
Social Drone Sharing to Increase UAV
Patrolling Autonomy in Pre- and
Post-Emergency Scenarios
Isabella-Sole Bisio, Luca Morando, Carmine Tommaso Recchiuto and Antonio Sgorbissa*

DIBRIS Department, University of Genova, Genova, Italy

Multirotor drones are becoming increasingly popular in a number of application fields, with
a unique appeal to the scientific community and the general public. Applications include
security, monitoring and surveillance, environmental mapping, and emergency scenario
management: in all these areas, two of the main issues to address are the availability of
appropriate software architectures to coordinate teams of drones and solutions to cope
with the short-term battery life. This article proposes the novel concepts of Social Drone
Sharing (SDS) and Social Charging Station (SCS), which provide the basis to address
these problems. Specifically, the article focuses on teams of drones in pre- and post-event
monitoring and assessment. Using multirotor drones in these situations can be difficult due
to the limited flight autonomy when multiple targets need to be inspected. The idea behind
the SDS concept is that citizens can volunteer to recharge a drone or replace its batteries if
it lands on their property. The computation of paths to inspect multiple targets will then take
into account the availability of SCSs to find solutions compatible with the required
inspection and flight times. The main contribution of this article is the development of a
cloud-based software architecture for SDS mission management, which includes a multi-
drone path-optimization algorithm taking the SDS and SCS concepts into account.
Experiments in simulation and a lab environment are discussed, paving the path to a
larger trial in a real scenario.

Keywords: unmanned aerial vehicle (UAV), teams of drones, cloud architecture, path-planning, autonomy

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV), in particular multi-rotor drones, have become increasingly
popular in recent years. This is due to their versatility and, consequently, the fact that they can be
employed in many different fields: from cinematography (Mademlis et al., 2019) to search and rescue
(Tomic et al., 2012; Recchiuto and Sgorbissa, 2018a), from sport and leisure (Wang et al., 2017) to
monitoring of power plants (Zormpas et al., 2018; Morando et al., 2022), just to mention a few. It is
not difficult to imagine a near future when everyone will own one or more of these “devices”.
Currently, researchers are exploring the possibility to use multiple drones to work in a team, where
each drone is provided with artificial intelligence (AI) and communication capabilities: in this way,
instead of being remotely operated, each drone might manage the tasks assigned in complete
autonomy while interacting and exchanging information with teammates and with a ground station
where missions are orchestrated.

Along this line of research, this work focuses on the development of teams of drones that will
periodically monitor areas of interest to prevent or mitigate the impact of environmental hazards.

Edited by:
Luca Iocchi,

Sapienza University of Rome, Italy

Reviewed by:
Jonathan M. Aitken,

The University of Sheffield,
United Kingdom

Kshitij Tiwari,
University of Oulu, Finland

*Correspondence:
Antonio Sgorbissa

antonio.sgorbissa@unige.it

Specialty section:
This article was submitted to

Computational Intelligence in Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 22 November 2021
Accepted: 09 March 2022
Published: 04 April 2022

Citation:
Bisio I-S, Morando L, Recchiuto CT

and Sgorbissa A (2022) Social Drone
Sharing to Increase UAV Patrolling

Autonomy in Pre- and Post-
Emergency Scenarios.

Front. Robot. AI 9:820239.
doi: 10.3389/frobt.2022.820239

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202391

ORIGINAL RESEARCH
published: 04 April 2022

doi: 10.3389/frobt.2022.820239

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.820239&domain=pdf&date_stamp=2022-04-04
https://www.frontiersin.org/articles/10.3389/frobt.2022.820239/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.820239/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.820239/full
http://creativecommons.org/licenses/by/4.0/
mailto:antonio.sgorbissa@unige.it
https://doi.org/10.3389/frobt.2022.820239
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.820239

Monitoring may be key in the pre-event phase, when the team
periodically inspects a set of targets (e.g., for the early
identification of hazards), or in the post-event phase (e.g., for
damage assessment). The targets could be, for example,
infrastructures to be kept under close observation before or
after strong atmospheric events (bridge, roads, hospitals,
schools, stacks of containers, etc.), fields or forests to prevent
fires, soil slopes whose stability needs to be assessed before or after
floods (Morando et al., 2020). As an aside, it shall be mentioned
that there are still legal barriers to the development of teams of
autonomous drones that operate “beyond visual line of sight”
(BVLOS) since most countries allow only “visual line of sight”
(VLOS) operations. However, international agencies such the
European Union Aviation Safety Agency (EASA)1 and the
Federal Aviation Administration (FAA) in USA2 are working
towards a legal framework to allow BVLOS operations (for
instance, FAA allows you to apply for a waiver for BVLOS
under special conditions). Without entering into the details of
the current regulations, it is evident that there is an urgent need
from the society to define a timeline for autonomous flight
regulations to come in force: such elements as the dimensions
and weight of the UAV, whether they operate in populated areas
or not, and the specific reason why autonomous flight is needed
may play a key role in this process. Teams of small autonomous
drones for periodic monitoring might become a reality soon,
especially if they contribute to the safety of citizens and their
operations are restricted to low population density areas.

In this scenario, one of the most significant limitations is the
maximum flight time of drones and the consequent operational
range (Tiwari et al., 2019), which is still very limited due to
energetic constraints. Generally, a drone can operate for about
half an hour, during which it may be complex to achieve all the
mission objectives. As a feasible solution to this problem, this
article builds upon the concept of Social Drone Sharing (SDS)
proposed for the first time in (Morando et al., 2020), according to
which citizens are welcome to contribute to the monitoring
process. The key idea is that resident can volunteer to make
their property available as Social Charging Station (SCS) to
recharge drone batteries—in a spirit somehow similar to post-
stations for changing horses of the pony-express delivery service.

To achieve this goal, the main contribution of this work is
twofold:

• We developed and tested a new software architecture, which
includes a cloud-server with associated services, designed to
connect the three different actors contributing to a mission:
1) the Civil protection, 2) the resident volunteers, and 3) the
drones;

• We implemented and tested an optimization algorithm
based on the work proposed in (Sundar et al., 2016),
aimed to find optimal paths for each drone, keeping into
account the constraints of the SDS scenario.

Section 2 describes state-of the-art. Section 3 introduces the
objectives and the methodology to achieve them. Section 4
describes the system architecture. Section 5 describes the
algorithm for path computation. Section 6 reports about

experiments performed in our laboratory. Finally, conclusions
and future works are discussed in Section 7.

2 STATE OF THE ART

This section will briefly survey state-of-the-art concerning the use
of UAVs for security, monitoring, and surveillance, the concept of
“social drones” working in close interaction with people, and
finally the cloud robotics paradigm.

2.1 UAVs for Security, Monitoring, and
Surveillance
In the security, monitoring, and surveillance domain, there are
several operations that multirotor drones can contribute to
perform. A recently proposed application is detecting gas
leakage (Tosato et al., 2019), where drones are employed to
inspect and measure the gas level in areas inaccessible to
humans. The same idea may be applied in all situations where
the presence of pollutants, poisons, and chemical hazards or
radiations might suggest using drones to avoid endangering the
health of human workers (Chen et al., 2020).

However, the use of drones is not limited to situations in which
human operators (e.g., firefighters, Civil protection, etc.) risk their
lives. For example, in (Aznar et al., 2014) a catastrophic event is
discussed where an oil tanker is the cause of a massive oil spill.
Authors claim that a team of drones would be an excellent aid
during such an emergency, helping humans quickly monitor the
leak magnitude, and support search and rescue (SAR) operations
to be conducted faster and more efficiently. Other examples
included the use of drones to identify trapped people after
hurricanes such as Katrina (Pratt et al., 2006) and Wilma
(Murphy et al., 2008), or catastrophic seismic events such as
L’Aquila (Italy) (Baiocchi et al., 2013) or Lushan (China)
earthquake (Qi et al., 2016). Generally speaking, it is well-
known that the time taken to reach the victims after a disaster
can drastically change the impact of SAR operations (Qi et al.,
2016): then, it is perfectly understandable that drones may play a
key role to speed-up operations by acquiring relevant information
whenever a quick intervention is required (Maza et al., 2010;
Karaca et al., 2018; Lomonaco et al., 2018; McRae et al., 2019).

In disaster scenarios, the use of UAVs is not necessarily limited
to SAR operations: pre- and post-event monitoring and
assessment are crucial as well, and they may raise different
challenges. Indeed, both pre-event and post-event operations
may require repeatedly inspecting large areas since the
situation may rapidly evolve. For example, consider
periodically assessing the dryness of the vegetation in a peri-
urban area to prevent fires or think about the actions to be taken
for damage assessment after a severe hydrological event. In the
first case, patrolling should be repeatedly performed to gather and
update in real-time a representation of the pre-event situation; in
the second case, periodic patrolling may be key to estimate the
state of the involved areas and prevent further damages to people
and things, or even assess and meet the primary and long-term
needs of the communities affected by the disaster (Recchiuto and

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202392

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Sgorbissa, 2018b). Unfortunately, things become more
problematic when drones are required to periodically monitor
an area for a long time. In (Barmpounakis and Geroliminis,
2020), an experiment is described that has been conducted in the
city center of Athens, in which a busy urban area is monitored by
drones during peak hours, by repeating the same routine for a
whole week. The authors of this work notice that one of the
biggest challenges to address in periodic monitoring is the limited
battery life of the drones, which cannot record videos for two and
a half hours as the experiment would require it. Two options are
then considered: the first is to swap drones with replacements
while they are in the air to keep on monitoring the area. The
second option is to replace drones batteries, which implies the
presence of “blind intervals” of 10 min during which drones land,
their batteries are replaced, they take off and come back to the
point where they were before the pause. The lesson learned is that,
whenever a mission requires drones to operate periodically for a
long time, energetic constraints acquire the utmost importance.

