lecture Notes in Computer Science. doi:10.1007/978-3-030-
35888-4_31

Papadimitriou, C. H., and Tsitsiklis, J. N. (1987). The Complexity of Markov
Decision Processes. Math. OR 12, 441–450. doi:10.1287/moor.12.3.441

Pineau, J., Roy, N., and Thrun, S. (2001). “A Hierarchical Approach to Pomdp
Planning and Execution,” in Workshop on Hierarchy and Memory in
Reinforcement Learning (ICML).

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910717

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://www.frontiersin.org/articles/10.3389/frobt.2022.819107/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2022.819107/full#supplementary-material
https://doi.org/10.1093/biomet/64.3.616
https://doi.org/10.1109/IROS.2016.7759280
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.24963/ijcai.2019/769
https://doi.org/10.24963/ijcai.2019/769
https://doi.org/10.1016/j.engappai.2021.104382
https://doi.org/10.1016/j.engappai.2021.104382
https://doi.org/10.1007/978-3-030-66412-1_17
https://doi.org/10.1371/journal.pcbi.1000211
https://doi.org/10.1109/IROS51168.2021.9635866
https://doi.org/10.1109/IROS51168.2021.9635866
https://doi.org/10.1109/HUMANOIDS.2014.7041445
https://doi.org/10.1613/jair.678
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1016/j.robot.2016.06.008
https://doi.org/10.1016/j.robot.2016.06.008
https://doi.org/10.1155/2018/7689549
https://doi.org/10.1155/2018/7689549
https://doi.org/10.1016/j.artint.2016.07.004
https://doi.org/10.1109/ROBOT.2010.5509725
https://doi.org/10.1007/978-3-030-35888-4_31
https://doi.org/10.1007/978-3-030-35888-4_31
https://doi.org/10.1287/moor.12.3.441
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Pletscher, P., Ong, C. S., and Buhmann, J. (2009). “Spanning Tree Approximations
for Conditional Random Fields,” in Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics (PMLR), vol. 5 of
Proceedings of Machine Learning Research, 408–415.

Ross, S., Pineau, J., Chaib-draa, B., and Kreitmann, P. (2011). A Bayesian Approach
for Learning and Planning in Partially Observable Markov Decision Processes.
J. Mach. Learn. Res. 12, 1729–1770.

Ross, S., Pineau, J., Paquet, S., and Chaib-draa, B. (2008). Online Planning
Algorithms for Pomdps. Jair 32, 663–704. doi:10.1613/jair.2567

Russell, S. J., and Norvig, P. (2010). Artificial Intelligence - A Modern Approach.
Third International Edition. London, UK: Pearson Education.

Salakhutdinov, R. R. (2009). “Learning in Markov Random Fields Using Tempered
Transitions,” in Advances in Neural Information Processing Systems, NeurIPS
2009 (Red Hook, NY, USA: Curran Associates, Inc.), Vol. 22.

Sanner, S. (2010). Relational Dynamic Influence Diagram Language (RDDL):
Language Description. Canberra, Australia: Australian National University.
Unpublished Manuscript.

Shah, A., Shah, D., and Wornell, G. W. (2021). “On Learning Continuous Pairwise
Markov Random Fields,” in The 24th International Conference on Artificial
Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, 1153–1161.
Virtual Event (PMLR), vol. 130 of Proceedings of Machine Learning Research.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
et al. (2016). Mastering the Game of Go with Deep Neural Networks and Tree
Search. Nature 529, 484–489. doi:10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.
(2017). Mastering the Game of Go without Human Knowledge. Nature 550,
354–359. doi:10.1038/nature24270

Silver, D., and Veness, J. (2010). “Monte-Carlo Planning in Large POMDPs,” in
Advances in Neural Information Processing Systems, NeurIPS 2010 (Red Hook,
NY, USA: Curran Associates, Inc.), Vol. 23, 2164–2172.

Smith, T., and Simmons, R. (2004). “Heuristic Search Value Iteration for
POMDPs,” in Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence (AUAI Press), UAI ’04, 520–527.

Sondik, E. J. (1978). The Optimal Control of Partially Observable Markov
Processes over the Infinite Horizon: Discounted Costs. Operations Res. 26,
282–304. doi:10.1287/opre.26.2.282

Spaan, M. T. J., and Spaan, N. (2004). “A Point-Based POMDP Algorithm for
Robot Planning,” in Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, ICRA 2004, April 26 - May 1, 2004 (New Orleans,
LA, USA: IEEE), 2399–2404. doi:10.1109/ROBOT.2004.1307420

Spaan, M. T. J., and Vlassis, N. (2005). Perseus: Randomized Point-Based Value
Iteration for Pomdps. jair 24, 195–220. doi:10.1613/jair.1659

Sridharan, M., Wyatt, J. L., and Dearden, R. (2008). “Hippo: Hierarchical Pomdps
for Planning Information Processing and Sensing Actions on a Robot,” in
International Conference on Automated Planning and Scheduling, (ICAPS)
(AAAI), 346–354.

Stachniss, C., Grisetti, G., and Burgard, W. (2005). “Information Gain-Based
Exploration Using Rao-Blackwellized Particle Filters,” in Proceedings of
Robotics: Science and Systems (RSS). doi:10.15607/rss.2005.i.009

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Second edn. Cambridge, MA, USA: The MIT Press.