Another emergency context in which drones can play a crucial
role may be the delivery of first aid kits and life-saving medicines.
Drones can achieve this in a shorter time than required by using
land vehicles, for instance, in mountain areas or in the presence of
heavy traffic. Think about an ambulance stuck in traffic: drones
might be used to deliver a personalized kit, depending on the type
of disease or injury, so that the victim can be assisted before the
ambulance arrives (Sanjana and Prathilothamai, 2020). In (Bravo
et al., 2016) it is proposed to use drones for first aid during
outdoor sports, mainly when an unexpected health problem (e.g.,
heart attack, heatstroke, allergic reaction, dehydration) occurs in
a remote site on the mountains or at sea. Finally, during the
current COVID-19 emergency, the Italian police have used
drones equipped with heat sensors to measure the body
temperature of the people and send the information to
authorities (The Local, 2020). But what if the time required to
reach the intervention area turns out to be longer than the battery
duration?

From all the examples above, it is evident that the limitations
of multirotor drones concerning energetic autonomy may
become very relevant in these contexts and deserve the
greatest attention.

2.2 Social Drones
Personal drones are increasingly becoming part of our daily life:
we expect that, in the near future, they will be employed for a
considerable amount of routine tasks to support people
(Cauchard et al., 2015; Floreano and Wood, 2015). In this
general scenario, the “social drones” concept refers to drones
flying close to users and interacting with them (Baytas et al.,
2019).

To deal with the new challenges raised by social drones, in
(Funk, 2018) the concept of “human-drone interaction” (HDI) is
introduced. The authors claim that, as drones will have to interact
more with human beings, their internal organization should not
only be devoted to fulfilling their task: social drones need to have a
human-centered design, which may imply different requirements
compared with the usual hardware/software architectures for
unmanned aerial vehicles. For example, parameters that affect

human comfort and trust deserve the greatest attention in this
process.

HDI studies have been conducted to understand better the
behavioural standards that drones have to achieve while
approaching humans. For example, the study described in
(Cauchard et al., 2015) involves 19 participants who had to
interact with drones: researchers observed that participants
mostly applied the same kind of approach that is used with
pets. In the work described in (Abtahi et al., 2017), commercial
drones have been adapted to exhibit a safe-to-touch design by
making use of propeller guards. This idea helps increase safety
during flight and enables touch–based interaction, according to
the hypothesis that, in public environments, people may have the
necessity to physically interact with a drone controlled by
someone else.

Other investigations have been done about the behaviours that
drones should have in the presence of humans. In particular
(Jensen et al., 2018), explored humans’ preferences about the
distance at which people want to be perceived by drones, as well
as the visual signals that drones should employ to communicate
that they are aware of their human partners. Studies show that
known methodologies for human-robot interaction (HRI) can
not be just applied to HDI. The principal differences in these
interactions are related to privacy and safety in public spaces
(Brock et al., 2019).

Along this rationale, not only behavioural aspects have been
studied, but also drone prototypes that may have a pleasant
appearance for humans, with a design meant to enhance the sense
of comfort while using them. Among the others (Yeh et al., 2017),
explores social distance in HDI using a drone prototype with a
“socially appealing shape”. The researchers added a cage around
the drone to increase user comfort and a “friendly face” on the
drone, partly inspired by the uncanny valley hypothesis that the
sense of familiarity increases when the robot shares some
similarities with a human (Mori et al., 2012). The study
showed that this design choice reduced the acceptable human-
drone distance during the interaction.

Among the possible applications of drones in everyday life, the
research explored how drones might be useful as companions in a
home environment (Karjalainen et al., 2017): the users
appreciated using drones to simplify daily tasks such as
housekeeping, cleaning, and fetching items. Similarly, some
work proposed drones for taking selfies (Chen et al., 2015)
and following people during jogging (Mueller and Muirhead,
2015), where the drone takes the role of a “jogging companion”
flying alongside the runner. The potential of flying drones as
navigation guides for pedestrians has been explored as well, as
they might provide more direct guidance than the use of hand-
held devices (Colley et al., 2017). Along this line, examples of
social drones for visually impaired people have been discussed in
(Avila et al., 2015; Avila Soto et al., 2017).

Finally, a study about people awareness about the use of
drones in society is presented in (Tahir et al., 2019), by asking
people such questions as “Are you familiar with drone technology
and do you understand the term swarm of drones?” or “If a
swarm of drones is used to monitor the area (e.g., cities, forests,
farming fields, public events) and for gathering aerial images,

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202393

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

would you be in favour of it or would you have any concerns?”
The survey showed, among the other results, that 144 out of 187
participants had never or hardly ever used a drone, whereas only
43 subjects had used them for hobby or work. Concerning
security, 115 participants had security concerns, 6 of them had
privacy concerns, 8 had security as well as privacy concerns, and 1
participant added that any type of concerns was dependent on the
functional capabilities of drones. Finally, 57 subjects were just a
little worried or not worried at all.

To summarize, previous research shows that people are
getting more used to drones, even if some concerns still exist
and shall be taken into the highest consideration. People’s
attitude towards drones is favourable enough to encourage
their introduction in society and share with citizens the
responsibility of using drones to improve the quality of life
of the community in which they live.

2.3 Cloud Robotics
For the first time in 2010, James J. Kuffner adopted the term
“cloud robotics”, referring to a robot equipped with an
autonomous system that harnesses the cloud potential in all its
aspects (Kuffner, 2010). Cloud robotics is made possible by
advances in several fields, such as wireless networks, large-
scale storage and communication technologies, and the
Internet. According to this paradigm, robots may take
advantage of the cloud for greater data processing and storage
capability (Saha and Dasgupta, 2018).

One of the most relevant examples are Google autonomous
cars, which connect to the internet to exchange a massive amount
of maps and satellite images, which are merged with data
retrieved by onboard sensors such as cameras, GPS, and 3D
sensors. Each vehicle actively contributes to uploading
information to the cloud about the situation just experienced
so that the next vehicle that travels along the same road is updated
with the most recent data. More generally, it has been shown that
cloud robotics technology may have a wide application range
(Saha and Dasgupta, 2018), including perception, navigation,
manipulation, and natural language processing, in different
domains such as manufacturing, service, social, agricultural,
medical, and disaster robotics.

The work in (Waibel et al., 2011) provides a concrete example
of an open-source platform that allow any robot equipped with a
network connection to manipulate, generate, share, and reuse
data. Specifically, the RoboEarth three-layered architecture
emphasizes the concept that each robot should allow other
robots to learn through its knowledge and vice-versa. The
higher layer (cloud server) is the core of the whole
architecture: it includes a database to store information that
can be reused in several different scenarios (including images,
point clouds, models, maps, object locations, but even semantic
information associated to them through an ontology, action
recipes, and skills) and provides access to this information
through a portfolio of Web services. The middle-layer (generic
components) provides software to implement typical robot skills
and functionalities, such as action execution, environment
modeling, semantic mapping, action and situation recognition,
and labeling, learning. The lower level (robot-specific) interfaces

the other two levels with the hardware-dependent functionalities
of the robot via the so-called “skill abstraction layer”.

Other frameworks exist (Mohanarajah et al., 2015), e.g., with a
specific focus on mapping (Riazuelo et al., 2014), dynamical
allocation of resources (Hu et al., 2012), grasping (Kehoe
et al., 2013) conversation (Recchiuto and Sgorbissa, 2020).

3 SOCIAL DRONE SHARING: OBJECTIVE
AND METHODOLOGY

A limitation to the widespread use of drones in emergency
domains is the absence of true autonomy. The problem is
twofold: not only autonomous navigation capabilities are
missing in terms of guidance and localization, but also
energetic autonomy is subject to severe constraints. Indeed,
the ability to cover long distances without recharging batteries
is usually limited to a flight time of 15–30 min, which may reveal
insufficient to conclude the patrolling mission.

This article addresses pre-event and post-event intervention,
two situations in which the Civil protection needs to
periodically monitor different critical targets, hopefully in the
shortest possible time. These targets could be, for instance:
critical infrastructure (bridges, roads, hospitals, schools,
stacks of containers, etc.) whose risk shall be evaluated or
damage assessed before or after a severe hydrogeological
event; fields or woods whose dryness shall be periodically
assessed to prevent fires; soil slopes whose stability shall be
monitored before or after floods. Unfortunately, even if drones
could play a key role in the pre-event and post-event phases for
monitoring and assessment purposes, the ability to periodically
patrol and inspect targets over a vast area is still an open issue: in
most cases, the maximum flight time may not be sufficient to
visit all targets.

To overcome this limitation, we propose to involve citizens
(also referred to as “resident volunteers” or just “residents” in the
following) in the monitoring process by adopting the new
concepts of Social Charging Stations (SCS), proposed for the
first time in (Morando et al., 2020). The autonomy range of
drones is extended through the SCS concept: residents may
volunteer to take care of drones if they land on their property,
thus contributing to overcome their energetic constraints.

Figure 1 schematically represents the classical approach
adopted for drone-based inspection (left) versus its “social”
counterpart (right). The scenario on the left includes several
targets (T) to visit and one take-off point (S), the only place where
the drone can start, charge or replace its battery. Here, an
operator remotely controls the drone [or a team of drones
(Recchiuto et al., 2016)] through a radio command, and the
drone’s path requires returning to the take-off point multiple
times for recharging. In the scenario on the right there are
additional Social Charging Stations (SCS) distributed in the
area where targets are located. SCSs correspond to residents’
properties where the drone can be recharged or its batteries
replaced: thanks to this, the drone returns to the starting point
only after completing the inspection mission. Moreover, in the
right scenario no operator is needed to control the drone: the path

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202394

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

is automatically computed before take-off, after which the drone
can fly autonomously to perform its mission.

Figure 2 focuses on the multiple “actors” interacting in our
scenario: the Civil protection, resident volunteers and drones.
Numbers in the Figure define the ideal sequence in which actors
will perform the corresponding steps. First of all, resident
volunteers shall connect to the cloud to give their availability
to be part of the community as an SCS (1): they do this through an
app, which will later alert them if their help is required to prepare
the landing spot and recharge/replace the batteries of a drone.
Thanks to this, residents are actively involved in the whole
process, which may be particularly important especially in
areas with low population density, where a community-based
approach is repaid by greater safety. Civil protection authorities
access the cloud to set the targets to survey depending on current
needs (2). Then, they trigger a process for automatically
computing optimal paths given all targets and the available
SCSs in the area. Resident volunteers along planned paths are
alerted that their SCSs will be needed soon: they are asked to
confirm their availability to receive a drone for recharging (3, 4).
As long as drones are switched on, they periodically connect to
the cloud to check if a new mission is ready for them (5): if they
have been assigned a path but some resident volunteers along the
path have not confirmed their availability, drones alert the system
that there are path segments that have not been confirmed;
otherwise drones download the path and take-off. If some
paths are not confirmed within a given deadline, the Civil
protection may contact residents or recompute paths (7, 8).
After a drone has started its mission, it periodically send
updated information about the status of the mission and
themselves, e.g., its position, battery status, etc. (9); the Civil

protection receives periodical updates about all drones (10).
Finally, when a resident volunteer is visited by a drone that
needs recharging, it confirms that the drone has safely reached the
SCS, takes care of it, and updates its status after the drone is ready
to take-off again (11).

Notice that, in a real scenario, some of the steps above will
performed in parallel or periodically repeated, also due to the fact
that the Civil protection can add new targets to be inspected at
any time, and new resident volunteers and drones can
dynamically enter the system.

4 CLOUD IMPLEMENTATION

In this section, we describe the architecture of the system and the
services accessed by the three actors involved in the process.

4.1 System Architecture
As shown in Figure 2, all information exchanges are performed
by three actors involved in the operation: the Civil protection, the
resident volunteers, the drones. Each of these actors has specific
tasks to complete and contributes to the mission in a unique way.
To enable information exchange, the cloud server and its services
are developed according to the REST API architectural style and
the Flask micro-framework, using a virtual machine on the
Microsoft Azure cloud. The server is associated with a
database containing tables filled with various information. In
the current implementation, an SQLite database is used.

Specifically, each service performs a query to a table of the
database, summarized by the methods PUT, GET, PATCH,
DELETE: PUT implements an action to write into a database

FIGURE 1 | Left: A classical inspection methodology. Drones start from S and are remotely controlled to visit all targets (T), coming back to the starting point (S)
when their batteries need recharging or replacing. Right: Social Drone Sharing (SDS) approach. Drones autonomously visit all targets, by landing at a Social Charging
Station (SCS) whenever their batteries need recharging or replacing.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202395

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

table; GET implements an action to read from a database entry;
PATCH implements an action to update the value in a database
entry; DELETE implements an action to delete an entry in a
database table. Please, observe that the PUT, PATCH, and
DELETE methods only send data from a client to the server,
whereas the GET method also returns the required information
from the server to the client. Thus, the cloud server essentially
works as an online information exchange platform between the
different parties involved in the mission.

Finally, notice that this article ignores problems related to real-
time drone navigation, which requires to implement proper
algorithms for localization and control to move along the path
taking into account the drone dynamics and environmental
conditions, as well as strategies to inspect targets using on-
board sensors that may vary depending on each mission. All
this aspects are typically addressed by the on-board flight
controller that commercial drones are provided with,
supplemented by an additional on-board processor that
performs high-level operations required to manage the mission
and connect to the cloud to access its services. To know more
about the strategies we plan to apply for autonomous navigation,

possibly ensuring accurate localization, and obstacle avoidance
when a target to be inspected has been reached, please refer to our
previous work (Piaggio et al., 2001; Iacono and Sgorbissa, 2018;
Morando et al., 2022).

4.2 Service Implementation
Here the implemented services are explained in detail, without
providing details whether they are implemented as GET, PATCH,
DELETE, or PUT methods. To this end, in the rest of the article,
we assume a graph that comprises a set of SCS and target nodes
connected through links: SCS nodes are labelled with the
coordinates of a resident volunteer’s house where drones are
allowed to land, whereas target nodes are labelled with
coordinates of an area that a drone should visit and inspect.
This concept will be better formalized when we introduce the
algorithm for finding optimal paths in Section 6.3.

All the services described below are listed tomatch the order in
which they are called in Figure 2. They are also depicted in the
software architecture structure in Figure 3, by reporting the three
actors and the services that they typically use. All the returned
values, if any, are encoded in a JSON file.

FIGURE 2 | Actors in the cloud. 1: resident volunteers registers to the platform; 2: the Civil protection uploads targets; 3, 4: residents confirm their availability to
welcome a drone; 5, 6: drones periodically check if there is amission for them and alert the system if any residents along the path did not confirm their availability; 7, 8: the
Civil protection checks if there are unconfirmed paths and possibly recompute them; 9: drones start the mission by periodically updating their status; 10: the Civil
protection receives periodic updates about the mission status; 11: if a drone needs to be recharged, a citizen is alerted and updates the mission status after the
drone has landed on their property.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202396

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

• set_post_station(first_name, last_name, address, city, state,
zip_code, user_coords, availability_from, availability_to).
This service is called by the resident’s app in step 1 when
they give their availability to be part of the community. It
requires inserting the resident’s personal data, address, GPS
coordinates of the house, and the time range in which the
resident is available to take care of a drone. If residents sign
up to the system, the algorithm for path computation will
consider their property as a potential SCS while building the
graph of the target and SCS nodes. It returns a user ID that
will be later used to check if there are drones to take care of.

• set_target(targets, target_coords, target_insp_times). This
service is called by the Civil protection in step 2 to set
targets. Input parameters are the number of targets to be
visited, their coordinates, and the inspection time that the
drone should spend on each target. After this, the service
activates the functionalities to start computing paths.

• get_post_station(). This service is mostly called from within
the path computation algorithm. No input parameters are
needed since this function is in charge of reading the SCS

coordinates directly from the database, previously uploaded
by each resident when signing up to the system.

• set_path(drone_ID, path_coords, mission_from,
mission_to, covered_path, uncovered_path,
uncovered_from, uncovered_to, mission_status). This
service is automatically called at the end of the path
computation algorithm. The main input parameters are
the drone ID, the coordinates of all nodes along the path,
the time range of the mission, the covered and uncovered
paths (covered/uncovered paths are segments of the whole
path for which residents did/did not gave a confirmation). A
drone can take off as soon as all the SCSs along its path have
been confirmed by residents. On the other side, the residents
who signed up to the system will receive a message: they
need confirming that they will be available in the time frame
when a drone is expected to land on their property.

• get_path_user(user_ID, user_coords, request_from,
request_to, request_status). This service is periodically
called by residents in step 3 to check if any drones are
planning to land on their property. The main input

FIGURE 3 | Cloud-based architecture with actors (Civili protection, residents volunteers, drones) and web services implemented.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202397

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

parameters are the user ID and GPS coordinates. It replies
with the ID of drones that have scheduled the resident’s
house as an SCS along their path, if any.

• confirm_post_station(user_ID, drone_ID, index). This
service is called by resident volunteers in step 4 to
confirm or not their availability to take care of drones
that need landing on their property. The main input
parameters are the user ID, the drone ID, and the index
of the path segment leading to the resident’s property. Once
all the segments of the path have been confirmed, the
mission status of a drone changes to I can take off, thus
allowing it to start its mission.

• get_path(drone_ID). This service is periodically called by
drones (and, if needed, the Civil protection) in step 5 to
download a path assigned to the drone with the
corresponding ID. If all residents along the path
confirmed their availability to welcome the drone, the
latter can take off and immediately jump to step 9.

• set_uncovered_path(drone_ID, index). This service is called
by a drone in step 6 if it has been chosen for a mission but it
can not take off since not all segments of the path have been
confirmed by resident volunteers. The input parameters are
the drone ID and the index of the missing path segment.