Theocharous, G., Murphy, K., and Kaelbling, L. P. (2004). “Representing
Hierarchical Pomdps as Dbns for Multi-Scale Robot Localization,” in
Proceedings of the 2004 IEEE International Conference on Robotics and
Automation, ICRA 2004, April 26 - May 1, 2004 (New Orleans, LA, USA:
IEEE), 1045–1051. doi:10.1109/ROBOT.2004.1307288

Theocharous, G., Rohanimanesh, K., and Maharlevan, S. (2001). “Learning
Hierarchical Observable Markov Decision Process Models for Robot
Navigation,” in Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No.01CH37164). vol. 1, 511–516. doi:10.1109/
ROBOT.2001.932601

Thomas, V., Hutin, G., and Buffet, O. (2020). “Monte Carlo Information-Oriented
Planning,” in ECAI 2020 - 24th European Conference on Artificial Intelligence
(Amsterdam, Netherlands: IOS Press), 2378–2385. vol. 325 of Frontiers in
Artificial Intelligence and Applications. doi:10.3233/FAIA200368

Thrun, S. (2000). “Monte Carlo POMDPs,” in Advances in Neural Information
Processing Systems, NeurIPS 1999 (Cambridge, MA, USA: MIT Press),
1064–1070.

Upton, G., and Cook, I. (2008). “A Dictionary of Statistics,” in Oxford Paperback
Reference (Oxford: OUP Oxford). doi:10.1093/acref/9780199541454.001.0001

Veiga, T. S. (2015). Information Gain and Value Function Approximation in Task
Planning Using POMDPs. Ph.D. thesis (Lisbon, Portugal: Instituto Superior
Técnico, Universidade de Lisboa).

Veiga, T., Spaan, M. T. J., and Lima, P. U. (2014). “Point-Based POMDP Solving
with Factored Value Function Approximation,” in AAAI (Palo Alto, California,
U.S.: AAAI Press), 2513–2519.

Vuffray, M., Misra, S., and Lokhov, A. Y. (2020). “Efficient Learning of Discrete
Graphical Models,” in Advances in Neural Information Processing Systems,
NeurIPS 2020.

Wang, Y., Giuliari, F., Berra, R., Castellini, A., Bue, A. D., Farinelli, A., et al. (2020).
“POMP: Pomcp-Based Online Motion Planning for Active Visual Search in
Indoor Environments,” in 31st British Machine Vision Conference 2020,
BMVC 2020, September 7-10, 2020 (Virtual Event, UK: BMVA Press).

Wertheim, O., Brafman, R. I., Shekhar, S., Feiner, T., and Pinsky, I. (2020). “ROS-
POMDP – A Platform for Robotics Planning Using PLPs and RDDL in ROS,”
in Planning and Robotics Workshop, 30th International Conference on
Automated Planning and Scheduling (ICAPS).

Williams, J. D., and Young, S. (2007). Partially Observable Markov Decision
Processes for Spoken Dialog Systems. Comput. Speech & Lang. 21, 393–422.
doi:10.1016/j.csl.2006.06.008

Zuccotto, M., Castellini, A., and Farinelli, A. (2022). “Learning State-Variable
Relationships for Improving POMCP Performance,” in The 37th ACM/
SIGAPP Symposium on Applied Computing (SAC ’22), April 25–29, 2022,
739–747. Virtual Event. doi:10.1145/3477314.3507049

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zuccotto, Piccinelli, Castellini, Marchesini and Farinelli. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 81910718

Zuccotto et al. Learning State-Variable Relationships in POMCP

https://doi.org/10.1613/jair.2567
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1287/opre.26.2.282
https://doi.org/10.1109/ROBOT.2004.1307420
https://doi.org/10.1613/jair.1659
https://doi.org/10.15607/rss.2005.i.009
https://doi.org/10.1109/ROBOT.2004.1307288
https://doi.org/10.1109/ROBOT.2001.932601
https://doi.org/10.1109/ROBOT.2001.932601
https://doi.org/10.3233/FAIA200368
https://doi.org/10.1093/acref/9780199541454.001.0001
https://doi.org/10.1016/j.csl.2006.06.008
https://doi.org/10.1145/3477314.3507049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Learning State-Variable Relationships in POMCP: A Framework for Mobile Robots
	1 Introduction
	2 Related Work
	3 Rocksample: A Domain for a Running Example
	4 Background
	4.1 POMDP
	4.2 POMCP
	4.3 Markov Random Fields
	4.4 Extended POMCP

	5 Methodology
	5.1 MRF Learning
	5.1.1 Data Structures Used in the Learning Algorithm
	5.1.2 Learning Algorithm

	5.2 Stopping Criterion
	5.3 ROS Architecture for POMCP
	5.3.1 Environment
	5.3.2 Planner
	5.3.3 Agent

	5.4 MRF Adaptation

	6 Experiments
	6.1 Domains
	6.1.1 Rocksample
	6.1.2 Velocity Regulation

	6.2 Performance Measure
	6.3 Test on MRF Learning
	6.3.1 Experimental Setting
	6.3.2 Results

	6.4 Tests on the ROS Architecture for MRF Learning
	6.4.1 Experimental Setting
	6.4.2 Results

	6.5 Test on MRF Adaptation
	6.5.1 Experimental Setting
	6.5.2 Results
	6.5.2.1 Rocksample
	6.5.2.2 Velocity Regulation

	7 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