• get_uncovered_path(drone_ID). This service is called by
the Civil protection in step 7 to check if any drone has a path
still requiring confirmation from the residents. If residents
do not give their confirmation within a given time, this may
trigger an alert or possibly require to execute the algorithm
for path computation again, step 8.

• set_mission_status(drone_ID). This service is called by
drones in step 9 to update the mission status of a drone
with a given ID, which could be one of the following: I can
not take off: in case no paths have been assigned to that
drone or the path has not been confirmed yet; I can take off:
if there is a path that has been assigned to that drone and all
the resident volunteers along that path confirmed to be
available as SCSs; I am in pause: this state is explicitly set by
a resident volunteer that is currently managing a drone
landed on his/her property to recharge/replace its battery; I
can resume the mission: this state is explicitly set by a
resident volunteer when the battery has been recharged/
replaced has ended and the drone can continue its mission.

• stream_data(drone_ID, status, landing_status, battery,
drone_coords). The drone periodically calls this service
to update the database with information about itself in
step 9. The input parameters are the drone ID, any
valuable information about its status (including acquired
sensor data), the mission status, the battery level, and its
position.

• get_data(drone_ID): this service is called by the Civil
protection in step 10. It returns any valuable information
about the drone including the mission status as well as the
drone current position and remaining battery.

• get_landing_info(drone_ID). This service is periodically
called in step 11 by a resident volunteer that confirmed
his/her availability to welcome a drone with a given ID, in
order to know its estimated arrival time.

• set_pause_mission(user_ID, drone_ID). This service is
called in step 11 by a resident that, after a drone has
landed, notifies that the drone has been taken care of
and its batteries will be recharged/replaced soon. The
input parameters of this function are the resident ID and
the drone ID.

• set_resume_mission(user_ID, drone_ID). This service is
called by a resident in step 11 when the drone has been
recharged, and it can resume the mission. The input
parameters of this function are the resident ID and the
drone ID.

• get_pause_mission(drone_ID). This service is called by the
Civil protection in step 10 to check if a drone with a given ID
has been taken care of by a resident volunteer.

• get_resume_mission(drone_ID). This service is called by
the Civil protection in step 10 to know if a drone with a
given ID is ready to resume its mission.

The sequence diagram in Figure 4 shows the chain of events of
a mission, also summarized in Figure 5. We assume that resident
volunteers have already subscribed to the system. In the diagram,
both the residents’ apps and drones periodically query the cloud
to check if there are new paths (get_path, get_path_user). At
some point, the Civil protection uploads a mission, described as a
set of target locations to be visited (set_target): this triggers the
procedure for path computation, whose output is a set of paths
that drones should execute (set_path). Drones realize that there
are new paths but some path segments have not been confirmed
yet, and notify this information to the cloud
(set_uncovered_path). Similarly, resident volunteers are
notified that there are paths: however, they do not
immediately confirm their willingness to take care of drones, a
situation detected by the Civil protection (get_uncovered_path)
finally leading to all residents confirming their availability
(confirm_post_station). Drones can take off and start sending
periodic updates about their status (set_mission_status
stream_data), which are periodically received by the Civil
protection (get_data). Similarly, residents periodically query
the cloud for information about incoming drones, to be ready
to recharge them or substitute their batteries as soon as they land
on their property (set_pause_mission).

5 PATH COMPUTATION

This section introduces the path computation algorithm used to
find the drones’ optimal paths (i.e., less battery consuming) that
visits all targets by meeting all constraints, and discusses about its
limitations.

5.1 Finding Paths in the Social Drone
Scenario
The algorithm to find optimal paths runs on the cloud, taking
advantage of the cloud computing power. This aspect is
particularly relevant by assuming that more instances of the
algorithm might be executed in parallel by different actors

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202398

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

accessing the service (e.g., local Civil protection authorities
operating with the support of local resident communities),
thus improving performance and preserving the confidentiality
of sensitive data—such as the drones’ current positions or the
resident volunteers’ identity and house coordinates.

In the current version of the system, the algorithm used for path
computation has been taken from a previous work described in
(Sundar et al., 2016), formulated and implemented exploiting the
optimization tools provided by software such as Gurobi3. The
optimization problem we consider is called Multiple Depot Fuel-
Constrained Multiple Vehicle Routing Problem (FCMVRP) and is
solved through mixed-integer linear programming. According to
the FCMVRP formulation, a set of targets, a set of depots, and a set
of vehicles are given. Each depot initially hosts a different vehicle,

and—according to the terminology used in this article—the depots
may also play the role of SCS whenever a vehicle passes through
them. Specifically, when a vehicle reaches a depot, it refuels to its
full capacity. The FCMVRP objective is to find a feasible route for
each vehicle, according to the following constraints:

• Each vehicle’s path shall start and end at the same depot;
• Each target shall be visited at least once by some vehicle;
• No vehicle shall run out of fuel as it traverses its path;
• The total cost of the routes for the vehicles shall be
minimized.

Possible applications requiring to solve FCMVRP are path-
planning for drones or routing for electric vehicles based on the

FIGURE 4 | Sequence diagram representing the chain of events involving the Civil protection, resident volunteers and drones.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8202399

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

locations of charging stations: however, there are some
differences with our original formulation of the SDS problem,
which we will outline in the next section.

In (Sundar et al., 2016), four different mathematical
formulations are proposed to approach the problem: arc-based
formulation, arc-based formulation with strengthened
inequalities, node-based formulation, node-based formulation
with strengthened inequalities. For this work, only the first
formulation is considered and implemented. In order to
formally describe the constrained minimization problem, the
following terminology is adopted:

• T denotes the set of targets t1, . . . , tn;
• D denotes the set of depots (that play also the role of SCS) d1,
. . . , dk;

• Each depot dk initially hosts a vehicle vk;
• G = (V, E) is a fully connected directed graph, whereV = T ∪
D is the set of edges and E is the set of arcs connecting
neighbouring vertices in V;

• G does not contain self-loops (i.e., there are no edges
departing from and arriving to the same vertex);

• Each edge (i, j) ∈ E is associated with a non-negative cost cij
required to travel from vertex i to vertex j and the fuel fij
spent by traveling from i to j;

• The cost required to travel from vertex i to vertex j is directly
proportional to the fuel/battery charge used in traversing
the edge (i, j), that is cij =K fij (cij and cjimay be different, but
for the purpose of this paper, we assume cij = cji);

• The travel costs satisfy the triangle inequality: for every i, j,
k ∈ V, cij + cjk ≥ cik;

• F denotes the maximum fuel/battery capacity of the
vehicles.

Each edge (i, j) ∈ E is associated with a variable xij, which
equals 1 if the edge (i, j) is chosen to be part of a path, and 0
otherwise. Also, each edge (i, j) is associated with a flow variable
zij which denotes the total fuel/battery charge consumed by a
vehicle as it starts from a depot in the vertex j when the
predecessor of j is i.

Using this notation, the minimization problem can be
described as follows:

minimize ∑
i,j()∈E

cijxij (1)

subject to:

∑
i∈V

xdi � ∑
i∈V

xid ∀d ∈ D (2)

∑
i∈V

xij � 1 and ∑
i∈V

xji � 1 ∀j ∈ T (3)

∑
j∈V

zij − ∑
j∈V

zji � ∑
j∈V

fijxij ∀i ∈ T (4)

0≤ zij ≤Fxij ∀ i, j() ∈ E (5)
zdi � fdixdi ∀i ∈ T, d ∈ D (6)
xij ∈ 0, 1() ∀ i, j() ∈ E (7)

The constraint 2 says that the number of arcs that are directed
towards a depot should be equal to the number of arcs that leave
from the depot towards other directions. It also implies the
number of drones entering a depot has to be equal to the

FIGURE 5 | 1: Resident volunteers subscribe to the system. 2: Civil protection insert a mission. 3: Resident volunteers confirm their availability for a given time range.
4: DJI Tello drones can take off.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023910

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

number of drones leaving the depot and that drones must return
to their departure point to close the path. The constraint 3
expresses the fact that there must be only one arc that reaches
the target and only one that leaves the target. In other words, each
target must be visited only once. The 4 is a connectivity constraint
and eliminates the target sub-tours. It considers all possible paths
that a drone has made to get up to a certain point: the total fuel/
battery consumption is equal to all the costs to travel the last sub-
path portion plus the total cost that is spent to get to that point.
Eqs. 5, 6 ensure that the fuel/battery charge consumed by the
vehicle to travel up to a depot does not exceed its maximum fuel/
battery capacity F. The last constraint 7 is the binary restriction
on the variables: either an edge is present or not present in
the path.

5.2 Limitations in the Social Drone Sharing
Scenario
As mentioned above, the optimization algorithm does not
perfectly match the requirements of our scenario. Two main
differences exist that should be re-considered in future works.

The first difference is that the problem formulated in (Sundar
et al., 2016) requires each drone to perform a closed path: each
drone has to depart from and return to the same depot, which in
our work correspond to a SCS. However, in our scenario, a drone
can start from a resident volunteer’s house and end its path at
another resident volunteer’s house, different from the one where
it started. The difference is due to the fact that, in our scenario,
drones are used to perform periodic inspections and not to deliver
parcels, which would require them to come back to their depot to
reload their stocks periodically. Suppose that a drone has landed
at an SCS after completing a mission and the Civil protection
needs to perform a new mission. Additionally, suppose that the
new targets to inspect are close to the targets just inspected,
i.e., before landing at the SCS for recharging. Then, it would be
convenient to leave the drone at its current SCS, waiting for new
instructions rather than coming back to the place from where the
drone originally comes.

The second difference is that, in FCMVRP, the term depot and
SCS are considered as synonyms, i.e., there are no SCSs that are
not also depots. So then, for the computed paths to be executable,
FCMVRP requires that all SCSs must be initially provided with a
drone. This is not perfectly coherent with our formulation of the
problem, where only a subset of the SCSs will likely host a drone
recharging its batteries at a given time. That is, the concept of
depot and SCS should be decoupled. By exploiting the cloud
architecture, this difference is currently addressed by involving
the different actors interacting with the system as follows. Once
the path computation algorithm returns a set of candidate paths
that visits all targets, each path needs to be individually re-
considered by the Civil protection and confirmed before being
assigned to drones. Suppose that the path passes through some
SCSs: by manually inspecting the path, the Civil protection will
have to select the SCS to be considered as a depot (i.e., a starting
point hosting a drone) depending on the actual position of all
drones, whereas the other SCSs along the path will only play the
role of charging station.

This concept is shown in Figure 6. The left path does not leave
many choices since there is only an SCS in position (3, 12) (blue
circle) that can be selected as a depot: the path can only start and
end at that point. Instead, the right path includes several SCSs
that can be chosen as a starting point, respectively, in positions (6,
6), (15, 17), and (15, 10). If the SCS in (6, 6) is chosen as the depot
(which means that it hosts a drone), then the SCSs in (15, 17), and
(15, 10) are simply used as charging stations. Please notice that,
when doing this, it may happen that a feasible solution to the
problem cannot be found if none of the SCSs along a path can
play the role of depot: think about what will happen if, in the
previous example, there is not a drone in (3, 12). Solutions to deal
with this situation can be implemented, for instance, by exploring
different sub-optimal solutions to the problem producing a
different set of closed paths.

6 EXPERIMENTS

This section describes experiments in a laboratory setup to
validate the software architecture and check that services are
accessed by the three actors in the right sequence without making
undesirable situations happen, measure the time required to
access cloud services, and finally the time required for path
computation under different conditions.

6.1 System Architecture and Services
The first phase is important to reveal any bugs or malfunctions in
the developed services and to check whether the database is
accessed as planned. To this aim, we simulate a sequence of events
that would occur in a real scenario using a team of DJI Tello
drones that are particularly convenient for experiments in a
laboratory setup, Figure 5. Specific attention is paid to verify
that each service properly fills the database with new data and
updates/downloads existing data. This has been verified using
different configurations of targets and SCSs. Precisely, the
following steps are executed:

• Microsoft Azure cloud services are started. The cloud server
is now active and listening to any potential requests through
the REST web services.

• Drones are switched on and start periodically calling the
proper service to check if they have been assigned a
sequence of targets to inspect. They will take off only if
this happens. Otherwise, they will remain in the current
status and location. Notice that DJI Tello do not have an
onboard PC, and therefore they are controlled by external
PCs that connect to the cloud—this choice works well for
laboratory experiments but shall be revised for a real-world
scenario.

• Resident volunteers give their availability through the
graphical user interface (GUI) of the app they are
provided with. In a real case, this might require a
complex subscription process to confirm the identity of
residents, check how reliable they are, activate an insurance
policy, and so on. On the opposite, during our tests,
subscriptions are collected immediately before the drones

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023911

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

start, using different computers connected to the cloud
server that simulates different residents. Data entered by
the residents are uploaded to the cloud database: from that
time on, their coordinates can be used by the optimization
algorithm as SCSs. The application that connects residents
with the cloud server stays active in the background, ready
to send them notifications if they are needed to welcome a
drone whose path visits their house.

• The Civil protection uploads targets to be visited and runs
the optimization algorithm. Targets’ coordinates
correspond to areas to be inspected for a given time: the
algorithm returns a set of candidate paths that solve the
problem given targets and the available SCSs and drones.
The Civil protection confirms the computed paths, the
drone assigned to each path and its starting SCS.

• After paths have been confirmed, the residents whose
coordinates have been chosen as SCSs confirm their
availability in the time range when the drone is expected
to land on their property. Specifically, the residents’ app
connected to the cloud server, continuously checking for
updates in the background, opens its GUI and displays a
message inviting them to confirm that they agree to be
visited by a drone for re-charging/replacing batteries.

• If all residents along a path respond positively to the
mission, the drone takes off.

This whole pattern has been reproduced three times on ten
different target/SCS configurations, for a total of 30 tests,
without detecting any flaws in the process. Of course, this
does not exclude the possibility of major problems emerging in
the future, but paves the way to further development and to a
larger trial with more residents and drones involved in a more
realistic scenario.

6.2 Server Response Time
In the second phase, we measure the response time of the cloud
server when subject to stress tests. Specifically, the objective is to
calculate the time required to respond to the requests of different

agents (drones and residents) by increasing both the number of
connected agents and the frequency according to which services
are called.

Please notice that, up to now, we have described the system in
a simple scenario with a small number of resident volunteers and
drones and a limited geographical area. However, the system
might be used in significantly more complex scenarios: then, it is
essential to estimate its behavior in advance when a higher
number of requests are expected to occur (e.g., when several
local Civil protection authorities, residents, or drones operating in
different areas concurrently access the system). To make things
worse, up to now we have hypothesized the case that the system is
used in a pre- or post-event scenario, where a delay in executing a
mission may not be very critical. However, the situation radically
changes when employing the system in during emergencies. In
this case, the perception of an imminent danger leads all actors
involved to demand higher performances since a rapid response
may be crucial, which the system needs to ensure.

During this test, requests to the cloud are made by 50, 150, 250,
350, 450 agents: each agent simulates a drone or a resident
volunteer. To this end, each drone/resident is associated with
a separate thread running on the same PC. Every thread makes a
periodic request to the cloud, with an initial delay computed as a
random number between 1 and 3 s to simulate asynchronous
requests that would happen in a real scenario. Periodic requests
coming from the same agent/thread occur with a period that
varies in different experiments, i.e., 10, 1, 0.1, and 0.01 s.

Figure 7 reports the response time, measured by one of the
agents when: (i) all agents periodically make a request with a 10 s
period, and (2) 50, 250, and 450 agents are present and
concurrently accessing the cloud server. The x-axis represents
the time since the beginning of the test, measured in seconds; the
y-axis represents the time required to receive a reply from the
server after calling the corresponding service. Since the whole test
in Figure 7 lasts 300 s, each agent can make 30 requests during
the selected time frame. To keep the total number of requests
constant in all tests, the duration of the test is set to 30, 3, and
0.3 s, respectively, when the request period (i.e., the time between

FIGURE 6 | Example of algorithm output. Red circles correspond to targets to be visited by drones; blue circles correspond to Depots/Social Charging Stations.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023912

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

two subsequent requests of the same agent) is set to 1, 0.1, and
0.01 s.

The three curves correspond to the number of agents
concurrently accessing the server: 50 agents (yellow), 250
(orange), 450 (blue).

At first glance, it is observable that the three curves, except for
the amplitude, are similar. Situations when the response time is
lower alternate with situations in which it is much higher. As
expected, this becomes more evident when the number of agents

increases. The curve corresponding to 50 agents is flatter than the
curves corresponding to 250 and 450 (notice that the same peak is
reached in the orange and the blue curve, due to unlucky
circumstances in which many agents called a service
simultaneously). All response times are below 1 s, which looks
acceptable compared with the 10 s period according to which
agents access the cloud (i.e., if 450 drones are transmitting their
position every 10 s, the latter can be received with a 1-second delay,
at worst). Specifically, the yellow curve is in the range of

FIGURE 7 | Cloud response time with a request period r = 10 s with 50, 250, and 450 agents.

FIGURE 8 | Cloud response time with a request period r = 1 s with 50, 250, and 450 agents.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023913

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

0.15–0.23 s, with a peak of about 0.3 s. The orange curve is in the
range of 0.15–0.95 s. Finally, the blue curve is in the range of
0.18–0.95 s.

In Figure 8 the request period is decreased to r = 1 s, and the
difference between the yellow, orange, and blue curves is more
evident. The yellow and orange curves exhibit an almost
constant trend in the range between 0.18 and 0.28 s
(i.e., the unlucky situation that led the orange curve to a
0.95 response time is not visible in this case). Instead, the
blue curve is more affected by the decreased request period,
with a maximum peak that reaches 1.8 s (i.e., if 450 drones are
transmitting their position every second, this may be updated
with a 1.8-second delay in the worst case).

A similar situation occurswhen the period is r= 0.1 s,Figure 9, but
this time the delays are much more consistent. The highest peaks of
the blue curves are between 5.5 and 7 s, which are not compatible with
a 0.1 request period. The orange curve is always above 0.2 s and
reaches peaks above 0.7 s; similarly, the yellow curve response time is
always above 0.2 s. These values are hardly compatible with the
selected 0.1 request periods.

Table 1 contains the average values of the system response
time, with additional values for the 150 and 350 agents cases.

6.3 Path Computation
In the third phase, we measure the time required by the algorithm
for path computation. Two different configurations are considered:

• same number of SCSs and targets;
• different number of SCSs and targets, but with a constant
number of nodes in the graph.

The first test is performed by using the same number of SCSs
and targets. Remember that we call “nodes” the set of all SCSs and
targets: then, in the following, we measure the time the algorithm
takes to solve a specific problem with an increasing number of
nodes, equally split among SCSs and targets to be inspected.
Please notice that we use the free academic version of the Gurobi
software to carry out these tests (Python version): this version
allows researchers to formulate problems with a maximum of 28
nodes for each optimization problem.

Table 2 summarizes the results with an increasing number of
nodes: we start with four nodes and increase them after each test
by adding two SCSs and two targets, up to the maximum number
of nodes allowed by Gurobi. Then, for any given number of
nodes, the algorithm is executed 10 times with different node
coordinates, randomly computed: the average time required by
the algorithm to find a solution and its standard deviation are
computed over the ten runs. Finally, the procedure is repeated
three times by imposing different inspection times when a drone
is visiting a target: 60, 180, and 300 s.

As expected, as the number of nodes increases, the time taken
to find a solution increases exponentially. When the inspection

FIGURE 9 | Cloud response time with a request period r = 0.1 s with 50, 250, and 450 agents.

TABLE 1 | Average response times with different request periods and number of
agents concurrently accessing the cloud.

Number of agents (drones/residents)

50 150 250 350 450

Request period [sec] 10 0.1859 0.1915 0.1913 0.2148 0.3607
1 0.1894 0.1946 0.2565 0.348 0.3939
0.1 0.2329 0.2371 0.2893 0.6288 0.9744
0.01 0.2271 0.3283 0.5454 0.9632 1.4379

“Request period” is the interval between two subsequent requests of the same agent;
“Number of agents” are the number of drones or residents that periodically access the
cloud during the test.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023914

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

time is 60 s (Figure 10), the computation time is in the order of
tenths of a second up to 12 nodes. With 16 nodes, the
optimization time increases to more than 1 s, and it is about
5 s for 20 nodes. The optimization time increases even more
significantly when 24 and 28 nodes are considered, with an
average of 40 and 67 s. In the 180-seconds and 300-seconds
tests (Figures 11, 12), the situation is very similar to the 60-
seconds test up to 20 nodes: a difference of a few seconds is
detectedwhen considering 24 nodes.However, the difference becomes
dramatic when considering 28 nodes: an inspection time of 180 and
300 s per target yields an optimization time of, respectively, 119 and
140 s. As expected, also the standard deviation of the computation
time increases as the number of nodes increases.

To summarize, setting a higher inspection time for each visited
target requires a larger optimization time to find a solution. This
happens because it is more difficult for the solver to find feasible
solutions, as drones will be required to come back to an SCS for
recharging more often. The resulting paths also confirm this
evidence. Figure 13 show that, by increasing the inspection time,

more SCSs need to be visited, and a higher number of closed paths
are generated, up to the extent that, for some configurations, a
solution cannot be found at all.

The second test performed involves a different number of SCSs
and targets (with a constant number of nodes): we report the
optimization time versus the ratio “number of target”/“number of
SCSs.” The test is conducted with a 60-second inspection time when
visiting targets, starting from the ratio 2/26 (2 targets and 26 SCSs) to
22/6 (22 targets and 6 SCSs), increasing the number of targets while
decreasing the number of SCSs by two units at each iteration. We
require the total number of nodes to be 22 + 6 = 28 because of the
limitations of Gurobi free version (and because the optimization
time with this last configuration requires more than an hour and a
half to find a solution: a more powerful computer providing higher
performances might be used). For each ratio “number of target”/
“number of SCSs,” 10 randomly computed configurations of nodes
are considered by computing averages and standard deviations of the
optimization time. Results are shown in Table 3. From Figure 14, it
can be observed that a solution is found in less than 2 s up to the ratio

TABLE 2 | First test sumarized results.

Insp. time = 60 s Insp. time = 180 s Insp. time = 300 s

Mean Std. Mean Std. Mean Std.

N. of vertices 4 0.006 0.0038 0.0038 0.0013 0.0043 0.0016
8 0.0311 0.0186 0.0317 0.0204 0.0244 0.012
12 0.2611 0.1871 0.2723 0.1014 0.254 0.1502
16 1.2698 2.5359 1.0459 0.8175 0.8675 0.5531
20 5.3742 5.6554 5.811 6.7905 4.8461 4.0175
24 39.6203 49.8196 32.2628 44.8377 48.058 53.0147
28 67.0975 44.301 119.3972 95.8946 140.1556 119.2363

“N. of vertices” is the total number of targets and Social Charging Stations in the test; “Insp. Time” is the inspection time that drones spend on each target.

FIGURE 10 | Optimization time (average and standard deviation) versus number of vertices, with the number of targets equal to the number of social charging
stations, inspection time spent in targets equal to 60 s.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023915

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

8/20. After this point, the optimization time starts to increase
considerably up to the value of 5000 s for the ratio 22/6.

Finally remind that, up to now, the nodes are randomly
positioned. In the case that this algorithm had to be used in a
real situation, the targets should be chosen according to inspection
needs, and SCSs would be positioned at the residents volunteers’
houses coordinates. Figure 15 is an example of how paths could look
like in a real-life situation. Targets are highlighted in red: in this case
they correspond to photo-voltaic plants to be periodically monitored

for maintenance (target 1 on the top left of the image), or fields
where the dryness of the vegetation should be checked (other
targets). SCSs are constrained to be close to houses.

7 CONCLUSION

In this article, we address the problem of pre- and post-event
monitoring and assessment with UAVs in emergency scenarios. To

FIGURE 11 | Optimization time (average and standard deviation) versus number of vertices, with the number of targets equal to the number of social charging
stations, inspection time spent in targets equal to 180 s.

FIGURE 12 | Optimization time (average and standard deviation) versus number of vertices, with the number of targets equal to the number of social charging
stations, inspection time spent in targets equal to 300 s.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023916

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

this end,we propose the concept of SocialDrone Sharing (SDS): citizens
are involved in themonitoring process through SocialCharging Stations
(SCS) to extend the autonomy range of drones (Morando et al., 2020).

The following results have been achieved in the present work.

• A cloud-based software architecture has been developed
that allows communication between the actors involved in
the inspection mission: the Civil protection, the resident
volunteers that make their properties available as SCSs, and
the drones themselves. Each actor can perform certain actions to
exchange information through the services provided by a cloud
server and the related database. Tests show that, fromaqualitative
point of view, the control flow when accessing services is correct:
no errors were reported during the execution of the tests. From a
quantitative perspective, the choice to implement services on the
cloud (Microsoft Azure) has been evaluated through systematic
tests to measure the server’s response time with an increasing
request rate and a number of agents.

• Anoptimization algorithmhas been implemented inspired from
(Sundar et al., 2016), which allows finding the optimal paths for
multiple drones in the presence ofmultiple targets to inspect and
SCS. Tests have been performed to evaluate the time required to
find a solution with an increasing number of nodes, increased

FIGURE 13 | Top left: inspection time spent in targets equal to 60 s (Path 1: 11, 8, 4, 3, 7, 14, 6, 5, 11; Path 2: 15, 2, 1, 15). Top right: inspection time spent in
targets equal to 180 s (Path 1: 14, 6, 14; Path 2: 9, 7, 5, nine; Path 3: 11, 8, 3, 4, 11; Path 4: 15, 2, 15, 1, 15). Bottom left: inspection time spent in targets equal to 300 s
(Path 1: 10, 6, 10; Path 2: 9, 7, 3, 9; Path 3: 11, 5, 11, 8, 4, 11; Path 4: 15, 2, 15, 1, 15).

TABLE 3 | Second test summarized results.

Inspection time = 60 s

Mean Std.

Ratio =Target/SCS r = 2/26 0.0214 0.0027
r = 4/24 0.1494 0.0651
r = 6/22 0.5036 0.2759
r = 8/20 1.0784 0.2501
r = 10/18 14.1215 26.7053
r = 12/16 17.1159 14.3806
r = 14/14 57.2587 37.0916
r = 16/12 87.1039 97.2958
r = 18/10 302.2895 358.7991
r = 20/8 844.6466 1.02E + 03
r = 22/6 Over 5000 —

“Ratio = Target/SCS” is the ratio between the number of targets and Social Charging
Stations in the test; “Insp. Time” is the inspection time that drones spend on each target.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023917

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

inspection timewhen visiting targets, and finally, a different ratio
between the number of targets and the number of SCS available
for recharging.

As a future work, we are going to consider the following lines
of research.

• Wewill ensure that the system can handle various models of
drones with different characteristics, e.g., speed and battery
consumption. For laboratory experiments, the system can

currently handle only one type of drone, the DJI Tello,
which is a great solution for indoor experiments but is
entirely useless in a realistic outdoor scenario.

• The optimization model returns a set of closed paths, as the
drones have to depart and return to the same point.
However, this is not necessarily true in our scenario,
where a drone could be instructed to complete its path
by landing at an SCS that is different from the starting one.
The optimization problem is going to be modified and
updated accordingly.

FIGURE 14 | Optimization time (average and standard deviation) with 28 vertices as the ratio number of targets/number of Social Charging Stations varies,
inspection time spent in targets = 60 s.

FIGURE 15 | Geo-referenced path in a real world scenario superimposed to a Google Earth image.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023918

Bisio et al. Social Drone Sharing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

• In the current optimization model, every SCS is assumed to
have a drone ready to take off: i.e., SCS are considered
depots, not only recharging stations. These two concepts
should be decoupled since SCS may exist that do not have
any drone ready to take off when optimization starts. This
problem has been temporarily solved by providing the Civil
protection with the set of paths found and then asking them
to assign drones to paths and select depots manually. This
solution makes sense as a prototype to demonstrate the SCS
principle. Still, it may not be appropriate in real cases. Once
again, the optimization problem is going to be modified and
updated accordingly.

Once these aspects will be addressed and the whole system
refined, we aim to start a larger trial with the support of mountain
communities in the North of Italy.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

I-SB is the main author of this article. The work described is
part of her Masters’ thesis. LM contributed to the initial idea of
Social Drone Sharing, and contributed to develop the
optimization algorithm. CR contributed to the initial idea of
Social Drone Sharing and provided help for the develpment of
the system. AS is supervisor of I-SB and LM, he contributed to
the initial idea of Social Drone Sharing as well as the Cloud
Architecture.

REFERENCES

Abtahi, P., Zhao, D. Y., Jane, L. E., and Landay, J. A. (2017). Drone Near Me. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 1–8. doi:10.1145/3130899

Avila, M., Funk, M., and Henze, N. (2015). “DroneNavigator: Using Drones for
Navigating Visually Impaired Persons,” in Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Accessibility - ASSETS ’15 (Lisbon,
Portugal: ACM), 327–328.

Avila Soto, M., Funk, M., Hoppe, M., Boldt, R., Wolf, K., and Henze, N. (2017).
“DroneNavigator: Using Leashed and Free-Floating Quadcopters to Navigate
Visually Impaired Travelers,” in Proceedings of the 19th International ACM
SIGACCESS Conference on Computers and Accessibility (Baltimore, MD:
ACM), 300–304.

Aznar, F., Sempere, M., Pujol, M., Rizo, R., and Pujol, M. J. (2014). Modelling Oil-
Spill Detection with Swarm Drones. Abstract Appl. Anal. 2014, 1–14. doi:10.
1155/2014/949407

Baiocchi, V., Dominici, D., and Mormile, M. (2013). UAV Application in post -
Seismic Environment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.,
21–25. doi:10.5194/isprsarchives-XL-1-W2-21-2013

Barmpounakis, E., and Geroliminis, N. (2020). On the new era of Urban Traffic
Monitoring with Massive Drone Data: The pNEUMA Large-Scale Field
experiment. Transp. Res. Part. C Emerg. 111 (50–71). doi:10.1016/j.trc.2019.
11.023

Baytas, M. A., Çay, D., Zhang, Y., Obaid, M., Yantaç, A. E., and Fjeld, M. (2019).
“The Design of Social Drones: A Review of Studies on Autonomous Flyers in
Inhabited Environments,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (Glasgow, Scotland: ACM), 1–13.

Brock, A. M., Cauchard, J., Funk, M., Garcia, J., Khamis, M., and Kljun, M. (2019).
“iHDI: International Workshop on Human-Drone Interaction,” in Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland: ACM), 1–7.

Bravo, G. C., Parra, D. M., Mendes, L., and de Jesus Pereira, A. M. (2016). “First Aid
Drone for Outdoor Sports Activities,” in 2016 1st International Conference on
Technology and Innovation in Sports, Health and Wellbeing (TISHW) (Vila
Real, Portugal: IEEE), 1–5. doi:10.1109/tishw.2016.7847781

Cauchard, J. R., Jane, L. E., Zhai, K. Y., and Landay, J. A. (2015). “Drone & Me: an
Exploration into Natural Human-Drone Interaction,” in UbiComp ’15:
Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (Osaka, Japan: ACM Press), 361–365.

Chen, C.-F., Liu, K-P., and Yu, N.-H. (2015). “Exploring Interaction Modalities for
a Selfie Drone,” in SIGGRAPH Asia 2015 Posters (Honolulu, HI: SA ’15), 1–2.
doi:10.1145/2820926.2820965

Chen, C. M., Sinclair, L. E., Fortin, R., Coyle, M., and Samson, C. (2020). In-flight
Performance of the Advanced Radiation Detector for UAV Operations
(ARDUO). Nucl. Instr. Methods Phys. Res. Section A: Acc. Spectrometers,
Detectors Associated Equipment 954, 161609. doi:10.1016/j.nima.2018.11.068

Colley, A., Virtanen, L., Pascal, K., and Häkkilä, J. (2017). “Investigating Drone
Motion as Pedestrian Guidance,” in Proceedings of the 16th International
Conference on Mobile and Ubiquitous Multimedia (Stuttgart, Germany:
ACM), 143–150. doi:10.1145/3152832.3152837

Floreano, D., and Wood, R. J. (2015). Science, Technology and the Future of Small
Autonomous Drones. Nature 521 (7553), 460–466. doi:10.1038/nature14542

Funk, M. (2018). Human-drone Interaction. Interactions 25 (3), 78–81. doi:10.
1145/3194317

Hu, G., Tay, W., andWen, Y. (2012). Cloud Robotics: Architecture, Challenges and
Applications. IEEE Netw. 26 (3), 21–28. doi:10.1109/mnet.2012.6201212

Iacono, M., and Sgorbissa, A. (2018). Path Following and Obstacle Avoidance for
an Autonomous Uav Using a Depth Camera. Rob. Auton. Syst. 106, 38–46.
doi:10.1016/j.robot.2018.04.005

Jensen, W., Hansen, S., and Knoche, H. (2018). “Knowing You, Seeing Me:
Investigating User Preferences in Drone-Human Acknowledgement,” in
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (Montreal, QC: ACM), 1–12.

Karaca, Y., Cicek, M., Tatli, O., Sahin, A., Pasli, S., Beser, M. F., et al. (2018). The
Potential Use of Unmanned Aircraft Systems (Drones) in Mountain Search and
rescue Operations. Am. J. Emerg. Med. 36 (4), 583–588. doi:10.1016/j.ajem.
2017.09.025

Karjalainen, K. D., Sofia Romell, A. E., Ratsamee, P., Yantac, A. E., Fjeld, M., and
Obaid, M. (2017). “Social Drone Companion for the Home Environment: a
User-Centric Exploration,” in Proceedings of the 5th International Conference
on Human Agent Interaction (Beilefeld, Germany: ACM), 89–96.

Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., and Goldberg, K. (2013).
“Cloud-based Robot Grasping with the Google Object Recognition Engine,” in
2013 IEEE International Conference on Robotics and Automation (Karlsruhe,
Germany: ACM), 4263–4270. doi:10.1109/icra.2013.6631180

Kuffner, J. (2010). Cloud-enabled Humanoid Robots. USA: Humanoids.
Lomonaco, V., Angelo, T., Ziosi, M., Dios Yáñez Ávila, J. d., and Díaz-Rodríguez,

N. (2018). Intelligent Drone Swarm for Search and Rescue Operations at Sea.
arXiv.

Mademlis, I., Mygdalis, V., Nikolaidis, N., Montagnuolo, M., Negro, F., Messina, A.,
et al. (2019). High-level Multiple-Uav Cinematography Tools for Covering Outdoor
Events. IEEE Trans. Broadcast. 65 (3), 627–635. doi:10.1109/tbc.2019.2892585

Maza, I., Caballero, F., Capitan, J., Martinez-de Dios, J. R., and Ollero, A. (2010).
“Firemen Monitoring with Multiple UAVs for Search and rescue Missions,” in
2010 IEEE Safety Security and Rescue Robotics (Bremen, Germany: IEEE), 1–6.
doi:10.1109/ssrr.2010.5981565

McRae, J. N., Gay, C. J., Nielsen, B. M., and Hunt, A. P. (2019). Using an
Unmanned Aircraft System (Drone) to Conduct a Complex High Altitude
Search and Rescue Operation: A Case Study. Wilderness Environ. Med. 30 (3),
287–290. doi:10.1016/j.wem.2019.03.004

Mohanarajah, G., Hunziker, D., D’Andrea, R., and Waibel, M. (2015). Rapyuta: A
Cloud Robotics Platform. IEEE Trans. Automat. Sci. Eng. 12 (2), 481–493.
doi:10.1109/tase.2014.2329556

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023919

Bisio et al. Social Drone Sharing

https://doi.org/10.1145/3130899
https://doi.org/10.1155/2014/949407
https://doi.org/10.1155/2014/949407
https://doi.org/10.5194/isprsarchives-XL-1-W2-21-2013
https://doi.org/10.1016/j.trc.2019.11.023
https://doi.org/10.1016/j.trc.2019.11.023
https://doi.org/10.1109/tishw.2016.7847781
https://doi.org/10.1145/2820926.2820965
https://doi.org/10.1016/j.nima.2018.11.068
https://doi.org/10.1145/3152832.3152837
https://doi.org/10.1038/nature14542
https://doi.org/10.1145/3194317
https://doi.org/10.1145/3194317
https://doi.org/10.1109/mnet.2012.6201212
https://doi.org/10.1016/j.robot.2018.04.005
https://doi.org/10.1016/j.ajem.2017.09.025
https://doi.org/10.1016/j.ajem.2017.09.025
https://doi.org/10.1109/icra.2013.6631180
https://doi.org/10.1109/tbc.2019.2892585
https://doi.org/10.1109/ssrr.2010.5981565
https://doi.org/10.1016/j.wem.2019.03.004
https://doi.org/10.1109/tase.2014.2329556
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Morando, L., Recchiuto, C. T., Calla, J., Scuteri, P., and Sgorbissa, A. (2022).
Thermal and Visual Tracking of Photovoltaic Plants for Autonomous Uav
Inspection. arXiv.

Morando, L., Recchiuto, C. T., and Sgorbissa, A. (2020). “Social Drone Sharing to
Increase the UAV Patrolling Autonomy in Emergency Scenarios,” in 2020 29th
IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN) (Naples, Italy: IEEE), 539–546. doi:10.1109/ro-
man47096.2020.9223567

Mori, M., MacDorman, K., and Kageki, N. (2012). The Uncanny Valley [From the
Field]. IEEE Robot. Automat. Mag. 19 (2), 98–100. doi:10.1109/mra.2012.
2192811

Mueller, F F., and Muirhead, M. (2015). “Jogging with a Quadcopter,” in
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (Seoul, South Korea: ACM), 2023–2032. doi:10.1145/
2702123.2702472

Murphy, R. R., Steimle, E., Griffin, C., Cullins, C., Hall, M., and Pratt, K.
(2008). Cooperative Use of Unmanned Sea Surface and Micro Aerial
Vehicles at Hurricane Wilma. J. Field Robotics 25 (3), 164–180. doi:10.
1002/rob.20235

Piaggio, M., Sgorbissa, A., and Zaccaria, R. (2001). “Autonomous Navigation and
Localization in Service mobile Robotics,” in Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Expanding the
Societal Role of Robotics in the the Next Millennium, Maui, HI, USA, 29 Oct.-3
Nov. 2001, 4, 2024–2029.

Pratt, K. S., Murphy, R., Sam, S., and Griffin, C. (2006). CONOPS and Autonomy
Recommendations for VTOL MAVs Based on Observations of Hurricane
Katrina UAV Operations. J. Field Robot. 26, 636–650.

Qi, J., Song, D., Shang, H., Wang, N., Hua, C., Wu, C., et al. (2016). Search and
Rescue Rotary-Wing UAV and its Application to the Lushan Ms 7.0
Earthquake. J. Field Robotics 33 (3), 290–321. doi:10.1002/rob.21615

Recchiuto, C. T., and Sgorbissa, A. (2020). A Feasibility Study of Culture-Aware
Cloud Services for Conversational Robots. IEEE Robot. Autom. Lett. 5 (4),
6559–6566. doi:10.1109/lra.2020.3015461

Recchiuto, C. T., and Sgorbissa, A. (2018). Post-disaster Assessment with
Unmanned Aerial Vehicles: A Survey on Practical Implementations and
Research Approaches. J. Field Robotics 35 (4), 459–490. doi:10.1002/rob.21756

Recchiuto, C. T., and Sgorbissa, A. (2018). Post-disaster Assessment with
Unmanned Aerial Vehicles: A Survey on Practical Implementations and
Research Approaches. J. Field Robotics 35 (4), 459–490. doi:10.1002/rob.21756

Recchiuto, C. T., Sgorbissa, A., and Zaccaria, R. (2016). Visual Feedback with
Multiple Cameras in a Uavs Human-Swarm Interface. Rob. Auton. Syst. 80,
43–54. doi:10.1016/j.robot.2016.03.006

Riazuelo, L., Civera, J., and Montiel, J. M. M. (2014). C2TAM: A Cloud Framework
for Cooperative Tracking and Mapping. Rob. Auton. Syst. 62 (4), 401–413.
doi:10.1016/j.robot.2013.11.007

Saha, O., and Dasgupta, P. (2018). A Comprehensive Survey of Recent Trends in
Cloud Robotics Architectures and Applications. Robotics 7 (3), 47. doi:10.3390/
robotics7030047

Sanjana, P., and Prathilothamai, M. (2020). “Drone Design for First Aid Kit
Delivery in Emergency Situation,” in 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS) (Coimbatore,
India: IEEE), 215–220. doi:10.1109/icaccs48705.2020.9074487

Sundar, K., Venkatachalam, S., and Rathinam, S. (2016). “Formulations and
Algorithms for the Multiple Depot, Fuel-Constrained, Multiple Vehicle

Routing Problem,” in 2016 American Control Conference (ACC) (Boston,
MA: IEEE), 6489–6494. doi:10.1109/acc.2016.7526691

Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H. T., and Plosila, J. (2019).
Swarms of Unmanned Aerial Vehicles - A Survey. J. Ind. Inf. Integration 16,
100106. doi:10.1016/j.jii.2019.100106

The Local (2020). Hovering Police Drones Take Italians’ Temperature and Issue
Fines. https://www.thelocal.it/20200410/hovering-police-drones-take-italians-
temperature-and-issue-fines.

Tiwari, K., Xiao, X., Malik, A., and Chong, N. Y. (2019). A Unified Framework for
Operational Range Estimation of mobile Robots Operating on a Single
Discharge to Avoid Complete Immobilization. Mechatronics 57, 173–187.
doi:10.1016/j.mechatronics.2018.12.006

Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., et al. (2012).
Toward a Fully Autonomous Uav: Research Platform for Indoor and Outdoor
Urban Search and rescue. IEEE Robot. Automat. Mag. 19 (3), 46–56. doi:10.
1109/mra.2012.2206473

Tosato, P., Facinelli, D., Prada, M., Gemma, L., Rossi, M., and Brunelli, D. (2019).
“An Autonomous Swarm of Drones for Industrial Gas Sensing Applications,”
in Proceedings of 2019 IEEE 20th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM) (Washington, DC:
IEEE), 1–6. doi:10.1109/wowmom.2019.8793043

Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D., et al. (2011).
RoboEarth. IEEE Robot. Automat. Mag. 18, 69–82. doi:10.1109/MRA.2011.941632

Wang, X., Chowdhery, A., and Chiang, M. (2017). “Networked Drone Cameras
for Sports Streaming,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS) (Atlanta, GA: IEEE), 308–318.
doi:10.1109/icdcs.2017.200

Yeh, A., Ratsamee, P., Kiyokawa, K., Uranishi, Y., Mashita, T., Takemura, H., et al.
(2017). “Exploring Proxemics for Human-Drone Interaction,” in Proceedings of
the 5th International Conference on Human Agent Interaction (Bielefeld: ACM),
81–88. doi:10.1145/3125739.3125773

Zormpas, A., Moirogiorgou, K., Kalaitzakis, K., Plokamakis, G. A., Partsinevelos,
P., Giakos, G., et al. (2018). “Power Transmission Lines Inspection Using
Properly Equipped Unmanned Aerial Vehicle (UAV),” in Proceedings of 2018
IEEE International Conference on Imaging Systems and Techniques (IST)
(Krakow, Poland: IEEE), 1–5. doi:10.1109/ist.2018.8577142

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bisio, Morando, Recchiuto and Sgorbissa. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82023920

Bisio et al. Social Drone Sharing

https://doi.org/10.1109/ro-man47096.2020.9223567
https://doi.org/10.1109/ro-man47096.2020.9223567
https://doi.org/10.1109/mra.2012.2192811
https://doi.org/10.1109/mra.2012.2192811
https://doi.org/10.1145/2702123.2702472
https://doi.org/10.1145/2702123.2702472
https://doi.org/10.1002/rob.20235
https://doi.org/10.1002/rob.20235
https://doi.org/10.1002/rob.21615
https://doi.org/10.1109/lra.2020.3015461
https://doi.org/10.1002/rob.21756
https://doi.org/10.1002/rob.21756
https://doi.org/10.1016/j.robot.2016.03.006
https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.3390/robotics7030047
https://doi.org/10.3390/robotics7030047
https://doi.org/10.1109/icaccs48705.2020.9074487
https://doi.org/10.1109/acc.2016.7526691
https://doi.org/10.1016/j.jii.2019.100106
https://www.thelocal.it/20200410/hovering-police-drones-take-italians-temperature-and-issue-fines
https://www.thelocal.it/20200410/hovering-police-drones-take-italians-temperature-and-issue-fines
https://doi.org/10.1016/j.mechatronics.2018.12.006
https://doi.org/10.1109/mra.2012.2206473
https://doi.org/10.1109/mra.2012.2206473
https://doi.org/10.1109/wowmom.2019.8793043
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1109/icdcs.2017.200
https://doi.org/10.1145/3125739.3125773
https://doi.org/10.1109/ist.2018.8577142
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Social Drone Sharing to Increase UAV Patrolling Autonomy in Pre- and Post-Emergency Scenarios
	1 Introduction
	2 State of the Art
	2.1 UAVs for Security, Monitoring, and Surveillance
	2.2 Social Drones
	2.3 Cloud Robotics

	3 Social Drone Sharing: Objective and Methodology
	4 Cloud Implementation
	4.1 System Architecture
	4.2 Service Implementation

	5 Path Computation
	5.1 Finding Paths in the Social Drone Scenario
	5.2 Limitations in the Social Drone Sharing Scenario

	6 Experiments
	6.1 System Architecture and Services
	6.2 Server Response Time
	6.3 Path Computation

	7 Conclusion
	Data Availability Statement
	Author Contributions
	References

